JPS5934104A - Optical automatic dimension measuring method - Google Patents

Optical automatic dimension measuring method

Info

Publication number
JPS5934104A
JPS5934104A JP14401282A JP14401282A JPS5934104A JP S5934104 A JPS5934104 A JP S5934104A JP 14401282 A JP14401282 A JP 14401282A JP 14401282 A JP14401282 A JP 14401282A JP S5934104 A JPS5934104 A JP S5934104A
Authority
JP
Japan
Prior art keywords
point
measured
shadow
scanning
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14401282A
Other languages
Japanese (ja)
Inventor
Masahiro Matsushige
松重 匡弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14401282A priority Critical patent/JPS5934104A/en
Publication of JPS5934104A publication Critical patent/JPS5934104A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • G01B11/10Measuring arrangements characterised by the use of optical techniques for measuring diameters of objects while moving
    • G01B11/105Measuring arrangements characterised by the use of optical techniques for measuring diameters of objects while moving using photoelectric detection means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To prevent the lowering of the precision of dimension measurement due to oscillation of an object to be measured, by dividing the shadow, which is projected to a photodetector group, into two with the center part of the shadow as the boundary and scanning these divided parts synchronously in opposite directions. CONSTITUTION:The shadow of an object to be measured 4 which is generated when the object 4 is irradiated with a parallel light 3 from a light source 1 is projected to a photodetector group 6, where many photodetectors are arranged, through a light receiving lens 5. This shadow is divided at a point (e) of the center part and is scanned. A reading part 7-1 scans operating conditions of the photodetector group 6 from the point (e) to a point (a) in order. Synchronously with this scanning, a reading part 7-2 scans operating conditions of the photodetector group 6 from the point (e) to a point (d) in order. Data obtained by this scanning are added in an operating part 8 and are compared with dimension data set in a setting part 9, and extraction of minimum and maximum data and processings such as average operation are performed in a signal processing part 10 on a basis of the comparison result to generate display and recording data. Thus, oscillation factors of the object to be measured are cancelled to obtain a more accurate dimension value of the outside diameter.

Description

【発明の詳細な説明】 本発明は、光学式自動測寸方法特に被測定物の振動によ
る測寸誤差を縮小する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical automatic dimension measurement method, and particularly to a method for reducing measurement errors caused by vibrations of an object to be measured.

一般にオンラインで鋼管、線材等の外径や形状の測定を
行う場合、非接触の光学式自動測寸装置を使用すること
が多い。第1図によシ光学式自動測寸方法の概要を説明
すると、光源1、よシ発生する光を投光レンズ2によシ
平行光線6に変換し、これを被測定物4に照射する事に
より、被測定物によりaられてできる影の形状を受光レ
ンズ5を介して多数並べられた受光素子群6によシ光電
変換(つt、!7受光した光量を電荷に変換)させる。
Generally, when measuring the outer diameter and shape of steel pipes, wire rods, etc. online, a non-contact optical automatic measuring device is often used. The outline of the optical automatic dimension measurement method is explained with reference to FIG. 1. Light generated by a light source 1 is converted into a parallel light beam 6 by a projection lens 2, and this is irradiated onto an object to be measured 4. As a result, the shape of the shadow formed by the object to be measured is photoelectrically converted (converts the amount of received light into electric charges) by the light receiving element group 6 arranged in large numbers through the light receiving lens 5.

読込部7は受光素子群乙の動作状況(オン、オフ)をa
点からd点まで走査して順番に読込み、この読込みデー
タを演算部8へ送シ、設定部9にセットされている寸法
データと読込み部7からの測定データとの比較波x’を
行い、その結果を信号処理部10において最小最大デー
タの抽出、平均演算等の演算処理を行い、衣示及びh己
録データを作成する。
The reading unit 7 reads the operating status (on, off) of the light receiving element group B.
Scan from point d to point d and read in order, send this read data to the calculation section 8, compare the dimension data set in the setting section 9 and the measurement data from the reading section 7 x', The result is subjected to arithmetic processing such as extraction of minimum and maximum data and average calculation in the signal processing unit 10 to create display and record data.

このような光学式自動測寸においては被測定物4の振動
により受光素子群乙のすu1作状況が刻々と変化する。
In such optical automatic size measurement, the working status of the light receiving element group B changes every moment due to the vibration of the object to be measured 4.

このため受光素子群6のa・点からd点までの動作状況
全走査するに要する時間(以下走査時間)によシ寸法精
度が左右されることになる。
Therefore, the dimensional accuracy depends on the time required to scan the entire operating state of the light receiving element group 6 from point a to point d (hereinafter referred to as scanning time).

第2図により被測定物4の上下振動による計測誤差につ
いて説明すると、第2図(1)において受光素子群乙の
走査方向Sと同方向に被測定物4が振動した場合、a点
から各々の受光素子の動作状況を順次走査し、b点よシ
被測定物4の影が検出され0点までその状態が続きd点
で走査が終了する。
To explain measurement errors due to vertical vibration of the object to be measured 4 with reference to FIG. 2, when the object to be measured 4 vibrates in the same direction as the scanning direction S of the light receiving element group B in FIG. The operating status of the light-receiving element is sequentially scanned, and the shadow of the object 4 to be measured is detected from point b, and this state continues until point 0, and the scanning ends at point d.

この場合被測定物4の実寸法りに対し影はb −c間で
計測されるため、計測値は実寸法よりも大きく計測され
たことになる。これは被測定物4が下方へ移動している
ことによ、9c点走査時には被測定物の上面はb点よシ
C点寄に移動しているが計測はb点より開始している為
である。
In this case, since the shadow is measured between b and c with respect to the actual size of the object to be measured 4, the measured value is larger than the actual size. This is because the object to be measured 4 is moving downward, and when scanning point 9c, the top surface of the object is moving from point b to point C, but measurement starts from point b. It is.

第2図(2)は受光素子群6の走査方向Sとは逆方向に
被測定物4が振動した場合であシ、a点より走査しb′
点で被測定物上面の影を検出し07点で影の検出を終了
しd点で走査を終了する。この場合形はb′−01間で
計測されるため計測値は被測定物4の実寸法りよυ小さ
く計測された事になる。これは被測定物体が上方へ移動
していることによシ被測定′吻4の下面検出点である0
7点を走査した時には被測定物4の上面はb′点よシa
点寄となっているが計測はb′点よシ開始している為・
である。
FIG. 2 (2) shows a case where the object to be measured 4 vibrates in the opposite direction to the scanning direction S of the light receiving element group 6, and the object to be measured 4 is scanned from point a.
A shadow on the upper surface of the object to be measured is detected at point 07, and the detection of the shadow is completed at point 07, and scanning is completed at point d. In this case, since the shape is measured between b'-01, the measured value is smaller than the actual size of the object 4 to be measured. This is due to the fact that the object to be measured is moving upward.
When 7 points are scanned, the top surface of the object to be measured 4 is from point b' to a
Although it is a point stop, the measurement starts from point b′.
It is.

この様に被測定物の振動は測寸N度に大きく影響する。In this way, the vibration of the object to be measured greatly affects the measured N degree.

したがって例えば@管、線材の外径などをtft送中に
計測する場合は被測定物の振動によって測寸誤差が生じ
ていた。従来このような誤差を軽減させる方法として測
寸装置の投光器輝度を上げることによシ受光素子の感度
を高め走査速度を速くする対策がとられていた。しかし
受光素子の光電変換に必要な時間に制約があシ極端に走
査時間を短縮することはできず、測寸精度を向上させる
為には被測定物の振動を抑制しなければならない。搬送
されている被測定物の振動を抑制する方法としては押え
ロールによる方法がある。しかし被測定物に曲りが荘在
している場合、あるいは被測定物を回転させながら搬送
する場合は振動を皆無にすることはきわめて困難であり
、所望の精度を得るにはラインを停止しなければならな
かった。
Therefore, for example, when measuring the outer diameter of a pipe or wire during TFT transport, measurement errors occur due to vibration of the object to be measured. Conventionally, as a method of reducing such errors, measures have been taken to increase the sensitivity of the light receiving element and increase the scanning speed by increasing the brightness of the projector of the measuring device. However, there is a restriction on the time required for photoelectric conversion of the light receiving element, so it is not possible to shorten the scanning time to an extreme extent, and in order to improve the measurement accuracy, it is necessary to suppress the vibration of the object to be measured. As a method of suppressing the vibration of the object to be measured while it is being conveyed, there is a method using presser rolls. However, it is extremely difficult to eliminate vibrations when the object to be measured has many bends, or when the object is being transported while rotating, and the line must be stopped to obtain the desired accuracy. I had to.

本発明の目的は光学式自動測寸において被測定物の振動
による測寸精度の低下を防ぐ方法を提供することにある
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for preventing a decrease in measurement accuracy due to vibration of an object in optical automatic measurement.

本発明の要旨は被測定物に光を照射して生じた影を受光
素子群に投影し該受光素子群を走査して被測定物寸法を
計測する方法において、(5)受光素子群に投影された
影の中央部が境になるように分割して走査すること、(
B)走査を同期させること、(C)走査を逆方向にする
こと、(2)計測値を加算することを特徴とする光学式
自動測寸方法にある。以下本発明の詳細を第6図〜第4
図を参照し説明する。
The gist of the present invention is to provide a method for measuring the dimensions of the object by projecting a shadow created by irradiating light onto the object to be measured onto a group of light receiving elements and scanning the group of light receiving elements. (
The present invention is an optical automatic sizing method characterized by B) synchronizing scans, (C) reversing scans, and (2) adding measured values. The details of the present invention are shown in Figures 6 to 4 below.
This will be explained with reference to the drawings.

第3図の光源1から平行光線3を被測定物4に照射する
ことによシ遮られてできる影が受光レンズ5を介して多
数並べられた受光素子群6に投影される。受光素子群乙
に投影された影の中央部に相当するe点から一端のa点
までと、e点から他端のd点までとに分割して走査する
。読込部7−1は受光素子群6の動作状況をe点からa
点に向って順番に走査する。またこれと同期して読込部
7−2は受光素子群6の動作状況をe点からd点に向っ
て順番に走査する。すなわち、各走査を逆向きにかつ同
期させる。読込部7−1及び7−2の計測値は演算部8
にて加算される。又演算部8は設定部9にセットされて
いる寸法データと読込部7−1及び7−2からの測定デ
ータとの比較演算を行いその結果を信号処理部10に訃
いて最小最大データの抽出、平均演算等の処理を行い表
示及び記録データを作成する。
A shadow created by irradiating parallel light rays 3 from a light source 1 shown in FIG. Scanning is performed by dividing it into two parts: from point e, which corresponds to the center of the shadow projected on light-receiving element group B, to point a at one end, and from point e to point d at the other end. The reading unit 7-1 reads the operating status of the light receiving element group 6 from point e to point a.
Scan the points sequentially. In addition, in synchronization with this, the reading unit 7-2 sequentially scans the operating status of the light receiving element group 6 from point e toward point d. That is, each scan is reversed and synchronized. The measured values of the reading units 7-1 and 7-2 are calculated by the calculation unit 8.
will be added at Further, the calculation section 8 performs a comparison operation between the dimension data set in the setting section 9 and the measurement data from the reading sections 7-1 and 7-2, and sends the result to the signal processing section 10 to extract minimum and maximum data. , performs processing such as average calculation, and creates display and recording data.

この様にe点よシ各々逆方向に受光素子群6の動作状態
を;if 1llll L各々の計測値を加算すること
により、被測定物の振動要因が相殺され1、より正しい
外径寸法値を得ることができる。むろん受光素子群のa
点及びd点よ90点方向に計測した場合も同様の計測精
度を得ることができる。
In this way, by adding the measurement values of each light receiving element group 6 in the opposite direction from point e, the vibration factor of the object to be measured is canceled out1, and the outer diameter dimension value is more accurate. can be obtained. Of course, a of the light receiving element group
Similar measurement accuracy can be obtained when measuring in the direction of 90 points from point and point d.

第4図により詳しく説明すると、第4図(1)において
受光素子都乙のe点より下側に被測定物4が揚動した場
合を考えると、e点よJa点の方向に受光素子群6の動
作状況を順次走査し被測定物4の影の上限端であるb点
を検知する。同時にe点よ94点方向に受光素子群乙の
動作状況を順次走査し、被測定物4の影の下限端である
CAを検知する。受光素子群6のe点が被測定物停止時
の中央部と一致しているならば下方向の振動によりe−
す同寸法が小さく、e−c同寸法が大きくなる。
To explain in detail with reference to FIG. 4, if we consider a case where the object to be measured 4 is lifted below the point e of the light-receiving element in FIG. 6 is sequentially scanned, and point b, which is the upper limit of the shadow of the object to be measured 4, is detected. At the same time, the operation status of the light receiving element group B is sequentially scanned in the direction from the point e to the 94th point, and CA, which is the lower limit of the shadow of the object to be measured 4, is detected. If point e of the light-receiving element group 6 coincides with the center of the object to be measured when it is stopped, downward vibration causes e-
The same dimension becomes small, and the same dimension e-c becomes large.

いま、−11jl宝物の実・を法をD + e  b間
寸法値をA。
Now, the dimension value between -11jl Treasure Fruit is D + e and b is A.

e −e間手法値を13とするならばA+BはDに近似
する。これと逆の状態が第4図(?)で被測定物4が逆
方向(上方)に振動した場合、Aの値は大きくBの値は
小さくなシ前記と同様にA+BはDに近似する。
If the e-e method value is 13, A+B approximates D. The opposite situation is shown in Fig. 4 (?), when the object to be measured 4 vibrates in the opposite direction (upward), the value of A is large and the value of B is small.As before, A+B approximates D. .

この様に受光素子群のe点からa点およびd点の方向ま
たはa点し・よびd点からe点の方向へ同時に走査する
ことによシ被測定物の振動による計測誤差を縮小した外
径寸法を得ることが可能である。本発明において受光素
子群に投影された影の中央部カニ境になるように分割し
て走査する手段としては、e点が被測定物の中央部と一
致するように、抜用11定物又は受光素子の位置を調整
する。なお受光素子の両端からe点に向けて走査する場
合はe点から両端までの長さを等しくする必要がある。
In this way, by simultaneously scanning the light receiving element group in the direction from point e to point a and point d or from point a and point d to point e, measurement errors due to vibration of the object to be measured can be reduced. It is possible to obtain the diameter dimension. In the present invention, as a means for dividing and scanning the shadow projected on the light receiving element group so that the central part of the shadow is at the boundary, the method of dividing and scanning the shadow projected on the light receiving element group is as follows: Adjust the position of the light receiving element. Note that when scanning from both ends of the light receiving element toward point e, it is necessary to make the lengths from point e to both ends equal.

次に実施例を示す。受光素子群6の測定視野を200m
、受光素子1個の分解能を0.1]3+o+とじ走査速
度を1500 )IZとした場合受光素子総数は666
7個必要であp1受光素子1鯉当シの読出し時間は0,
1μsecとなる。従来法においてパイプ外径が160
聴φで振幅±5間、周波数10Hzで走査方向と同方向
にパイプが振動した場合の計測値は次の様になる。
Next, examples will be shown. The measurement field of light receiving element group 6 is 200m.
, the resolution of one light-receiving element is 0.1]3 + o + binding scanning speed is 1500 ) IZ, the total number of light-receiving elements is 666
7 are required, and the readout time for 1 p1 light receiving element is 0,
The time is 1 μsec. In the conventional method, the pipe outer diameter is 160 mm.
The measured values when the pipe vibrates in the same direction as the scanning direction at an amplitude of ±5 and a frequency of 10 Hz at the hearing φ are as follows.

パイプ静止時に平行光線3によって受光素子群乙に出来
る影の部分は160÷0.03=5333.333X5
333.333=35.555となシバイブによる影を
検出した素子数(/15669個となる。これをパイプ
外径値に変換すると5669 X O,03=161.
07消φになる。
When the pipe is stationary, the part of the shadow created by the parallel ray 3 on the light receiving element group A is 160÷0.03=5333.333X5
333.333=35.555 The number of elements that detected shadows due to Shivibe (/15669 pieces).Converting this to the pipe outer diameter value gives 5669 X O,03=161.
It becomes 07 erasure φ.

本発明はパイプ中心と受光素子群中央部基準点0点を一
致させて受光素子群乙の中央部基学点e点よ)2分割し
て6334個ずつの受光素子群に分け、e点よシ一端の
a点までとe点から他端のd点までとに同期させ逆方向
に分割走畳した。従来法と同様の撮動においてe点よp
a点力方向読出しを行った結果e点よ、!l) 264
q素子目でパイプ上限端の影を検出し、e点よ96点方
向に読出しを行った結果e点より2686素子目でパイ
プ下限端の影を検出した。計測値をパイプ外径値に変換
すると(2649+2686)Xo、03=160.0
5薦φとなる。
The present invention aligns the center of the pipe with the center reference point 0 of the light-receiving element group, and divides the light-receiving element group into two groups (e.g., the center reference point e of the light-receiving element group B) into 6334 light-receiving element groups each. A split run was made in the opposite direction synchronized with point A at one end of the line and from point e to point d at the other end. In the same imaging as the conventional method, from point e to p
The result of reading the force direction at point a is point e! l) 264
The shadow of the upper limit end of the pipe was detected at the q-th element, and reading was performed in the direction of 96 points from point e, and as a result, the shadow of the lower limit end of the pipe was detected at the 2686th element from point e. Converting the measured value to pipe outer diameter value: (2649+2686)Xo, 03=160.0
5 recommendations φ.

したがって従来法に比べ振動要因による計測誤差を−以
下に軽減させることが可能となった。
Therefore, it has become possible to reduce measurement errors due to vibration factors to less than - compared to conventional methods.

0 本発明によシ被測定の曲シ及び高速移動中に発生する振
動の地被測定物搬送設備の摩耗等経年変化によって発生
する振動による測定誤差を縮小することかり能である。
According to the present invention, it is possible to reduce measurement errors caused by vibrations that occur due to deterioration over time, such as wear and tear of equipment for transporting objects to be measured, such as vibrations that occur during high-speed movement of objects to be measured.

このため従来計測精度が低いためにライン停止あるいは
低速電送していた計測を搬送中に行うことが可能となシ
、計測作業能率の向上およびライン停止等による前後工
程への種々の悪影響が解消される。
As a result, it is now possible to perform measurements that were previously performed by stopping the line or transmitting at low speed due to low measurement accuracy during transportation, improving measurement work efficiency, and eliminating various negative effects on upstream and downstream processes due to line stoppages, etc. Ru.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光学式自動測寸装置を示す図、第3図は
本発明を適用した光学式目#測寸装置のブロック図、第
2図及び第4図は本発明を説明する図である。 1:光源、2:投光レンズ、6:平行光線、4:被測定
物、5:受光レンズ、6:受光素子へ7:読込部、8:
演算部、9=段設定、10:信号処理部。 出願人 新日本製鐵株式会社
FIG. 1 is a diagram showing a conventional optical automatic size measuring device, FIG. 3 is a block diagram of an optical eye size measuring device to which the present invention is applied, and FIGS. 2 and 4 are diagrams explaining the present invention. It is. 1: Light source, 2: Light projecting lens, 6: Parallel light beam, 4: Measured object, 5: Light receiving lens, 6: To light receiving element 7: Reading unit, 8:
Arithmetic unit, 9 = stage setting, 10: signal processing unit. Applicant Nippon Steel Corporation

Claims (1)

【特許請求の範囲】 被測定物に光を照射して生じた影を受光素子群に投影し
該受光素子群を走査して被ml定物の寸法を計測する方
法において、 (5)受光素子群に投影された影の中央部が境になるよ
うに分割して走査すること (B)各走査を同期させること C)各走査方向を逆向きにすること (ハ)各計測値を加算すること を特徴とする光学式自動測寸方法。
[Scope of Claims] A method for measuring the dimensions of a fixed object by projecting a shadow produced by irradiating the object with light onto a group of light-receiving elements and scanning the group of light-receiving elements, comprising: (5) a light-receiving element; (B) Synchronize each scan; C) Reverse each scan direction; (C) Add each measurement value. An optical automatic measurement method characterized by:
JP14401282A 1982-08-20 1982-08-20 Optical automatic dimension measuring method Pending JPS5934104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14401282A JPS5934104A (en) 1982-08-20 1982-08-20 Optical automatic dimension measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14401282A JPS5934104A (en) 1982-08-20 1982-08-20 Optical automatic dimension measuring method

Publications (1)

Publication Number Publication Date
JPS5934104A true JPS5934104A (en) 1984-02-24

Family

ID=15352261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14401282A Pending JPS5934104A (en) 1982-08-20 1982-08-20 Optical automatic dimension measuring method

Country Status (1)

Country Link
JP (1) JPS5934104A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264909A (en) * 1991-11-22 1993-11-23 Hughes Aircraft Company Measurement of optical fiber diameter
JP2008032678A (en) 2006-06-29 2008-02-14 Naberu:Kk Egg quality index inspection apparatus
CN108885094A (en) * 2016-03-21 2018-11-23 马波斯S.P.A.公司 For measuring the method for the axial wobble of the flat surfaces of workpiece relative to rotation axis and accordingly measuring component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264909A (en) * 1991-11-22 1993-11-23 Hughes Aircraft Company Measurement of optical fiber diameter
JP2008032678A (en) 2006-06-29 2008-02-14 Naberu:Kk Egg quality index inspection apparatus
CN108885094A (en) * 2016-03-21 2018-11-23 马波斯S.P.A.公司 For measuring the method for the axial wobble of the flat surfaces of workpiece relative to rotation axis and accordingly measuring component

Similar Documents

Publication Publication Date Title
US6094269A (en) Apparatus and method for optically measuring an object surface contour
US11891261B2 (en) Device and method for detecting flatness of sheet material
CA1135366A (en) Lumber defect position scanner
EP0467984A1 (en) A plant for track-based detection of the wheel profile of train wheels.
CN104266609B (en) Continuous sweep type measuring device
JP3428122B2 (en) 3D shape measuring device
JPH01191003A (en) Mark position detecting device and mark arranging method
JPS5934104A (en) Optical automatic dimension measuring method
JP2000161916A (en) Inspection device for semiconductor packages
JP2020180916A (en) Optical displacement meter
US3497298A (en) Optical scanning method for copying machines
GB2297379A (en) Inspection of semiconductor device for defective leads
JP2006145503A (en) Visual inspection apparatus for cylindrical work
JPS59208408A (en) Method and device for inspecting surface
JPH10185514A (en) Coil position detector
JP4406796B2 (en) Non-contact three-dimensional object shape measuring method and apparatus
JPH0399207A (en) Inspection apparatus for mounting board
JPH10185515A (en) Coil position detector
JPS58151544A (en) Defect inspecting device by dark view field
JPH04169840A (en) Method and apparatus for inspecting flaw of circumferential surface
US3792262A (en) Scanning initiation position detecting device
JP2720935B2 (en) Inspection device and inspection method
GB2074480A (en) Working gemstones
JPS62172210A (en) Apparatus for measuring degree of flatness of flat plate
JP3363576B2 (en) Article presence / absence determination device