JP2008032678A - Egg quality index inspection apparatus - Google Patents

Egg quality index inspection apparatus Download PDF

Info

Publication number
JP2008032678A
JP2008032678A JP2006332285A JP2006332285A JP2008032678A JP 2008032678 A JP2008032678 A JP 2008032678A JP 2006332285 A JP2006332285 A JP 2006332285A JP 2006332285 A JP2006332285 A JP 2006332285A JP 2008032678 A JP2008032678 A JP 2008032678A
Authority
JP
Japan
Prior art keywords
egg
light
quality index
inspection
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006332285A
Other languages
Japanese (ja)
Other versions
JP4858838B2 (en
Inventor
Tatsuo Nanbu
達男 南部
Kuniyuki Yokose
邦行 横瀬
Original Assignee
Naberu:Kk
株式会社ナベル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
Priority to JP2006180358 priority Critical
Priority to JP2006180358 priority
Application filed by Naberu:Kk, 株式会社ナベル filed Critical Naberu:Kk
Priority to JP2006332285A priority patent/JP4858838B2/en
Priority claimed from PCT/JP2007/073553 external-priority patent/WO2008069263A1/en
Publication of JP2008032678A publication Critical patent/JP2008032678A/en
Publication of JP4858838B2 publication Critical patent/JP4858838B2/en
Application granted granted Critical
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39122241&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2008032678(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an egg quality index inspection apparatus capable of automatically inspecting the Haugh units and yolk coefficients, which are the indices of the quality of egg, in a noncontact way, and of inspecting the quality indices in a short time with high accuracy. <P>SOLUTION: A light-projecting means and a light-receiving means are arranged, in such a way that the emerging direction of the parallel light of the light projection means is in parallel with the incident direction of parallel light of the light-receiving means, and one reflecting plate and another reflecting plate are made to face each other in the optical paths of the light projection means and the light reception means. The traveling direction of parallel light emerging from the light-projecting means is altered by 90 degrees by a reflecting surface of one reflecting plate, arranged at an angle of 45 degrees with respect to the traveling direction of the parallel light. The traveling direction of the parallel light, of which the traveling direction has been altered by 90 degrees, is further altered by 90 degrees by a reflecting surface of the other reflecting plate arranged at an angle of 45 degrees with respect to the traveling direction of the parallel light, to make the parallel light incident onto the light-receiving means. Units of the one reflecting plate and the other reflecting plate move horizontally with respect to the mounting base. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、卵の品質指標であるハウ・ユニットおよび卵黄係数を非接触で自動的に検査することのできる卵の品質指標検査装置に関するものである。   The present invention relates to an egg quality index inspection apparatus capable of automatically inspecting a How unit, which is an egg quality index, and an egg yolk coefficient in a non-contact manner.
市場で販売されている卵には、品質(鮮度)の高さが求められる。そのような卵の品質を数値で示す指標として、ハウ・ユニット(Haugh Unit)や卵黄係数(Yolk Index)が知られている。   Eggs sold in the market require high quality (freshness). As an index indicating the quality of such an egg as a numerical value, a how unit (Haugh Unit) and an egg yolk index (Yolk Index) are known.
ハウ・ユニットは、卵の鮮度が低下すると、濃厚卵白の水様化によって、平板に卵を割ったときに卵白の高さが低くなっていくという性質に着目した品質指標である。また、卵黄係数は、時間経過とともに卵黄膜の脆弱化に伴ってカラザ層が卵黄から剥がれやすくなり、卵黄が扁平化するという性質に着目した品質指標である。   The How unit is a quality index that focuses on the property that when the egg freshness decreases, the egg white height decreases when the egg is broken into a flat plate due to waterification of the thick egg white. The yolk coefficient is a quality index that focuses on the property that the calaza layer is easily peeled off from the yolk as the yolk membrane weakens over time, and the yolk becomes flat.
前記ハウ・ユニットの検査方法としては、例えば、作業者が卵を割って所定の検査プレートの上に載せ、割卵体の上方からダイヤルゲージの接触子を濃厚卵白部分の所定測定位置に接触させて濃厚卵白の高さを計測し、所定の算出式に計測された濃厚卵白の高さと卵重とを代入することにより、得られた算出結果から検査対象卵のハウ・ユニットを判定するものである(例えば、非特許文献1参照。)。   As an inspection method of the above-mentioned how unit, for example, an operator breaks an egg and places it on a predetermined inspection plate, and a dial gauge contactor is brought into contact with a predetermined measurement position of the thick egg white portion from above the cracked body. By measuring the height of the concentrated egg white and substituting the height of the concentrated egg white and the egg weight into a predetermined calculation formula, the how unit of the egg to be inspected is determined from the obtained calculation result. (For example, see Non-Patent Document 1).
他方、近年、非接触でハウ・ユニットを自動的に検査する装置も提案されている。その検査装置は、検査トレーの卵白高測定点に対応する直上の位置に超音波送/受信部を設け、先ず、前記超音波送/受信部によって空の検査トレーの表面の高さを計測しておき、前記検査トレー上に載置された割卵体の卵白高測定点に超音波を発信し、卵白表面からの反射波を受信センサで受信し、その出力を演算部で処理して検査対象卵のハウ・ユニットを自動的に判定するものである(例えば、特許文献1参照。)。   On the other hand, in recent years, an apparatus for automatically inspecting the how unit without contact has been proposed. The inspection apparatus is provided with an ultrasonic transmission / reception unit at a position directly above the egg white height measurement point of the inspection tray, and first, the ultrasonic transmission / reception unit measures the height of the surface of the empty inspection tray. The ultrasonic wave is transmitted to the egg white height measurement point of the egg breaking body placed on the inspection tray, the reflected wave from the egg white surface is received by the receiving sensor, and the output is processed by the calculation unit for inspection. This automatically determines the how-to unit of the target egg (see, for example, Patent Document 1).
また、前記卵黄係数の検査方法としては、例えば、作業者が卵黄を所定の検査プレートに載せ、該検査プレート上の卵黄の高さおよび卵黄の直径を直定規等で計測し、計測された卵黄の高さを卵黄の直径で除算することにより、得られた算出結果から検査対象卵の卵黄係数を判定するものである(例えば、非特許文献2参照。)。   In addition, as an inspection method of the yolk coefficient, for example, an operator places the yolk on a predetermined inspection plate, measures the height of the yolk on the inspection plate and the diameter of the yolk with a straight ruler, and the measured yolk Is divided by the diameter of the yolk to determine the yolk coefficient of the egg to be examined from the obtained calculation result (see, for example, Non-Patent Document 2).
特開平9−178728号公報(第2−6頁(請求項1)、第1図)JP-A-9-178728 (Page 2-6 (Claim 1), FIG. 1)
しかしながら、前記非特許文献1および非特許文献2に開示されているハウ・ユニットや卵黄係数の検査方法においては、次のような問題があった。すなわち、ダイヤルゲージの測定子と濃厚卵白との接触を見極める作業や、卵黄の頂点を直定規で見極める作業並びに卵黄の直径を直定規で計測する作業等には多くの時間を要するのみならず、作業者による目盛りの読み間違いも発生するため、得られた判定結果にばらつきが生じてしまう可能性がある。   However, the How unit and the yolk coefficient inspection method disclosed in Non-Patent Document 1 and Non-Patent Document 2 have the following problems. In other words, not only does it take a lot of time to determine the contact between the dial gauge probe and the thick egg white, to determine the apex of the yolk with a straight ruler, and to measure the diameter of the yolk with a straight ruler, Since the operator may misread the scale, the obtained determination result may vary.
また、前記特許文献1に開示されている検査装置においては、卵白高を超音波により非接触で自動的に計測できるため、作業者の主観等を排除できて定量的な検査が可能となる。しかしながら、濃厚卵白表面は一見すると滑らかに見えるが、実際には、その表面は細かな凹凸状となっているので、超音波の性質上、反射面(計測する卵白部分)が平らでないと反射音を受信できない場合があり、検査精度の面で改善の余地が残されていた。   Moreover, in the inspection apparatus disclosed in Patent Document 1, the egg white height can be automatically measured in a non-contact manner using ultrasonic waves, so that the subjectivity of the operator can be eliminated and quantitative inspection can be performed. However, the surface of the thick egg white looks smooth at first glance. However, since the surface is actually a fine uneven surface, the reflected sound (if measured egg white part) is not flat due to the nature of the ultrasound. May not be received, leaving room for improvement in terms of inspection accuracy.
さらに、前記特許文献1に開示されている検査装置では、卵の品質指標であるハウ・ユニット並びに卵黄係数の両方を判定することができなかった。   Furthermore, the inspection apparatus disclosed in Patent Document 1 cannot determine both the how unit and egg yolk coefficient, which are egg quality indicators.
したがって、本発明は、前記問題点を解決することを課題としてなされたものであり、その目的とするところは、検査対象卵の品質指標であるハウ・ユニット並びに卵黄係数を非接触で自動的に検査することができるとともに、当該品質指標の検査を短時間で高精度に行なうことができる卵の品質指標検査装置を提供するものである。   Therefore, the present invention has been made with the object of solving the above-mentioned problems, and the object of the present invention is to automatically and automatically non-contact the How unit, which is a quality index of the egg to be inspected, and the yolk coefficient. It is an object of the present invention to provide an egg quality index inspection apparatus that can be inspected and that can inspect the quality index in a short time with high accuracy.
前記課題を解決するために、請求項1に記載の卵の品質指標検査装置における発明では、割卵された検査対象卵を載置する上面が水平に形成された載置台と、鉛直方向に分布する平行光を出射する投光手段と、前記投光手段から出射された鉛直方向に分布する平行光を受光する受光手段を備え、前記投光手段と受光手段とは、所定間隔をもって対向配置されており、前記載置台、あるいは、前記投光手段および受光手段のユニットのいずれか一方を水平移動させる駆動手段を備え、前記駆動手段により前記載置台、あるいは、前記投光手段および受光手段のユニットのいずれか一方が水平移動するのに応じて、前記受光手段が検査対象卵を透過した後の平行光の光量の変化を検出し、当該受光手段から得られた電気信号に基づいて、検査対象卵の側面形状を演算処理する演算処理手段を備え、前記演算処理手段により演算処理された検査対象卵の側面形状データに基づいて卵の品質指標を判定する品質指標演算手段から構成されていることを特徴としたものである。   In order to solve the above problems, in the invention of the egg quality index inspection apparatus according to claim 1, a mounting table on which the upper surface on which the divided egg to be inspected is mounted is formed horizontally, and is distributed in the vertical direction. And a light receiving means for receiving the parallel light distributed in the vertical direction emitted from the light projecting means. The light projecting means and the light receiving means are arranged to face each other with a predetermined interval. A driving means for horizontally moving either the mounting table or the unit of the light projecting means and the light receiving means, and the driving table, or the unit of the light projecting means and the light receiving means. The light receiving means detects a change in the amount of parallel light after passing through the egg to be inspected in accordance with the horizontal movement, and based on the electrical signal obtained from the light receiving means, A calculation means for calculating the side shape of the egg, and comprising quality index calculation means for determining the quality index of the egg based on the side shape data of the egg to be inspected that has been calculated by the calculation processing means. It is a feature.
請求項2に記載の卵の品質指標検査装置における発明では、請求項1に記載の発明において、前記品質指標演算手段は、前記演算処理手段により演算処理された検査対象卵の側面形状データに基づいて卵白の高さを演算し、得られた卵白の高さデータと、予め測定された当該検査対象卵の卵重データとを用いてハウ・ユニットを判定することを特徴としたものである。   In the invention of the egg quality index inspection apparatus according to claim 2, in the invention according to claim 1, the quality index calculation means is based on side shape data of the egg to be inspected that has been calculated by the calculation processing means. Then, the height of the egg white is calculated, and the how unit is determined using the obtained egg white height data and the egg weight data of the egg to be inspected measured in advance.
請求項3に記載の卵の品質指標検査装置における発明では、請求項1に記載の発明において、前記品質指標演算手段は、前記演算処理手段により演算処理された検査対象卵の側面形状データに基づいて卵黄の高さ並びに卵黄の直径を演算し、得られた卵黄の高さデータ並びに卵黄の直径データを用いて卵黄係数を判定することを特徴としたものである。   In the invention of the egg quality index inspection apparatus according to claim 3, in the invention according to claim 1, the quality index calculation means is based on side surface shape data of the egg to be inspected that has been subjected to calculation processing by the calculation processing means. The egg yolk height and the egg yolk diameter are calculated, and the egg yolk coefficient is determined using the obtained egg yolk height data and egg yolk diameter data.
請求項4に記載の卵の品質指標検査装置における発明では、請求項1から請求項3のいずれかに記載の発明において、前記駆動手段は、移動距離信号を出力しながら載置台、あるいは、前記投光手段および受光手段のユニットのいずれか一方を水平移動させることを特徴としたものである。   In the invention of the egg quality index inspection apparatus according to claim 4, in the invention according to any one of claims 1 to 3, the drive means outputs the movement distance signal, or the mounting table or One of the units of the light projecting means and the light receiving means is moved horizontally.
請求項5に記載の卵の品質指標検査装置における発明では、請求項1から請求項4のいずれかに記載の発明において、前記投光手段および受光手段のうち、少なくとも一方にテレセントリックレンズを備えたことを特徴としたものである。   According to the invention of the egg quality index inspection apparatus according to claim 5, in the invention according to any one of claims 1 to 4, at least one of the light projecting means and the light receiving means is provided with a telecentric lens. It is characterized by that.
請求項6に記載の卵の品質指標検査装置における発明では、請求項1から請求項4のいずれかに記載の発明において、前記投光手段は、光源から放射された光をポリゴンミラーおよび反射ミラーで反射したのち、コリメータレンズにより平行光に変換して当該平行光を出射することを特徴としたものである。   In the invention for an egg quality index inspection apparatus according to claim 6, in the invention according to any one of claims 1 to 4, the light projecting means converts the light emitted from the light source into a polygon mirror and a reflection mirror. Then, the light is converted into parallel light by a collimator lens, and the parallel light is emitted.
請求項7に記載の卵の品質指標検査装置における発明では、請求項1から請求項4のいずれかに記載の発明において、前記投光手段は、線状光を鉛直方向に分布させてライン状に形成した光を出射することを特徴としたものである。   In the invention for an egg quality index inspection apparatus according to claim 7, in the invention according to any one of claims 1 to 4, the light projecting means distributes linear light in a vertical direction to form a line shape. It is characterized by emitting the light formed in the above.
請求項8に記載の卵の品質指標検査装置における発明では、請求項1から請求項7のいずれかに記載の発明において、前記載置台、または、前記投光手段および受光手段のユニットのいずれか一方を水平方向に回転させる測定方向可変手段を備えたことを特徴としたものである。   In the invention of the egg quality index inspection apparatus according to claim 8, in the invention according to any one of claims 1 to 7, any one of the mounting table or the unit of the light projecting means and the light receiving means. It is characterized by comprising measuring direction changing means for rotating one of them in the horizontal direction.
請求項9に記載の卵の品質指標検査装置における発明では、割卵された検査対象卵を載置する上面が水平に形成された載置台と、鉛直方向に分布する平行光を出射する投光手段と、前記投光手段から出射された鉛直方向に分布する平行光を受光する受光手段を備え、前記投光手段と前記受光手段とは、当該投光手段の平行光の出射方向と当該受光手段の平行光の入射方向とが平行となるよう配置されており、前記投光手段と受光手段との光路上には、一の反射板と他の一の反射板とが対向配置されており、前記投光手段から出射された平行光は、該出射された平行光の進行方向に対して45度の角度で配置された一の反射板の反射面によって進行方向が90度変更されるとともに、進行方向が90度変更された前記平行光は、該平行光の進行方向に対して45度の角度で配置された他の一の反射板の反射面によってさらに進行方向が90度変更されて前記受光手段に入射するよう構成され、さらに、前記一の反射板並びに他の一の反射板のユニット、あるいは、前記載置台のいずれか一方を水平移動させる駆動手段と、前記駆動手段により前記一の反射板並びに他の一の反射板のユニット、あるいは、前記載置台のいずれか一方が水平移動するのに応じて、一の反射板から他の一の反射板に進行する平行光の光路上に位置付けられる検査対象卵を透過した平行光の光量の変化を受光手段にて検出し、前記受光手段から得られた電気信号に基づいて検査対象卵の側面形状を演算処理する演算処理手段と、前記演算処理手段により演算処理された検査対象卵側面形状データに基づいて卵の品質指標を判定する品質指標演算手段とを備えていることを特徴としたものである。   In the egg quality index inspection apparatus according to claim 9, the mounting table on which the upper surface on which the divided egg to be inspected is mounted is horizontally formed, and the light projection that emits parallel light distributed in the vertical direction And light receiving means for receiving the parallel light distributed in the vertical direction emitted from the light projecting means, and the light projecting means and the light receiving means include a light emitting direction of the parallel light of the light projecting means and the light receiving means. It is arranged so that the incident direction of the parallel light of the means is parallel, and on the optical path between the light projecting means and the light receiving means, one reflecting plate and the other reflecting plate are arranged to face each other. The traveling direction of the parallel light emitted from the light projecting means is changed by 90 degrees by the reflecting surface of one reflector disposed at an angle of 45 degrees with respect to the traveling direction of the emitted parallel light. The parallel light whose traveling direction is changed by 90 degrees is the travel of the parallel light. The traveling direction is further changed by 90 degrees by the reflecting surface of the other one reflecting plate arranged at an angle of 45 degrees with respect to the direction, and is incident on the light receiving means. A driving unit that horizontally moves one of the reflecting plate unit or the mounting table, and the driving unit and the one reflecting plate and the other reflecting plate unit or the mounting table. As one of them moves horizontally, the light receiving means changes the amount of parallel light transmitted through the test target egg positioned on the optical path of the parallel light traveling from one reflector to the other reflector. And processing means for calculating the side shape of the egg to be inspected based on the electrical signal obtained from the light receiving means, and the egg based on the egg side shape data to be inspected by the arithmetic processing means. It is obtained by it said that a determining quality index calculating means quality indicator.
請求項10に記載の卵の品質指標検査装置における発明では、請求項9に記載の発明において、前記品質指標演算手段は、前記演算処理手段により演算処理された検査対象卵の側面形状データに基づいて卵白の高さを演算し、得られた卵白の高さデータと、予め測定された当該検査対象卵の卵重データとを用いてハウ・ユニットを判定することを特徴としたものである。   In the invention of the egg quality index inspection apparatus according to claim 10, in the invention according to claim 9, the quality index calculation means is based on side surface shape data of the egg to be inspected that has been calculated by the calculation processing means. Then, the height of the egg white is calculated, and the How unit is determined using the obtained egg white height data and the egg weight data of the egg to be inspected measured in advance.
請求項11に記載の卵の品質指標検査装置における発明では、請求項9に記載の発明において、前記品質指標演算手段は、前記演算処理手段により演算処理された検査対象卵の側面形状データに基づいて卵黄の高さ並びに卵黄の直径を演算し、得られた卵黄の高さデータ並びに卵黄の直径データを用いて卵黄係数を判定することを特徴としたものである。   In the invention of the egg quality index inspection apparatus according to claim 11, in the invention according to claim 9, the quality index calculation means is based on side surface shape data of the egg to be inspected that has been calculated by the calculation processing means. The egg yolk height and the egg yolk diameter are calculated, and the egg yolk coefficient is determined using the obtained egg yolk height data and egg yolk diameter data.
請求項12に記載の卵の品質指標検査装置における発明では、請求項9から請求項11のいずれかに記載の発明において、前記駆動手段は、移動距離信号を出力しながら一の反射板並びに他の一の反射板のユニット、あるいは、載置台のいずれか一方を水平移動させることを特徴としたものである。   In an invention of an egg quality index inspection apparatus according to a twelfth aspect of the invention, in the invention according to any of the ninth to eleventh aspects of the invention, the driving means outputs a moving distance signal while one reflector and the other. One of the reflecting plate unit or the mounting table is horizontally moved.
請求項13に記載の卵の品質指標検査装置における発明では、請求項9から請求項12のいずれかに記載の発明において、前記投光手段および受光手段のうち、少なくとも一方にテレセントリックレンズを備えたことを特徴としたものである。   In the invention for an egg quality index inspection apparatus according to claim 13, in the invention according to any one of claims 9 to 12, at least one of the light projecting means and the light receiving means is provided with a telecentric lens. It is characterized by that.
請求項14に記載の卵の品質指標検査装置における発明では、請求項9から請求項12のいずれかに記載の発明において、前記投光手段は、光源から放射された光をポリゴンミラーおよび反射ミラーで反射したのち、コリメータレンズにより平行光に変換して当該平行光を出射することを特徴としたものである。   In the invention for an egg quality index inspection apparatus according to claim 14, in the invention according to any one of claims 9 to 12, the light projecting means converts the light emitted from the light source into a polygon mirror and a reflection mirror. Then, the light is converted into parallel light by a collimator lens, and the parallel light is emitted.
請求項15に記載の卵の品質指標検査装置における発明では、請求項9から請求項12のいずれかに記載の発明において、前記投光手段は、線状光を鉛直方向に分布させてライン状に形成した光を出射することを特徴としたものである。   In the invention for an egg quality index inspection apparatus according to claim 15, in the invention according to any one of claims 9 to 12, the light projecting means distributes linear light in a vertical direction to form a line shape. It is characterized by emitting the light formed in the above.
請求項16に記載の卵の品質指標検査装置における発明では、請求項9から請求項15のいずれかに記載の発明において、前記一の反射板並びに他の一の反射板のユニット、あるいは、前記載置台のいずれか一方を水平方向に回転させる測定方向可変手段を備えたことを特徴としたものである。   In the invention of the egg quality index inspection apparatus according to claim 16, in the invention according to any one of claims 9 to 15, the unit of the one reflector and the other reflector, or the front It is characterized by comprising measurement direction changing means for rotating any one of the mounting tables in the horizontal direction.
以上の説明から明らかなように、本発明にかかる卵の品質指標検査装置は、特に、鉛直方向に分布する平行光を出射する投光手段と、投光手段から出射された鉛直方向に分布する平行光を受光する受光手段とを所定間隔をもって対向配置し、前記載置台、あるいは、前記投光手段および受光手段のユニットのいずれか一方を水平移動させ、それらのいずれか一方が水平移動するのに応じて、前記受光手段が検査対象卵を透過した後の平行光の光量の変化を検出し、当該受光手段から得られた電気信号に基づいて検査対象卵の側面形状を演算するとともに、取得された検査対象卵の側面形状データに基づいて卵の品質指標を判定する。   As is apparent from the above description, the egg quality index inspection apparatus according to the present invention is particularly distributed in the vertical direction emitted from the light projecting means and the light projecting means for emitting parallel light distributed in the vertical direction. The light receiving means for receiving the parallel light is arranged opposite to each other with a predetermined interval, and either the mounting table or the unit of the light projecting means and the light receiving means is moved horizontally, and either one of them moves horizontally. Accordingly, the light receiving means detects a change in the amount of parallel light after passing through the egg to be examined, calculates the side shape of the egg to be examined based on the electric signal obtained from the light receiving means, and acquires The quality index of the egg is determined based on the side shape data of the inspection target egg.
そして、ハウ・ユニット判定するにあっては、前記取得された検査対象卵の側面形状データに基づいて卵白の高さを演算し、得られた卵白の高さデータと、予め測定された当該検査対象卵の卵重データとを用いて検査対象卵のハウ・ユニットを判定する。また、卵黄係数を判定するにあっては、前記取得された検査対象卵の側面形状データに基づいて卵黄の高さ並びに卵黄の直径を演算し、得られた卵黄の高さデータ並びに卵黄の直径データを用いて検査対象卵の卵黄係数を判定する構成となっている。   And, in determining the how unit, the egg white height is calculated based on the acquired side shape data of the egg to be inspected, and the obtained egg white height data and the test measured in advance are calculated. The how-to unit of the egg to be examined is determined using the egg weight data of the object egg. Further, in determining the yolk coefficient, the yolk height and the yolk diameter are calculated based on the acquired side surface shape data of the test object egg, and the obtained yolk height data and the yolk diameter are calculated. It is the structure which determines the yolk coefficient of a test object egg using data.
したがって、検査対象卵の品質指標であるハウ・ユニット並びに卵黄係数を非接触で自動的に検査することができるとともに、当該品質指標の検査を短時間で高精度に行なうことができるという効果を奏する。しかも、1台の検査装置で卵の品質指標である「ハウ・ユニット」および「卵黄係数」の両方を判定することができる。   Therefore, it is possible to automatically inspect the How unit and the yolk coefficient, which are quality indexes of the egg to be inspected, in a non-contact manner, and to perform the inspection of the quality index in a short time with high accuracy. . Moreover, it is possible to determine both the “how unit” and the “egg yolk coefficient”, which are quality indicators of eggs, with a single inspection device.
また、本発明にかかる卵の品質指標検査装置は、さらに、前記投光手段と前記受光手段とは、当該投光手段の平行光の出射方向と当該受光手段の平行光の入射方向とが平行となるよう配置されているとともに、前記投光手段と受光手段との光路上には、一の反射板と他の一の反射板とが対向配置されている。そして、前記投光手段から出射された平行光は、該出射された平行光の進行方向に対して45度の角度で配置された一の反射板の反射面によって進行方向が90度変更されるとともに、進行方向が90度変更された前記平行光は、該平行光の進行方向に対して45度の角度で配置された他の一の反射板の反射面によってさらに進行方向が90度変更されて前記受光手段に入射するよう構成され、さらに、前記一の反射板並びに他の一の反射板のユニット、あるいは、前記載置台のいずれか一方を水平移動させるようにした。   Further, in the egg quality index inspection apparatus according to the present invention, the light projecting means and the light receiving means are configured such that the parallel light emitting direction of the light projecting means and the parallel light incident direction of the light receiving means are parallel. In addition, on the optical path between the light projecting means and the light receiving means, one reflecting plate and another reflecting plate are arranged to face each other. The traveling direction of the parallel light emitted from the light projecting means is changed by 90 degrees by the reflection surface of one reflector arranged at an angle of 45 degrees with respect to the traveling direction of the emitted parallel light. At the same time, the traveling direction of the parallel light whose traveling direction has been changed by 90 degrees is further changed by 90 degrees by the reflecting surface of another reflector arranged at an angle of 45 degrees with respect to the traveling direction of the parallel light. In addition, the light receiving unit is configured to be incident on the light receiving unit, and the one reflecting plate and the other reflecting plate unit or the mounting table is horizontally moved.
したがって、検査対象卵が載置された載置台を水平移動させる場合、載置台上の検査対象卵は半液状であるため、前記載置台の水平移動時の微細な振動によって検査対象卵が揺れてしまい、検査精度を低下させる恐れがあったが、本発明にかかる卵の品質指標検査装置は、特に、一の反射板並びに他の一の反射板のユニットを載置台に対して水平移動させる構成とすることにより、前記検査対象卵の揺れを排除することができるので検査対象卵Eの品質指標の検査を高精度に行なうことができる。   Therefore, when horizontally moving the mounting table on which the test target egg is placed, the test target egg on the mounting table is in a semi-liquid state, and therefore the test target egg is shaken by minute vibrations during the horizontal movement of the mounting table. However, the egg quality index inspection apparatus according to the present invention is particularly configured to horizontally move one reflector and the other reflector unit relative to the mounting table. By doing so, the shaking of the egg to be inspected can be eliminated, so that the quality index of the egg to be inspected E can be inspected with high accuracy.
また、載置台上の検査対象卵の揺れを考慮する必要がないので平行光の水平方向における走査を高速化することができ、より短時間で品質指標の検査を行なうことが可能になる。さらに、投光手段および受光手段を水平移動させる必要がないので当該投受光手段に接続されている信号線等のケーブル類の損傷や切断等のトラブルを回避することができる。   Further, since it is not necessary to consider the shaking of the egg to be inspected on the mounting table, the parallel light can be scanned in the horizontal direction at high speed, and the quality index can be inspected in a shorter time. Furthermore, since it is not necessary to move the light projecting means and the light receiving means horizontally, troubles such as damage and disconnection of cables such as signal lines connected to the light projecting and receiving means can be avoided.
投光手段および受光手段のうち、少なくとも一方にテレセントリックレンズを備える構成とすることにより、検査対象卵を透過した平行光から不要な光をカットし、純粋な平行光のみを受光素子に導くことができるので、取得された検査対象卵の側面形状の寸法と、実際寸法との誤差を極めて小さくすることができる。   By adopting a configuration in which at least one of the light projecting unit and the light receiving unit includes a telecentric lens, unnecessary light is cut from the parallel light transmitted through the test target egg, and only pure parallel light is guided to the light receiving element. Thus, the error between the dimension of the side shape of the acquired egg to be inspected and the actual dimension can be made extremely small.
また、投光手段の構成を、光源から放射された例えば、レーザ光をポリゴンミラーおよび反射ミラーで反射したのち、コリメータレンズにより平行光に変換し、当該平行光を出射するようにすれば、検査精度が高くなるほか、検査対象卵の表面に視認可能なレーザ光の軌跡が描かれるので測定部位を容易に確認することができる。   Further, the configuration of the light projecting means is such that, for example, after the laser light emitted from the light source is reflected by a polygon mirror and a reflection mirror, it is converted into parallel light by a collimator lens, and the parallel light is emitted. In addition to high accuracy, a visible laser beam trajectory is drawn on the surface of the egg to be examined, so that the measurement site can be easily confirmed.
さらに、投光手段の構成を、線状光を鉛直方向に分布させてライン状に形成した光を出射するようにすれば、検査装置本体が簡易に構成できるので装置コストを抑制することができる。   Furthermore, if the configuration of the light projecting unit is such that linear light is distributed in the vertical direction and light formed in a line shape is emitted, the inspection apparatus main body can be simply configured, so that the apparatus cost can be suppressed. .
載置台または投光手段および受光手段のユニットのいずれか一方、あるいは、一の反射板と他の一の反射板とのユニットまたは載置台のいずれか一方を水平方向に回転させる測定方向可変手段を備える構成とすることにより、取得された検査対象卵の複数の側面形状データのうちから卵白の最も高い側面形状データを「卵白高さの測定点」として採用することができる。そして、最終的に採用したデータをハウ・ユニットの判定に用いるようにすれば、より精度の高いハウ・ユニットの検査を行なうことが可能となる。   Measuring direction variable means for horizontally rotating any one of the mounting table or the unit of the light projecting means and the light receiving means, or the unit of the one reflecting plate and the other reflecting plate or the mounting table. By adopting the configuration, the side surface shape data having the highest egg white among the plurality of side surface shape data of the acquired test object egg can be adopted as the “egg white height measurement point”. If the finally adopted data is used for the determination of the how unit, it becomes possible to inspect the how unit with higher accuracy.
つぎに、本発明にかかる卵の品質指標検査装置の第一実施形態を添付図面に従って説明する。   Next, a first embodiment of an egg quality index inspection apparatus according to the present invention will be described with reference to the accompanying drawings.
図1は、卵の品質指標検査装置Tを説明する概略正面図、図2は、図1のA―A線における概略断面図であり、図3は、取得された検査対象卵Eの側面画像を説明する図である。図4は、出射される平行光が水平移動する状態を説明する概略図、図5は、第一実施形態にかかる卵の品質指標検査装置Tの変形例を説明する概略図であり、図6は、第一実施形態にかかる卵の品質指標検査装置Tの他の変形例を説明する概略図である。   FIG. 1 is a schematic front view for explaining an egg quality index inspection device T, FIG. 2 is a schematic cross-sectional view taken along the line AA in FIG. 1, and FIG. FIG. 4 is a schematic diagram illustrating a state in which the emitted parallel light is horizontally moved, and FIG. 5 is a schematic diagram illustrating a modification of the egg quality index inspection apparatus T according to the first embodiment. These are the schematic diagrams explaining the other modification of the egg quality index test | inspection apparatus T concerning 1st embodiment.
図1に示すように、この卵の品質指標検査装置T(以降、単に検査装置Tと記す。)は、大略、割卵した検査対象卵を載置する載置台1と、前記載置台1を挟むように所定間隔をもって対向配置された投光手段2および受光手段3と、載置台1を水平移動させる駆動手段4と、主にCPU、記憶装置等からなるハードウエア部分と検査装置Tの作動プログラム等からなる演算制御手段5と、検査対象卵の品質指標を演算する品質指標演算手段6とから構成されている。   As shown in FIG. 1, this egg quality index inspection device T (hereinafter simply referred to as “inspection device T”) generally includes a mounting table 1 on which a split egg to be inspected is mounted, and the mounting table 1 described above. The light projecting means 2 and the light receiving means 3 which are opposed to each other with a predetermined interval so as to be sandwiched, the driving means 4 for horizontally moving the mounting table 1, the hardware part mainly composed of a CPU, a storage device and the like and the operation of the inspection device T The calculation control unit 5 includes a program and the like, and the quality index calculation unit 6 that calculates the quality index of the egg to be inspected.
なお、符号7は、検査対象卵のハウ・ユニットを判定する際に用いる卵重入力手段であり、符号8は、ハウ・ユニットあるいは卵黄係数の判定結果を表示するCRTや液晶ディスプレイ等の表示手段である。   Reference numeral 7 is an egg weight input means used when determining the how unit of the egg to be examined, and reference numeral 8 is a display means such as a CRT or a liquid crystal display for displaying the determination result of the how unit or yolk coefficient. It is.
載置台1は、割卵された検査対象卵を保持する上面が水平に形成されている。また、載置台1の素材としては。例えば、ステンレス製の板等の金属製の素材や、ガラス板やアクリル板等の素材であることが好ましい。   The mounting table 1 has a horizontal upper surface that holds the split egg to be inspected. As a material for the mounting table 1. For example, a metal material such as a stainless steel plate or a material such as a glass plate or an acrylic plate is preferable.
また、図2に示すように、前記載置台1の下面に設けられている駆動手段4は、パルスモータ41とスクリュウ42とで構成されており、このパルスモータ41およびスクリュウ42の駆動により載置台1は、投光手段2および受光手段3に対してX―X´方向に水平移動することが可能となっている。   As shown in FIG. 2, the driving means 4 provided on the lower surface of the mounting table 1 includes a pulse motor 41 and a screw 42, and the mounting table is driven by driving the pulse motor 41 and the screw 42. 1 can move horizontally in the XX ′ direction with respect to the light projecting means 2 and the light receiving means 3.
具体的に説明すると、パルスモータ41は、後述する演算制御手段5のCPU51から与えられたパルス信号に基づいてモータが回転することにより、載置台1がX方向あるいはX´方向に水平移動し、当該載置台1が水平移動した時の位置情報が前記CPU51に出力される仕組みとなっている。   Specifically, in the pulse motor 41, the mounting table 1 moves horizontally in the X direction or the X ′ direction by rotating the motor based on a pulse signal given from the CPU 51 of the arithmetic control means 5 described later. The position information when the mounting table 1 moves horizontally is output to the CPU 51.
図1に示すように、投光手段2は、例えば、可視光半導体レーザ素子、LED(例えば、波長575nm付近にピークを有するLED)等の固体発光素子並びにハロゲンランプ等からなる光源21と、コリメータレンズ22とから構成されている。   As shown in FIG. 1, the light projecting means 2 includes a light source 21 composed of a solid-state light emitting device such as a visible light semiconductor laser device, an LED (for example, an LED having a peak near a wavelength of 575 nm), a halogen lamp, and the like, and a collimator And a lens 22.
そして、後述する演算制御手段5のCPU51から出力されてくる制御信号に基づいて光源21から光が放射されるとともに、それがコリメータレンズ22により平行光に変換され、鉛直方向に分布する平行光が受光手段3に出射される。   Then, light is emitted from the light source 21 based on a control signal output from the CPU 51 of the arithmetic control means 5 described later, and is converted into parallel light by the collimator lens 22 so that parallel light distributed in the vertical direction is converted into parallel light. The light is emitted to the light receiving means 3.
受光手段3は、載置台1を挟むように前記投光手段2に対して対向に配置されており、投光手段2から出射された鉛直方向に分布する平行光を受光する構成となっている。本実施例では、受光手段3に例えば、7μmの素子が縦一列に5000個配置された1次元CCDイメージセンサー31が内蔵されており、鉛直方向の幅35mmまでの平行光を受光できるようになっている。 The light receiving means 3 is disposed opposite to the light projecting means 2 so as to sandwich the mounting table 1, and is configured to receive parallel light distributed in the vertical direction emitted from the light projecting means 2. . In this embodiment, the light receiving unit 3, for example, 7 [mu] m of the element are one-dimensional CCD image sensor 31, which is 5000 arranged in tandem is built, so that it can receive the collimated light to a width 35mm vertical It has become.
前記1次元CCDイメージセンサー31は、検査対象卵を透過した後の平行光の明暗を検出するとともに、その明暗位置に応じて1画素毎に受光量に応じた電荷量を蓄積し、後述する演算制御手段5のCPU51から出力されてくるデータ取得信号に基づいて、各素子に蓄積されている画素毎の電荷をCPU51に出力するよう制御される。   The one-dimensional CCD image sensor 31 detects the brightness of the parallel light after passing through the egg to be inspected, and accumulates the amount of charge corresponding to the amount of received light for each pixel according to the light / dark position. Based on the data acquisition signal output from the CPU 51 of the control means 5, control is performed to output the charge for each pixel accumulated in each element to the CPU 51.
次に、演算制御手段5について説明する。図1に示すように、この演算制御手段5には、検査装置T本体の作動を制御するためのCPU51が備えられている。前記CPU51は、検査装置Tの各構成機器を次のように制御する。
(a)光源21に制御信号を出力して投光手段2から常時平行光を出射させるよう制御する。
(b)検査対象卵が載置された載置台1のパルスモータ41にパルス信号を与え、当該載置台1をX方向あるいはX´方向に水平移動させるよう制御する。
(c)前記載置台1が水平移動した時の水平方向の位置情報を取得する。
(d)受光手段3の1次元CCDイメージセンサー31にデータ取得信号を出力し、検査対象卵を透過した後の平行光の明暗に応じて各素子に蓄積されている画素毎の電荷を読み取るよう制御する。
(e)1次元CCDイメージセンサー31から出力されてきた、受光量に応じた電荷を電気信号に変換するとともに、当該1次元CCDイメージセンサー31の受光量の変化している部分のbit数を求める処理を行ない、検査対象卵における測定対象部位の寸法計測にかかる演算処理を実施し、演算処理された寸法計測データをメモリ(図示せず)に記憶する。
(f)上記(a)から(e)の工程を繰り返す。
(g)前記メモリ(図示せず)に記憶された複数の側面形状の寸法計測データを加工して二次元化処理を実施した後、検査対象卵の側面画像(図3参照)を作成し、作成された検査対象卵の側面形状データを後述する品質指標演算手段6に出力するよう制御する。
Next, the calculation control means 5 will be described. As shown in FIG. 1, the arithmetic control means 5 is provided with a CPU 51 for controlling the operation of the inspection apparatus T main body. The CPU 51 controls each component device of the inspection apparatus T as follows.
(A) A control signal is output to the light source 21 to control to always emit parallel light from the light projecting means 2.
(B) A pulse signal is given to the pulse motor 41 of the mounting table 1 on which the test object egg is mounted, and the mounting table 1 is controlled to move horizontally in the X direction or the X ′ direction.
(C) The horizontal position information when the mounting table 1 moves horizontally is acquired.
(D) A data acquisition signal is output to the one-dimensional CCD image sensor 31 of the light receiving means 3, and the charge for each pixel accumulated in each element is read according to the brightness of the parallel light after passing through the egg to be inspected. Control.
(E) The electric charge corresponding to the amount of received light output from the one-dimensional CCD image sensor 31 is converted into an electric signal, and the number of bits of the portion where the amount of received light of the one-dimensional CCD image sensor 31 is changed is obtained. A process is performed, the calculation process concerning the dimension measurement of the measurement object site | part in a test object egg is implemented, and the dimension measurement data by which the calculation process was carried out is memorize | stored in memory (not shown).
(F) The steps (a) to (e) are repeated.
(G) After processing the dimension measurement data of a plurality of side shapes stored in the memory (not shown) and performing the two-dimensional processing, a side image of the egg to be inspected (see FIG. 3) is created, Control is performed so that the created side surface shape data of the egg to be inspected is output to quality index calculation means 6 described later.
なお、図3の横軸は検査対象卵の水平方向の距離、縦軸は垂直方向の距離を示しており、符号イからオは載置台1が紙面に向かって左方向へ水平移動するのに伴って検査対象卵の測定部位が紙面に向かって右方向へ推移して行く様子を示している。また、本図では理解しやすいように平行光の厚みを誇張して描いている。   The horizontal axis in FIG. 3 indicates the horizontal distance of the egg to be inspected, and the vertical axis indicates the vertical distance. Symbols A to E indicate that the mounting table 1 moves horizontally toward the left side of the page. Along with this, the measurement site of the egg to be inspected is shown moving rightward toward the paper surface. In this figure, the thickness of the parallel light is exaggerated for easy understanding.
次に、品質指標演算手段6について説明する。品質指標演算手段6は、演算制御手段5のCPU51から出力されてきた検査対象卵の側面画像データに基づいて検査対象卵の品質指標であるハウ・ユニットや卵黄係数を判定する手段である。   Next, the quality index calculation means 6 will be described. The quality index calculation means 6 is a means for determining a How unit and egg yolk coefficient which are quality indices of the test target egg based on the side image data of the test target egg output from the CPU 51 of the calculation control means 5.
品質指標演算手段6は、ハウ・ユニットを判定する場合、図3に示すように、測定部位ハにおける検査対象卵の最大高さと最小高さの差分を演算し、その結果をメモリ(図示せず)に記憶する。次に、測定部位ニにおける検査対象卵の最大高さと最小高さの差分を演算し、その結果をメモリ(図示せず)に記憶する。以降、前述の演算とメモリへ記憶する処理を測定終了地点である測定部位オまで繰り返す。   When determining the how unit, the quality index calculating means 6 calculates the difference between the maximum height and the minimum height of the test target egg in the measurement site C as shown in FIG. 3, and stores the result in a memory (not shown). ). Next, the difference between the maximum height and the minimum height of the test target egg at the measurement site D is calculated, and the result is stored in a memory (not shown). Thereafter, the above-described calculation and the process of storing in the memory are repeated up to the measurement site that is the measurement end point.
前記品質指標演算手段6は、前記メモリに記憶された検査対象卵の各測定部位の差分データのうち、最大差分となる位置を抽出する処理を実施する。具体的には、図3に示すように上り勾配の領域Upでの最大差分となる位置と、下り勾配の領域Dnでの最大差分となる位置を抽出する処理を行なう。このとき、急激な上り勾配部分から下り勾配部分で特定される領域Ex(検査対象卵の卵黄部分)については最大差分の抽出の対象から除外される。   The quality index calculation means 6 performs a process of extracting a position that is the maximum difference among the difference data of each measurement site of the test target egg stored in the memory. Specifically, as shown in FIG. 3, processing is performed to extract the position that becomes the maximum difference in the uphill region Up and the position that becomes the maximum difference in the downhill region Dn. At this time, the region Ex (the yolk portion of the egg to be examined) specified from the steep ascending gradient portion to the descending gradient portion is excluded from the maximum difference extraction target.
さらに、品質指標演算手段6は、領域Exを除く、上り勾配での最大差分となる位置の卵白高さと、下り勾配での最大差分となる位置の卵白高さとを相互に比較して卵白の最も高い部分を「卵白高さの測定点」として採用する。   Further, the quality index calculation means 6 compares the egg white height at the position where the maximum difference in the upward gradient, excluding the region Ex, and the egg white height at the position where the maximum difference in the downward gradient is compared with each other, The high part is adopted as the “measurement point of egg white height”.
そして、品質指標演算手段6は、決定された卵白の高さデータと、事前に卵重入力手段7に入力された卵重データとを用いて下式によりハウ・ユニットを演算するとともに、その演算結果を表示手段8に表示させる。
(数1)
HU=100log(H−1.7W0.37+7.6)
ここで、上式のHは卵白の高さ(mm)、Wは卵重(g)を示す。
Then, the quality index calculation means 6 calculates the how unit by the following formula using the determined egg white height data and the egg weight data previously input to the egg weight input means 7, and the calculation The result is displayed on the display means 8.
(Equation 1)
HU = 100 log (H-1.7W 0.37 +7.6)
Here, H in the above formula represents egg white height (mm), and W represents egg weight (g).
また、品質指標演算手段6は、卵黄係数を判定する場合、図3に示すように、卵黄の側面画像(網掛け部分)から、領域Lの距離(卵黄の直径に相当する)と、検査対象卵Eの最大の高さとなる位置Pの垂直方向の距離(卵黄の高さに相当する)とを用いて下式により卵黄係数を演算するとともに、その演算結果を表示手段8に表示させる。
(数2)
卵黄係数=卵黄の高さ(mm)/卵黄の直径(mm)
Further, when determining the egg yolk coefficient, the quality index calculating means 6 determines the distance of the region L (corresponding to the diameter of the yolk) from the side image (shaded part) of the yolk and the inspection object, as shown in FIG. The egg yolk coefficient is calculated by the following formula using the vertical distance (corresponding to the egg yolk height) of the position P that is the maximum height of the egg E, and the calculation result is displayed on the display means 8.
(Equation 2)
Egg yolk coefficient = height of egg yolk (mm) / diameter of egg yolk (mm)
次に、本発明にかかる検査装置Tにより検査対象卵の品質指標を演算する作動例について説明する。先ず、検査を行なう卵を殻付きのまま重量を測定し、卵重入力手段7にその重量を入力する。そして、検査を行なう卵の殻を割り、割卵した検査対象卵E(以降、検査対象卵Eと記す。)載置台1に載せ、これを保持させる。   Next, an operation example in which the quality index of the egg to be inspected is calculated by the inspection apparatus T according to the present invention will be described. First, the weight of an egg to be inspected is measured while the shell is being shelled, and the weight is input to the egg weight input means 7. Then, the egg shell to be inspected is divided and placed on the divided inspection object egg E (hereinafter referred to as inspection object egg E) mounting table 1 and held.
測定開始釦(図示せず)を押すと、演算制御手段5のCPU51から出力されてくる制御信号に基づいて光源21から光が放射されるとともに、それがコリメータレンズ22により平行光に変換され、鉛直方向に分布する平行光が受光手段3に出射される。受光手段3は、投光手段2から出射された鉛直方向に分布する平行光を受光する。   When a measurement start button (not shown) is pressed, light is emitted from the light source 21 based on a control signal output from the CPU 51 of the arithmetic control means 5 and converted into parallel light by the collimator lens 22. Parallel light distributed in the vertical direction is emitted to the light receiving means 3. The light receiving means 3 receives the parallel light distributed in the vertical direction emitted from the light projecting means 2.
図4に示すように、この時点(測定部位イ)では投光手段2と受光手段3との間に遮蔽物がないので受光手段3は投光手段2から出射された平行光の全光量を受光することになる。なお、本図も図3と同様に、理解しやすいように平行光の厚みを誇張して描いている。   As shown in FIG. 4, at this time (measurement site a), since there is no shielding between the light projecting means 2 and the light receiving means 3, the light receiving means 3 calculates the total amount of parallel light emitted from the light projecting means 2. It will receive light. In addition, like FIG. 3, this figure also exaggerates the thickness of the parallel light for easy understanding.
次に、演算制御手段5のCPU51からパルスモータ41にパルス信号が与えられると、載置台1がパルス数に応じた距離だけX方向に水平移動するとともに、当該載置台1が水平移動した時の位置情報が前記CPU51に出力される。そして、載置台1が紙面に向かって左方向へ水平移動することにより、検査対象卵Eの測定部位ハに投光手段2から出射された平行光が位置付けられる。   Next, when a pulse signal is given from the CPU 51 of the arithmetic control means 5 to the pulse motor 41, the mounting table 1 moves horizontally in the X direction by a distance corresponding to the number of pulses, and when the mounting table 1 moves horizontally. Position information is output to the CPU 51. And the parallel light radiate | emitted from the light projection means 2 is positioned by the measurement site | part C of the test object egg E by the horizontal movement of the mounting base 1 to the left direction toward the paper surface.
前記測定部位ハにおいて、受光手段3の1次元CCDイメージセンサー31は、検査対象卵Eを透過した後の平行光の明暗を検出し、その明暗に応じて1画素毎に受光量に対応した電荷量を蓄積する。   In the measurement site C, the one-dimensional CCD image sensor 31 of the light receiving means 3 detects the brightness of the parallel light after passing through the test object egg E, and the charge corresponding to the amount of received light for each pixel according to the brightness. Accumulate amount.
そして、演算制御手段5のCPU51は、1次元CCDイメージセンサー31にデータ取得信号を出力し、検査対象卵Eを透過した後の平行光の明暗に応じて各素子に蓄積されている電荷を読み取るよう制御する。   Then, the CPU 51 of the arithmetic control means 5 outputs a data acquisition signal to the one-dimensional CCD image sensor 31 and reads the electric charge accumulated in each element in accordance with the brightness of the parallel light after passing through the inspection target egg E. Control as follows.
演算制御手段5のCPU51は、1次元CCDイメージセンサー31から出力されてきた前記受光量に応じた電荷を電気信号に変換するとともに、当該1次元CCDイメージセンサー31の受光量の変化している部分のbit数を求める処理を行なう。そして、検査対象卵Eにおける測定部位ハの寸法計測にかかる演算処理が実施され、演算処理された測定部位ハの寸法計測データがメモリ(図示せず)に記憶される。   The CPU 51 of the arithmetic control means 5 converts a charge corresponding to the received light amount output from the one-dimensional CCD image sensor 31 into an electric signal, and a portion where the received light amount of the one-dimensional CCD image sensor 31 changes. The number of bits is calculated. And the calculation process concerning the dimension measurement of the measurement site | part C in the test object egg E is implemented, and the dimension measurement data of the measurement site | part C of the calculation process are memorize | stored in memory (not shown).
以降、載置台1が紙面に向かって左方向へ水平移動するのに応じて検査対象卵Eにおける複数の測定部位の寸法計測にかかる演算が実施され、演算処理された各測定部位の寸法計測データがメモリ(図示せず)に順次記憶される。   Thereafter, as the mounting table 1 moves horizontally to the left in the direction of the paper, calculations related to the dimension measurement of a plurality of measurement parts in the test egg E are performed, and the dimension measurement data of each measurement part subjected to the calculation process. Are sequentially stored in a memory (not shown).
検査対象卵Eにおける全ての測定部位の寸法計測が完了すると、演算制御手段5のCPU51は、メモリ(図示せず)に記憶された複数の側面形状の寸法計測データを加工して二次元化処理を実施した後、検査対象卵の側面画像(図3参照)を作成し、この検査対象卵Eの側面形状データを品質指標演算手段6に出力するよう制御する。   When the dimension measurement of all the measurement parts in the examination target egg E is completed, the CPU 51 of the arithmetic control unit 5 processes the dimension measurement data of a plurality of side shapes stored in a memory (not shown) to make a two-dimensional process. Then, a side image (see FIG. 3) of the inspection target egg is created, and control is performed so that the side surface shape data of the inspection target egg E is output to the quality index calculation means 6.
品質指標演算手段6は、検査対象卵Eのハウ・ユニットを判定する場合、図3に示すように、測定部位ハにおける検査対象卵の最大高さと最小高さの差分を演算し、その結果をメモリ(図示せず)に記憶する。次に、測定部位ニにおける検査対象卵の最大高さと最小高さの差分を演算し、その結果をメモリ(図示せず)に記憶する。以降、前述の演算とメモリへ記憶する処理を測定終了地点である測定部位オまで繰り返す。   As shown in FIG. 3, the quality index calculating means 6 calculates the difference between the maximum height and the minimum height of the test target egg in the measurement site C, and determines the result. Store in a memory (not shown). Next, the difference between the maximum height and the minimum height of the egg to be examined at the measurement site D is calculated, and the result is stored in a memory (not shown). Thereafter, the above-described calculation and the process of storing in the memory are repeated up to the measurement site that is the measurement end point.
品質指標演算手段6は、前記メモリに記憶された検査対象卵の各測定部位の差分データのうち、最大差分となる位置を抽出する処理を実施する。具体的には、図3に示すように上り勾配の領域Upでの最大差分となる位置と、下り勾配の領域Dnでの最大差分となる位置を抽出する処理を行なう。このとき、急激な上り勾配部分から下り勾配部分で特定される領域Ex(検査対象卵の卵黄部分)については最大差分の抽出の対象から除外される。   The quality index calculating means 6 performs a process of extracting the position that becomes the maximum difference among the difference data of each measurement site of the test target egg stored in the memory. Specifically, as shown in FIG. 3, processing is performed to extract the position that becomes the maximum difference in the uphill region Up and the position that becomes the maximum difference in the downhill region Dn. At this time, the region Ex (the yolk portion of the egg to be examined) specified from the steep ascending gradient portion to the descending gradient portion is excluded from the maximum difference extraction target.
品質指標演算手段6は、さらに、領域Exを除く、上り勾配での最大差分となる位置の卵白高さと、下り勾配での最大差分となる位置の卵白高さとを相互に比較して卵白の最も高い部分を「卵白高さの測定点」として採用する。   The quality index calculating means 6 further compares the egg white height at the position where the maximum difference in the upward gradient, excluding the region Ex, and the egg white height at the position where the maximum difference in the downward gradient is compared with each other. The high part is adopted as the “measurement point of egg white height”.
品質指標演算手段6は、決定された濃厚卵白の高さと、事前に卵重入力手段7に入力された卵重データとを用いて所定式によりハウ・ユニットを演算するとともに、その演算結果を表示手段8に表示させる。   The quality index calculation means 6 calculates the how unit by a predetermined formula using the determined rich egg white height and the egg weight data previously input to the egg weight input means 7 and displays the calculation result. It is displayed on the means 8.
また、品質指標演算手段6は、検査対象卵Eの卵黄係数を演算する場合、図3に示すように、卵黄の側面画像(網掛け部分)から、領域Lの距離(卵黄の直径に相当する)と、検査対象卵Eの最大の高さとなる位置Pの垂直方向の距離(卵黄の高さに相当する)とを用いて所定式により卵黄係数を演算するとともに、その演算結果を表示手段8に表示させる。   Further, when calculating the yolk coefficient of the egg E to be inspected, the quality index calculating means 6 corresponds to the distance of the region L (corresponding to the yolk diameter) from the side image (shaded portion) of the yolk as shown in FIG. ) And the vertical distance (corresponding to the height of the yolk) of the position P that is the maximum height of the test object egg E, the yolk coefficient is calculated according to a predetermined formula, and the calculation result is displayed on the display means 8. To display.
本第一実施形態では、載置台1が投光手段2および受光手段3に対して水平移動する例を説明したが、これに限らず、例えば、投光手段2および受光手段3のユニットに駆動機構を設けて、当該投光手段2および受光手段3のユニットを、載置台1に対して水平移動させるようにしてもよい。   In the first embodiment, the example in which the mounting table 1 moves horizontally with respect to the light projecting unit 2 and the light receiving unit 3 has been described. However, the present invention is not limited to this. A mechanism may be provided so that the units of the light projecting means 2 and the light receiving means 3 are moved horizontally with respect to the mounting table 1.
つぎに、本実施の形態にかかる卵の品質指標検査装置Tの変形例を説明する。この変形例では、図5に示すように、受光手段3内にテレセントリックレンズ32が内蔵されている。このように、投光手段2および受光手段3のうち、少なくとも一方にテレセントリックレンズを備える構成とすることにより、検査対象卵Eを透過した後の平行光から不要な光をカットし、純粋な平行光のみを受光素子31に導くことができるので、取得された検査対象卵Eの側面形状の寸法と、実際寸法との誤差を極めて小さくすることができる。   Next, a modification of the egg quality index inspection apparatus T according to the present embodiment will be described. In this modification, a telecentric lens 32 is built in the light receiving means 3 as shown in FIG. Thus, by setting it as the structure provided with a telecentric lens in at least one among the light projection means 2 and the light-receiving means 3, unnecessary light is cut from the parallel light after transmitting the test object egg E, and pure parallel. Since only light can be guided to the light receiving element 31, an error between the acquired dimension of the side shape of the egg E to be inspected and the actual dimension can be extremely reduced.
さらに、本実施の形態にかかる卵の品質指標検査装置Tの他の変形例を説明する。この変形例では、図6に示すように、投光手段2は、半導体レーザの光源21と、コリメータレンズ22と、ポリゴンミラー23と、反射ミラー24とから構成されている。このような構成とすることにより、測定精度が高くなるほか、検査対象卵Eの表面に視認可能なレーザ光の軌跡が描かれるので測定部位を容易に確認することができる。   Furthermore, another modification of the egg quality index inspection apparatus T according to the present embodiment will be described. In this modification, as shown in FIG. 6, the light projecting means 2 includes a light source 21 of a semiconductor laser, a collimator lens 22, a polygon mirror 23, and a reflection mirror 24. With such a configuration, the measurement accuracy is increased, and a visible laser beam trajectory is drawn on the surface of the test egg E, so that the measurement site can be easily confirmed.
また、本実施例では、光源21から放射された光をコリメータレンズ22により平行光に変換し、むらのない平行光を出射する例を説明したが、これに限らず、例えば、発光ダイオード等の複数の発光素子を縦一列に配列させてライン状の光を形成し、これを出射するようにしてもよいし、例えば、数μsecの間隔で一の線状光を鉛直方向に往復させて、見かけ上、ライン状に形成された光を出射するようにしてもよい。   In the present embodiment, the example in which the light emitted from the light source 21 is converted into parallel light by the collimator lens 22 and the parallel light without unevenness is emitted is not limited to this. A plurality of light emitting elements may be arranged in a vertical line to form a line-shaped light, which may be emitted, for example, by reciprocating one linear light in the vertical direction at intervals of several μsec, Apparently, light formed in a line shape may be emitted.
また、本実施例では、載置台1を所定方向に水平移動させて検査対象卵Eの側面形状を取得する例を説明した。しかしながら、検査対象卵Eを載置台1に保持させると、検査対象卵Eは一の方向に偏って流延してしまうため、特に、ハウ・ユニットを計測する場合、一方向から検査対象卵Eの側面形状を取得するよりも、複数の方向から検査対象卵Eの側面形状を取得した方が望ましい。   Further, in the present embodiment, an example in which the mounting table 1 is horizontally moved in a predetermined direction and the side surface shape of the inspection target egg E is acquired has been described. However, if the test object egg E is held on the mounting table 1, the test object egg E will be cast in one direction. Therefore, particularly when measuring the How unit, the test object egg E will be observed from one direction. It is preferable to acquire the side shape of the test object egg E from a plurality of directions, rather than acquiring the side shape.
したがって、載置台1、あるいは、投光手段2および受光手段3からなる投受光ユニットのいずれか一方を、水平方向に回転させる測定方向可変手段(図示せず)を設けるようにし、載置台1(この説明では載置台1を回転させる例で説明する。)を例えば、120度ずつ回転させて検査対象卵Eの側面形状を取得する。   Therefore, a measuring direction variable means (not shown) for rotating either the mounting table 1 or the light projecting / receiving unit composed of the light projecting means 2 and the light receiving means 3 in the horizontal direction is provided. In this description, an example in which the mounting table 1 is rotated will be described.), For example, is rotated by 120 degrees to obtain the side shape of the test object egg E.
そして、取得された3つの角度からの側面形状データのうち、濃厚卵白の最も高い側面形状データを「卵白高さの測定点」として採用し、これをハウ・ユニットの演算に用いるようにすれば、より精度の高いハウ・ユニットの検査を行なうことが可能となる。   Then, among the acquired side surface shape data from the three angles, the side surface shape data with the highest concentration of egg white is adopted as the “measurement point of egg white height” and used for the calculation of the how unit. Therefore, it becomes possible to perform inspection of the how unit with higher accuracy.
つぎに、本発明にかかる卵の品質指標検査装置の第二実施形態を図7〜図8に従って説明する。図7は、第二実施形態にかかる卵の品質指標検査装置Tを説明する概略平面図であり、図8は、図7のB方向から見た概略正面図である。なお、前述の第一実施形態にかかる卵の品質指標検査装置Tと同一構成部分については同一符号を付して詳細な説明を省略する。   Next, a second embodiment of the egg quality index inspection apparatus according to the present invention will be described with reference to FIGS. FIG. 7 is a schematic plan view for explaining an egg quality index inspection apparatus T according to the second embodiment, and FIG. 8 is a schematic front view seen from the direction B of FIG. In addition, the same code | symbol is attached | subjected about the same component as the egg quality index test | inspection apparatus T concerning 1st embodiment mentioned above, and detailed description is abbreviate | omitted.
第二実施形態にかかる卵の品質指標検査装置T(以降、単に検査装置Tと記す。)の特徴的な構成を説明する。この検査装置Tは、図7に示すように、載置台1が横向きのT字状のベースプレート9の、紙面に向かって右側の上面に取り付けられている。   A characteristic configuration of an egg quality index inspection apparatus T (hereinafter simply referred to as an inspection apparatus T) according to the second embodiment will be described. As shown in FIG. 7, in the inspection apparatus T, the mounting table 1 is attached to the upper surface on the right side of the T-shaped base plate 9 facing sideways.
また、前記ベースプレート9の、紙面に向かって左側の上面には、投光手段2と受光手段3とが取り付けられている。図7に示すように、前記投光手段2と受光手段3とは、当該投光手段2の平行光の出射方向と当該受光手段3の平行光の入射方向とが平行となるよう配置されている。   Further, the light projecting means 2 and the light receiving means 3 are attached to the upper surface of the base plate 9 on the left side of the paper surface. As shown in FIG. 7, the light projecting means 2 and the light receiving means 3 are arranged so that the parallel light emitting direction of the light projecting means 2 and the parallel light incident direction of the light receiving means 3 are parallel to each other. Yes.
さらに、前記ベースプレート9における載置台1側の下方には、後述する一の反射板11並びに他の一の反射板12のユニットを支持するための矩形状の支持プレート10が配置されており、当該支持プレート10の両端部には、保持部材13、14により保持された例えば、ガラス製の鏡からなる一の反射板11と他の一の反射板12とが対向配置されている。   Further, a rectangular support plate 10 for supporting a unit of one reflection plate 11 and another reflection plate 12 to be described later is disposed below the mounting table 1 side of the base plate 9. At both ends of the support plate 10, one reflecting plate 11 made of, for example, a glass mirror and held by the holding members 13 and 14 and the other reflecting plate 12 are disposed to face each other.
そして、前記投光手段2から出射された平行光は、該出射された平行光の進行方向に対して45度の角度で配置された一の反射板11の反射面11aによって進行方向が90度変更されるとともに、進行方向が90度変更された前記平行光は、該平行光の進行方向に対して45度の角度で配置された他の一の反射板12の反射面12aによってさらに進行方向が90度変更されて前記受光手段3に入射するよう構成されている。   Then, the parallel light emitted from the light projecting means 2 has a traveling direction of 90 degrees by the reflecting surface 11a of one reflecting plate 11 disposed at an angle of 45 degrees with respect to the traveling direction of the emitted parallel light. The parallel light whose traveling direction has been changed by 90 degrees is further traveled by the reflecting surface 12a of the other reflecting plate 12 disposed at an angle of 45 degrees with respect to the traveling direction of the parallel light. Is changed by 90 degrees and is incident on the light receiving means 3.
図7および図8に示すように、前記支持プレート10の下部には、駆動手段4が設けられており、この駆動手段4のパルスモータ41およびスクリュウ42の駆動により一の反射板11並びに他の一の反射板12のユニットが載置台1に対してX−X´方向に水平移動する仕組みになっている。   As shown in FIGS. 7 and 8, a driving means 4 is provided below the support plate 10, and one reflector 11 and the other are driven by a pulse motor 41 and a screw 42 of the driving means 4. The unit of one reflecting plate 12 moves horizontally in the XX ′ direction with respect to the mounting table 1.
詳述すると、一の反射板11並びに他の一の反射板12のユニットは、駆動手段4により、例えば、2秒でX方向へ水平移動(検査対象卵Eの測定時)し、例えば、1秒でX´方向へ水平移動(元の位置に戻る時)する仕組みになっている。   More specifically, the unit of one reflector 11 and the other reflector 12 is moved horizontally in the X direction (for example, when measuring the test object egg E) in 2 seconds by the driving means 4, for example, 1 It is structured to move horizontally (when returning to the original position) in the X ′ direction in seconds.
したがって、検査対象卵Eが載置された載置台1を水平移動させる場合、載置台1上の検査対象卵Eは半液状であるため、前記載置台1の水平移動時の微細な振動によって検査対象卵Eが揺れてしまい、検査精度を低下させる恐れがあったが、本実施形態の検査装置Tは、上述のように構成したことにより、前記検査対象卵Eの揺れを排除することができるので検査対象卵Eの品質指標の検査を高精度に行なうことができる。   Therefore, when horizontally moving the mounting table 1 on which the inspection target egg E is mounted, the inspection target egg E on the mounting table 1 is in a semi-liquid state, so that the inspection is performed by minute vibration during horizontal movement of the mounting table 1 described above. Although the target egg E is shaken and there is a fear that the inspection accuracy is lowered, the inspection apparatus T of the present embodiment can eliminate the shaking of the inspection target egg E by being configured as described above. Therefore, the inspection of the quality index of the egg E to be inspected can be performed with high accuracy.
また、載置台1上の検査対象卵Eの揺れを考慮する必要がないので、一の反射板11と他の一の反射板12との反射で形成された平行光の水平方向における走査を高速化することができ、より短時間で検査対象卵Eの品質指標の検査を行なうことが可能になる。さらに、投光手段2および受光手段3を水平移動させる必要がないので当該投光手段2および受光手段3に接続されている信号線等のケーブル類の損傷や切断等のトラブルを回避することができる。   In addition, since it is not necessary to consider the shaking of the test target egg E on the mounting table 1, the horizontal scanning of the parallel light formed by the reflection of one reflecting plate 11 and the other reflecting plate 12 is performed at high speed. And the quality index of the test target egg E can be inspected in a shorter time. Furthermore, since it is not necessary to move the light projecting means 2 and the light receiving means 3 horizontally, troubles such as damage and disconnection of cables such as signal lines connected to the light projecting means 2 and the light receiving means 3 can be avoided. it can.
本第二実施形態では、一の反射板11並びに他の一の反射板12のユニットを載置台1に対して水平移動させる例を説明した。しかしながら、検査対象卵Eを載置台1に保持させると、検査対象卵Eは一の方向に偏って流延してしまうため、特に、ハウ・ユニットの検査の場合、一方向から検査対象卵Eの側面形状データを取得するよりも、複数の方向から検査対象卵Eの側面形状データを取得した方が望ましい。   In the second embodiment, the example in which the unit of one reflector 11 and the other reflector 12 is moved horizontally with respect to the mounting table 1 has been described. However, if the test object egg E is held on the mounting table 1, the test object egg E will be cast in one direction, and therefore, particularly in the case of the inspection of the how unit, the test object egg E from one direction. It is preferable to acquire the side shape data of the test object egg E from a plurality of directions, rather than acquiring the side shape data.
したがって、載置台1とベースプレート9との間に、載置台1を水平方向に回転させる測定方向可変手段(図示せず)を設けるようにし、当該載置台1を例えば、120度ずつ回転させて検査対象卵Eの側面形状データを取得するようにしてもよい。   Accordingly, a measuring direction variable means (not shown) for rotating the mounting table 1 in the horizontal direction is provided between the mounting table 1 and the base plate 9, and the mounting table 1 is rotated by 120 degrees, for example, for inspection. You may make it acquire the side shape data of the target egg E. FIG.
そして、取得された3つの角度からの側面形状データのうち、濃厚卵白の最も高い側面形状データを「卵白高さの測定点」として採用し、これをハウ・ユニットの演算に用いるようにすれば、より精度の高いハウ・ユニットの検査を行なうことが可能となる。   Then, among the acquired side surface shape data from the three angles, the side surface shape data with the highest concentration of egg white is adopted as the “measurement point of egg white height” and used for the calculation of the how unit. Therefore, it becomes possible to perform inspection of the how unit with higher accuracy.
なお、本第二実施形態では、一の反射板11並びに他の一の反射板12のユニットを載置台1に対して水平移動させる例を説明したが、これに限らず、載置台1を一の反射板11並びに他の一の反射板12のユニットに対して水平移動させてもよい。本第二実施形態にかかる検査装置Tのその他の構成要素、各構成要素の内部構成並びに本実施形態の変形例については、前述の第一実施形態で説明した検査装置Tと同様であるので説明を省略する。   In the second embodiment, the example in which the unit of one reflecting plate 11 and the other reflecting plate 12 is horizontally moved with respect to the mounting table 1 has been described. The reflecting plate 11 and the other reflecting plate 12 unit may be moved horizontally. The other components of the inspection apparatus T according to the second embodiment, the internal configuration of each component, and the modification of the present embodiment are the same as those of the inspection apparatus T described in the first embodiment, and will be described. Is omitted.
今回、開示された実施の形態は例示であってこれに制限されるものではない。本発明は、上記で説明した範囲ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲での全ての変更が含まれることが意図される。   The embodiments disclosed herein are illustrative and not limiting. The present invention is defined by the terms of the claims, rather than the scope described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
本発明にかかる卵の品質指標検査装置Tの第一実施形態を説明する概略正面図である。It is a schematic front view explaining 1st embodiment of the quality index test | inspection apparatus T of the egg concerning this invention. 図1のA―A線における概略断面図である。It is a schematic sectional drawing in the AA of FIG. 取得された検査対象卵Eの側面画像を説明する図である。It is a figure explaining the side image of acquired egg E to be examined. 出射される平行光が水平移動する状態を説明する概略図である。It is a schematic diagram explaining the state where emitted parallel light moves horizontally. 第一実施形態の卵の品質指標検査装置Tの変形例を説明する概略図である。It is the schematic explaining the modification of the quality index test | inspection apparatus T of the egg of 1st embodiment. 第一実施形態の卵の品質指標検査装置Tの他の変形例を説明する概略図である。It is the schematic explaining the other modification of the quality index test | inspection apparatus T of the egg of 1st embodiment. 本発明にかかる卵の品質指標検査装置Tの第二実施形態を説明する概略平面図である。It is a schematic plan view explaining 2nd embodiment of the quality index inspection apparatus T of the egg concerning this invention. 図7のB方向から見た品質指標検査装置Tの概略正面図である。It is a schematic front view of the quality index inspection apparatus T as seen from the direction B of FIG.
符号の説明Explanation of symbols
1 載置台、2 投光手段、3 受光手段、4 駆動手段、5 演算制御手段、6 品質指標演算手段、7 卵重入力手段、8 表示手段、9 ベースプレート、10 支持プレート10、11 一の反射板、12 他の一の反射板、21 光源、22 コリメータレンズ、31 1次元CCDイメージセンサー、E 検査対象卵   DESCRIPTION OF SYMBOLS 1 Mounting stand, 2 Light projection means, 3 Light reception means, 4 Driving means, 5 Calculation control means, 6 Quality index calculation means, 7 Egg weight input means, 8 Display means, 9 Base plate, 10 Support plate 10, 11 One reflection Plate, 12 other reflector, 21 light source, 22 collimator lens, 31 one-dimensional CCD image sensor, E egg to be inspected

Claims (16)

  1. 割卵された検査対象卵を載置する上面が水平に形成された載置台と、
    鉛直方向に分布する平行光を出射する投光手段と、
    前記投光手段から出射された鉛直方向に分布する平行光を受光する受光手段を備え、
    前記投光手段と受光手段とは、所定間隔をもって対向配置されており、
    前記載置台、あるいは、前記投光手段および受光手段のユニットのいずれか一方を水平移動させる駆動手段を備え、
    前記駆動手段により前記載置台、あるいは、前記投光手段および受光手段のユニットのいずれか一方が水平移動するのに応じて、前記受光手段が検査対象卵を透過した後の平行光の光量の変化を検出し、当該受光手段から得られた電気信号に基づいて、検査対象卵の側面形状を演算処理する演算処理手段を備え、
    前記演算処理手段により演算処理された検査対象卵の側面形状データに基づいて卵の品質指標を判定する品質指標演算手段から構成されていることを特徴とする卵の品質指標検査装置。
    A mounting table on which the upper surface on which the egg to be inspected is placed is horizontally formed;
    A light projecting means for emitting parallel light distributed in the vertical direction;
    Comprising light receiving means for receiving parallel light distributed in the vertical direction emitted from the light projecting means,
    The light projecting means and the light receiving means are arranged to face each other with a predetermined interval,
    The mounting table, or driving means for horizontally moving one of the light projecting unit and the light receiving unit,
    Changes in the amount of parallel light after the light receiving means has passed through the test target egg in accordance with the horizontal movement of either the mounting table or the unit of the light projecting means and the light receiving means by the driving means. An arithmetic processing means for calculating the side shape of the egg to be inspected based on the electrical signal obtained from the light receiving means,
    An egg quality index inspection device, comprising: quality index calculation means for determining an egg quality index based on side shape data of the egg to be inspected that has been calculated by the calculation processing means.
  2. 前記品質指標演算手段は、前記演算処理手段により演算処理された検査対象卵の側面形状データに基づいて卵白の高さを演算し、得られた卵白の高さデータと、予め測定された当該検査対象卵の卵重データとを用いてハウ・ユニットを判定することを特徴とする請求項1に記載の卵の品質指標検査装置。   The quality index calculation means calculates the egg white height based on the side shape data of the egg to be inspected that has been calculated by the calculation processing means, and the obtained egg white height data and the test that has been measured in advance. The egg quality index inspection apparatus according to claim 1, wherein the how unit is determined using egg weight data of the target egg.
  3. 前記品質指標演算手段は、前記演算処理手段により演算処理された検査対象卵の側面形状データに基づいて卵黄の高さ並びに卵黄の直径を演算し、得られた卵黄の高さデータ並びに卵黄の直径データを用いて卵黄係数を判定することを特徴とする請求項1に記載の卵の品質指標検査装置。   The quality index calculation means calculates the height of egg yolk and the diameter of egg yolk based on the side surface shape data of the test subject egg calculated by the calculation processing means, and the obtained egg yolk height data and the diameter of egg yolk The egg quality index inspection apparatus according to claim 1, wherein the egg yolk coefficient is determined using data.
  4. 前記駆動手段は、移動距離信号を出力しながら載置台、あるいは、前記投光手段および受光手段のユニットのいずれか一方を水平移動させることを特徴とする請求項1から請求項3のいずれかに記載の卵の品質指標検査装置。   4. The driving device according to claim 1, wherein the driving unit horizontally moves the mounting table or one of the light projecting unit and the light receiving unit while outputting a movement distance signal. The egg quality index inspection apparatus described.
  5. 前記投光手段および受光手段のうち、少なくとも一方にテレセントリックレンズを備えたことを特徴とする請求項1から請求項4のいずれかに記載の卵の品質指標検査装置。   The egg quality index inspection apparatus according to any one of claims 1 to 4, wherein a telecentric lens is provided in at least one of the light projecting means and the light receiving means.
  6. 前記投光手段は、光源から放射された光をポリゴンミラーおよび反射ミラーで反射したのち、コリメータレンズにより平行光に変換して当該平行光を出射することを特徴とする請求項1から請求項4のいずれかに記載の卵の品質指標検査装置。   5. The light projecting means, after reflecting light emitted from a light source by a polygon mirror and a reflection mirror, converts the light into parallel light by a collimator lens and emits the parallel light. The egg quality index inspection apparatus according to any one of the above.
  7. 前記投光手段は、線状光を鉛直方向に分布させてライン状に形成した光を出射することを特徴とする請求項1から請求項4のいずれかに記載の卵の品質指標検査装置。   5. The egg quality index inspection apparatus according to claim 1, wherein the light projecting unit emits light formed in a line shape by distributing linear light in a vertical direction. 6.
  8. 前記載置台、または、前記投光手段および受光手段のユニットのいずれか一方を水平方向に回転させる測定方向可変手段を備えたことを特徴とする請求項1から請求項7のいずれかに記載の卵の品質指標検査装置。   The measurement direction changing means for rotating either one of the mounting table or the unit of the light projecting means and the light receiving means in the horizontal direction is provided. Egg quality index inspection device.
  9. 割卵された検査対象卵を載置する上面が水平に形成された載置台と、
    鉛直方向に分布する平行光を出射する投光手段と、
    前記投光手段から出射された鉛直方向に分布する平行光を受光する受光手段を備え、
    前記投光手段と前記受光手段とは、当該投光手段の平行光の出射方向と当該受光手段の平行光の入射方向とが平行となるよう配置されており、
    前記投光手段と受光手段との光路上には、一の反射板と他の一の反射板とが対向配置されており、
    前記投光手段から出射された平行光は、該出射された平行光の進行方向に対して45度の角度で配置された一の反射板の反射面によって進行方向が90度変更されるとともに、進行方向が90度変更された前記平行光は、該平行光の進行方向に対して45度の角度で配置された他の一の反射板の反射面によってさらに進行方向が90度変更されて前記受光手段に入射するよう構成され、
    さらに、前記一の反射板並びに他の一の反射板のユニット、あるいは、前記載置台のいずれか一方を水平移動させる駆動手段と、
    前記駆動手段により前記一の反射板並びに他の一の反射板のユニット、あるいは、前記載置台のいずれか一方が水平移動するのに応じて、一の反射板から他の一の反射板に進行する平行光の光路上に位置付けられる検査対象卵を透過した平行光の光量の変化を受光手段にて検出し、前記受光手段から得られた電気信号に基づいて検査対象卵の側面形状を演算処理する演算処理手段と、
    前記演算処理手段により演算処理された検査対象卵側面形状データに基づいて卵の品質指標を判定する品質指標演算手段とを備えていることを特徴とする卵の品質指標検査装置。
    A mounting table on which the upper surface on which the egg to be inspected is placed is horizontally formed;
    A light projecting means for emitting parallel light distributed in the vertical direction;
    Comprising light receiving means for receiving parallel light distributed in the vertical direction emitted from the light projecting means,
    The light projecting means and the light receiving means are arranged such that the parallel light emitting direction of the light projecting means and the incident direction of the parallel light of the light receiving means are parallel,
    On the optical path between the light projecting unit and the light receiving unit, one reflector and the other reflector are disposed to face each other.
    The traveling direction of the parallel light emitted from the light projecting means is changed by 90 degrees by the reflecting surface of one reflector arranged at an angle of 45 degrees with respect to the traveling direction of the emitted parallel light, The parallel light whose traveling direction is changed by 90 degrees is further changed in the traveling direction by 90 degrees by the reflecting surface of another reflector arranged at an angle of 45 degrees with respect to the traveling direction of the parallel light. Configured to enter the light receiving means,
    Furthermore, the driving means for horizontally moving one of the unit of the one reflecting plate and the other reflecting plate, or the mounting table described above,
    When one of the reflection plate and the unit of the other reflection plate or the mounting table moves horizontally by the driving means, it proceeds from one reflection plate to the other reflection plate. The light receiving means detects a change in the amount of parallel light transmitted through the inspection target egg positioned on the optical path of the parallel light to be processed, and calculates the side shape of the inspection target egg based on the electrical signal obtained from the light receiving means Arithmetic processing means to perform,
    An egg quality index inspection device comprising: quality index calculation means for determining an egg quality index based on inspection target egg side surface shape data calculated by the calculation processing means.
  10. 前記品質指標演算手段は、前記演算処理手段により演算処理された検査対象卵の側面形状データに基づいて卵白の高さを演算し、得られた卵白の高さデータと、予め測定された当該検査対象卵の卵重データとを用いてハウ・ユニットを判定することを特徴とする請求項9に記載の卵の品質指標検査装置。   The quality index calculation means calculates the egg white height based on the side shape data of the egg to be inspected that has been calculated by the calculation processing means, and the obtained egg white height data and the test that has been measured in advance. The egg quality index inspection apparatus according to claim 9, wherein the how unit is determined using egg weight data of the target egg.
  11. 前記品質指標演算手段は、前記演算処理手段により演算処理された検査対象卵の側面形状データに基づいて卵黄の高さ並びに卵黄の直径を演算し、得られた卵黄の高さデータ並びに卵黄の直径データを用いて卵黄係数を判定することを特徴とする請求項9に記載の卵の品質指標検査装置。   The quality index calculation means calculates the height of egg yolk and the diameter of egg yolk based on the side surface shape data of the test subject egg calculated by the calculation processing means, and the obtained egg yolk height data and the diameter of egg yolk 10. The egg quality index inspection apparatus according to claim 9, wherein the egg yolk coefficient is determined using the data.
  12. 前記駆動手段は、移動距離信号を出力しながら一の反射板並びに他の一の反射板のユニット、あるいは、載置台のいずれか一方を水平移動させることを特徴とする請求項9から請求項11のいずれかに記載の卵の品質指標検査装置。   The driving means horizontally moves one of the reflecting plate, the unit of the other reflecting plate, or the mounting table while outputting a moving distance signal. The egg quality index inspection apparatus according to any one of the above.
  13. 前記投光手段および受光手段のうち、少なくとも一方にテレセントリックレンズを備えたことを特徴とする請求項9から請求項12のいずれかに記載の卵の品質指標検査装置。   The egg quality index inspection apparatus according to claim 9, wherein at least one of the light projecting unit and the light receiving unit includes a telecentric lens.
  14. 前記投光手段は、光源から放射された光をポリゴンミラーおよび反射ミラーで反射したのち、コリメータレンズにより平行光に変換して当該平行光を出射することを特徴とする請求項9から請求項12のいずれかに記載の卵の品質指標検査装置。   The light projecting means, after reflecting light emitted from a light source by a polygon mirror and a reflection mirror, converts the light into parallel light by a collimator lens and emits the parallel light. The egg quality index inspection apparatus according to any one of the above.
  15. 前記投光手段は、線状光を鉛直方向に分布させてライン状に形成した光を出射することを特徴とする請求項9から請求項12のいずれかに記載の卵の品質指標検査装置。   13. The egg quality index inspection apparatus according to claim 9, wherein the light projecting unit emits light formed in a line shape by distributing linear light in a vertical direction.
  16. 前記一の反射板並びに他の一の反射板のユニット、あるいは、前記載置台のいずれか一方を水平方向に回転させる測定方向可変手段を備えたことを特徴とする請求項9から請求項15のいずれかに記載の卵の品質指標検査装置。   16. The measurement direction changing means for rotating either one of the one reflection plate and the other reflection plate unit or the mounting table in the horizontal direction is provided. The egg quality index inspection apparatus according to any one of the above.
JP2006332285A 2006-06-29 2006-12-08 Egg quality index inspection device Active JP4858838B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006180358 2006-06-29
JP2006180358 2006-06-29
JP2006332285A JP4858838B2 (en) 2006-06-29 2006-12-08 Egg quality index inspection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006332285A JP4858838B2 (en) 2006-06-29 2006-12-08 Egg quality index inspection device
PCT/JP2007/073553 WO2008069263A1 (en) 2006-12-08 2007-12-06 Egg quality index examination device

Publications (2)

Publication Number Publication Date
JP2008032678A true JP2008032678A (en) 2008-02-14
JP4858838B2 JP4858838B2 (en) 2012-01-18

Family

ID=39122241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006332285A Active JP4858838B2 (en) 2006-06-29 2006-12-08 Egg quality index inspection device

Country Status (1)

Country Link
JP (1) JP4858838B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101027332B1 (en) 2008-07-14 2011-04-11 대한민국 The egg white height measurement apparatus and the measurement method using it
KR101032790B1 (en) 2011-03-29 2011-05-02 중앙아이엔티 주식회사 Method for measuring the height of albumen
KR101041095B1 (en) 2011-03-29 2011-06-13 중앙아이엔티 주식회사 Yolk measurnig method
WO2012157491A1 (en) * 2011-05-13 2012-11-22 ロボットメーション株式会社 Egg quality-inspecting device
CN107167081A (en) * 2017-06-02 2017-09-15 哈尔滨师范大学 A kind of field bird ovum measurement apparatus

Citations (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54129343U (en) 1978-03-01 1979-09-08
JPS56735B2 (en) 1977-02-21 1981-01-09
JPS5934104A (en) 1982-08-20 1984-02-24 Nippon Steel Corp Optical automatic dimension measuring method
JPS5945556U (en) * 1982-09-20 1984-03-26
JPS62174607A (en) 1986-01-28 1987-07-31 Sakaguchi Tekko Kk Optical system for measuring instrument
JPH0377923B2 (en) 1985-04-24 1991-12-12 Honda Motor Co Ltd
JPH0684031A (en) 1992-08-31 1994-03-25 Yugoro Nishiyama Golf play supporting device
JPH06178728A (en) 1992-12-11 1994-06-28 Sharp Corp Drink storage container and drink extractor
JPH06331317A (en) 1993-05-26 1994-12-02 Omron Corp Dimension measuring device
JPH07110222A (en) 1993-10-13 1995-04-25 Sony Corp Shape measuring instrument
JPH07117983A (en) 1993-10-22 1995-05-09 Kajima Corp Cable crane control device
JPH07209219A (en) 1994-01-19 1995-08-11 Mitsubishi Chem Corp Method for detecting softened or fused state of thermoplastic resin sheet
JPH07209209A (en) 1994-01-24 1995-08-11 Robotsuto Meeshiyon Kk Inspection apparatus for egg
JPH07229841A (en) * 1994-02-16 1995-08-29 Kyowa Kikai Kk Apparatus for detecting/discriminating bad liquid egg through image processing
JPH07332935A (en) 1994-06-03 1995-12-22 Keyence Corp Measuring apparatus
JPH07332934A (en) 1994-06-03 1995-12-22 Keyence Corp Measuring apparatus
JPH0819412A (en) 1994-07-06 1996-01-23 Tokihide Tsuchiya Stick with obstruction defector for blinded person
JPH0857373A (en) 1994-08-15 1996-03-05 I T M Kk Automatic coating robot system and automatic coating device
JPH0875418A (en) 1994-09-02 1996-03-22 Nippon Telegr & Teleph Corp <Ntt> Automatic recognition method and automatic recognition device for object
JPH08247721A (en) 1995-03-15 1996-09-27 Omron Corp Dimension measuring instrument
JPH08247728A (en) 1995-03-08 1996-09-27 Omron Corp Dimension measuring instrument
JPH08285538A (en) 1995-04-12 1996-11-01 Omron Corp Dimension measuring instrument
JPH08297100A (en) 1995-04-27 1996-11-12 Kawatetsu Joho Syst Kk Inspecting method for egg
JPH0921793A (en) 1995-04-19 1997-01-21 Fps Foods Processing Syst Bv Egg inspecting probe and method and device for inspecting egg
JPH0928571A (en) 1995-07-14 1997-02-04 Matsushita Electric Ind Co Ltd Automatic tea supplying machine
JPH09178728A (en) * 1995-10-26 1997-07-11 Robotsuto Meeshiyon Kk Automatic inspection equipment for quality of egg
JPH09203652A (en) 1996-01-29 1997-08-05 Mitsubishi Heavy Ind Ltd Level gauge of container for storing particulate material
JPH09210639A (en) 1996-02-07 1997-08-12 Keyence Corp Outer diameter measuring device
JPH09210640A (en) 1996-02-07 1997-08-12 Keyence Corp Outer diameter measuring device
JPH09273916A (en) 1996-04-05 1997-10-21 Keyence Corp Apparatus for measuring outer diameter
JPH09287924A (en) 1996-04-19 1997-11-04 Keyence Corp Apparatus for measuring outer diameter
JPH1019542A (en) 1996-07-08 1998-01-23 Keyence Corp Measuring device
JPH1034119A (en) 1996-07-30 1998-02-10 Matsushita Electric Ind Co Ltd Method for scrapping waste imaging instrument and apparatus therefor
JPH10272088A (en) 1997-03-31 1998-10-13 Olympus Optical Co Ltd Endoscope device
JPH11155340A (en) 1997-11-25 1999-06-15 Yanmar Agricult Equip Co Ltd General-purpose combine
JP2000111543A (en) 1998-10-06 2000-04-21 Sanyo Electric Co Ltd Device for controlling quality of coffee
JP2000155013A (en) 1998-11-20 2000-06-06 Keyence Corp Shape measuring instrument
JP2000155016A (en) 1998-11-20 2000-06-06 Keyence Corp Shape measuring instrument
JP2000205839A (en) 1999-01-14 2000-07-28 Keyence Corp Measuring device for shape
JP2000205842A (en) 1999-01-14 2000-07-28 Keyence Corp Shape measuring instrument
JP2000235005A (en) 1999-02-15 2000-08-29 Nidec Tosok Corp Egg inspection device
JP2000241347A (en) 1999-02-23 2000-09-08 Kubota Corp Method and apparatus for examining egg
JP2000246698A (en) 1999-02-25 2000-09-12 Matsushita Electric Ind Co Ltd Casing disassembling method and disassembling device
JP2001026266A (en) 1999-07-12 2001-01-30 Ribasuto:Kk System for monitoring and notifying obstacle on track
JP2001027612A (en) 1999-07-14 2001-01-30 Nidec Tosok Corp Egg inspecting apparatus
JP2001050715A (en) 1999-08-05 2001-02-23 Sony Corp Dimension measuring device and method thereof
JP2001099828A (en) 1999-09-28 2001-04-13 Kubota Corp Egg candler
JP2001228087A (en) 2000-02-16 2001-08-24 Yanmar Agricult Equip Co Ltd Nondestructive quality determining apparatus
JP2001227949A (en) 2000-02-16 2001-08-24 Toshiba Elevator Co Ltd Dimension measuring device for elevator
JP2002116013A (en) 2000-10-10 2002-04-19 Keyence Corp Noncontact outer-shape measuring apparatus
JP2002277211A (en) 2001-03-19 2002-09-25 Keyence Corp Optical measuring device
JP2003035589A (en) 2001-07-19 2003-02-07 Yokogawa Electric Corp Float type level gauge
JP2007309856A (en) * 2006-05-19 2007-11-29 Naberu:Kk Noncontact-type egg freshness index inspection device

Patent Citations (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56735B2 (en) 1977-02-21 1981-01-09
JPS54129343U (en) 1978-03-01 1979-09-08
JPS5934104A (en) 1982-08-20 1984-02-24 Nippon Steel Corp Optical automatic dimension measuring method
JPS5945556U (en) * 1982-09-20 1984-03-26
JPH0377923B2 (en) 1985-04-24 1991-12-12 Honda Motor Co Ltd
JPS62174607A (en) 1986-01-28 1987-07-31 Sakaguchi Tekko Kk Optical system for measuring instrument
JPH0684031A (en) 1992-08-31 1994-03-25 Yugoro Nishiyama Golf play supporting device
JPH06178728A (en) 1992-12-11 1994-06-28 Sharp Corp Drink storage container and drink extractor
JPH06331317A (en) 1993-05-26 1994-12-02 Omron Corp Dimension measuring device
JPH07110222A (en) 1993-10-13 1995-04-25 Sony Corp Shape measuring instrument
JPH07117983A (en) 1993-10-22 1995-05-09 Kajima Corp Cable crane control device
JPH07209219A (en) 1994-01-19 1995-08-11 Mitsubishi Chem Corp Method for detecting softened or fused state of thermoplastic resin sheet
JPH07209209A (en) 1994-01-24 1995-08-11 Robotsuto Meeshiyon Kk Inspection apparatus for egg
JPH07229841A (en) * 1994-02-16 1995-08-29 Kyowa Kikai Kk Apparatus for detecting/discriminating bad liquid egg through image processing
JPH07332935A (en) 1994-06-03 1995-12-22 Keyence Corp Measuring apparatus
JPH07332934A (en) 1994-06-03 1995-12-22 Keyence Corp Measuring apparatus
JPH0819412A (en) 1994-07-06 1996-01-23 Tokihide Tsuchiya Stick with obstruction defector for blinded person
JPH0857373A (en) 1994-08-15 1996-03-05 I T M Kk Automatic coating robot system and automatic coating device
JPH0875418A (en) 1994-09-02 1996-03-22 Nippon Telegr & Teleph Corp <Ntt> Automatic recognition method and automatic recognition device for object
JPH08247728A (en) 1995-03-08 1996-09-27 Omron Corp Dimension measuring instrument
JPH08247721A (en) 1995-03-15 1996-09-27 Omron Corp Dimension measuring instrument
JPH08285538A (en) 1995-04-12 1996-11-01 Omron Corp Dimension measuring instrument
JPH0921793A (en) 1995-04-19 1997-01-21 Fps Foods Processing Syst Bv Egg inspecting probe and method and device for inspecting egg
JPH08297100A (en) 1995-04-27 1996-11-12 Kawatetsu Joho Syst Kk Inspecting method for egg
JPH0928571A (en) 1995-07-14 1997-02-04 Matsushita Electric Ind Co Ltd Automatic tea supplying machine
JPH09178728A (en) * 1995-10-26 1997-07-11 Robotsuto Meeshiyon Kk Automatic inspection equipment for quality of egg
JPH09203652A (en) 1996-01-29 1997-08-05 Mitsubishi Heavy Ind Ltd Level gauge of container for storing particulate material
JPH09210639A (en) 1996-02-07 1997-08-12 Keyence Corp Outer diameter measuring device
JPH09210640A (en) 1996-02-07 1997-08-12 Keyence Corp Outer diameter measuring device
JPH09273916A (en) 1996-04-05 1997-10-21 Keyence Corp Apparatus for measuring outer diameter
JPH09287924A (en) 1996-04-19 1997-11-04 Keyence Corp Apparatus for measuring outer diameter
JPH1019542A (en) 1996-07-08 1998-01-23 Keyence Corp Measuring device
JPH1034119A (en) 1996-07-30 1998-02-10 Matsushita Electric Ind Co Ltd Method for scrapping waste imaging instrument and apparatus therefor
JPH10272088A (en) 1997-03-31 1998-10-13 Olympus Optical Co Ltd Endoscope device
JPH11155340A (en) 1997-11-25 1999-06-15 Yanmar Agricult Equip Co Ltd General-purpose combine
JP2000111543A (en) 1998-10-06 2000-04-21 Sanyo Electric Co Ltd Device for controlling quality of coffee
JP2000155013A (en) 1998-11-20 2000-06-06 Keyence Corp Shape measuring instrument
JP2000155016A (en) 1998-11-20 2000-06-06 Keyence Corp Shape measuring instrument
JP2000205839A (en) 1999-01-14 2000-07-28 Keyence Corp Measuring device for shape
JP2000205842A (en) 1999-01-14 2000-07-28 Keyence Corp Shape measuring instrument
JP2000235005A (en) 1999-02-15 2000-08-29 Nidec Tosok Corp Egg inspection device
JP2000241347A (en) 1999-02-23 2000-09-08 Kubota Corp Method and apparatus for examining egg
JP2000246698A (en) 1999-02-25 2000-09-12 Matsushita Electric Ind Co Ltd Casing disassembling method and disassembling device
JP2001026266A (en) 1999-07-12 2001-01-30 Ribasuto:Kk System for monitoring and notifying obstacle on track
JP2001027612A (en) 1999-07-14 2001-01-30 Nidec Tosok Corp Egg inspecting apparatus
JP2001050715A (en) 1999-08-05 2001-02-23 Sony Corp Dimension measuring device and method thereof
JP2001099828A (en) 1999-09-28 2001-04-13 Kubota Corp Egg candler
JP2001228087A (en) 2000-02-16 2001-08-24 Yanmar Agricult Equip Co Ltd Nondestructive quality determining apparatus
JP2001227949A (en) 2000-02-16 2001-08-24 Toshiba Elevator Co Ltd Dimension measuring device for elevator
JP2002116013A (en) 2000-10-10 2002-04-19 Keyence Corp Noncontact outer-shape measuring apparatus
JP2002277211A (en) 2001-03-19 2002-09-25 Keyence Corp Optical measuring device
JP2003035589A (en) 2001-07-19 2003-02-07 Yokogawa Electric Corp Float type level gauge
JP2007309856A (en) * 2006-05-19 2007-11-29 Naberu:Kk Noncontact-type egg freshness index inspection device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN3013000523; 佐々木豊 他: '枝豆のレーザセンサ識別システムの開発' 農業機械学会誌 VOL 65, NO. 4, 200307, PAGES 99-107, 農業機械学会
JPN3013000524; キーエンス 2006 総合 第1刷, 200412, PAGES 100-103, (株)キーエンス
JPN3013000525; 鶏卵規格取引ガイドブック , 20121101, PAGES 1-11, 中央鶏卵規格取引協議会

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101027332B1 (en) 2008-07-14 2011-04-11 대한민국 The egg white height measurement apparatus and the measurement method using it
KR101032790B1 (en) 2011-03-29 2011-05-02 중앙아이엔티 주식회사 Method for measuring the height of albumen
KR101041095B1 (en) 2011-03-29 2011-06-13 중앙아이엔티 주식회사 Yolk measurnig method
WO2012157491A1 (en) * 2011-05-13 2012-11-22 ロボットメーション株式会社 Egg quality-inspecting device
JP2012237706A (en) * 2011-05-13 2012-12-06 Robotsuto Meeshiyon Kk Egg quality inspection device
CN107167081A (en) * 2017-06-02 2017-09-15 哈尔滨师范大学 A kind of field bird ovum measurement apparatus

Also Published As

Publication number Publication date
JP4858838B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
JP4858838B2 (en) Egg quality index inspection device
JP5189912B2 (en) Photoacoustic measuring device
NL1029044C2 (en) Non-destructive evaluation of surface damage in optical elements.
EP1388004B1 (en) Hand-held automatic refractometer
KR20120088773A (en) Inspection apparatus, measurement method for three-dimensional shape, and production method for structure
US20100060904A1 (en) Hand-held surface profiler
JP5917039B2 (en) Subject information acquisition device
EP2251634B1 (en) Dimension measuring instrument consisting in a vertical measurement column
TWI426227B (en) Measuring method for topography of moving specimen and a measuring apparatus thereof
US20160150968A1 (en) Object information acquiring apparatus
US7194908B2 (en) Device and method for ultrasonic inspection using profilometry data
JP2011092631A (en) Biological information processor and biological information processing method
JP4319554B2 (en) Refractive index distribution measuring method and measuring apparatus
EP0649001B1 (en) Procedure to measure the form and/or evenness of a moving material and device for its execution
JP5137606B2 (en) Non-invasive blood component measuring apparatus, method and computer program for non-invasively measuring blood components
JP2007309856A (en) Noncontact-type egg freshness index inspection device
KR100933697B1 (en) Apparatus for inspecting three dimensional shape using camera, inspection system including the same and inspection method using the same
JP2018109545A (en) Three-dimensional measuring device
WO2008069263A1 (en) Egg quality index examination device
JP2016109670A (en) Refractive index distribution measurement method, refractive index distribution measurement device, and optical element manufacturing method
JP2007286147A (en) Infrared microscope
WO2018055762A1 (en) System for measuring cell state
CN107941164A (en) Form measuring instrument
JP3512889B2 (en) Micro ATR mapping measurement device
JP3920713B2 (en) Optical displacement measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111020

R150 Certificate of patent or registration of utility model

Ref document number: 4858838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250