JPS5933927A - Analog/digital converter - Google Patents

Analog/digital converter

Info

Publication number
JPS5933927A
JPS5933927A JP14362682A JP14362682A JPS5933927A JP S5933927 A JPS5933927 A JP S5933927A JP 14362682 A JP14362682 A JP 14362682A JP 14362682 A JP14362682 A JP 14362682A JP S5933927 A JPS5933927 A JP S5933927A
Authority
JP
Japan
Prior art keywords
frequency
signal
sampling frequency
pass filter
digital signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14362682A
Other languages
Japanese (ja)
Inventor
Masao Kasuga
正男 春日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Nippon Victor KK
Original Assignee
Victor Company of Japan Ltd
Nippon Victor KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd, Nippon Victor KK filed Critical Victor Company of Japan Ltd
Priority to JP14362682A priority Critical patent/JPS5933927A/en
Priority to US06/522,057 priority patent/US4542369A/en
Publication of JPS5933927A publication Critical patent/JPS5933927A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/124Sampling or signal conditioning arrangements specially adapted for A/D converters
    • H03M1/1245Details of sampling arrangements or methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

PURPOSE:To obtain a digital signal with high quality, by operating an A/D converter so as to obtain finally a converted output of the digital signal having a sampling frequency N-times that of the digital signal desired to be obtained. CONSTITUTION:A high frequency component being f1 of the sampling frequency or over is eliminated from the input analog signal at an analog low pass filter 6 and applied to the A/D converter 7 of the next stage. The A/D converter 7 consists of a sample-and-hold circuit section 7a and an A/D converting section 7b, and after the input signal is sampled at the sampling frequency Nf1 at the sample-and-hold circuit 7a, the signal is quantized at the A/D converting section 7b and coded to produce a PCM digital signal, and applied to a digital low pass filter 8, whose frequency at the end of pass band fp' is selected at a frequency <1/2-time the f1 and the block end frequency fs' is selected nearly to 1/2f1. The signal extracted from the digital low pass filter 8 is applied to an thinning out device 9, where the signal is interleaved into the digital signal having the desired sampling frequency f1 and outputted to an output terminal 10.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はA/D変換値置装係り、特に時間的に連続する
アナログ信号を品質の劣化少なくディジタル信号に変換
して出力するA/D変俟装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an A/D conversion device, particularly an A/D converter that converts a temporally continuous analog signal into a digital signal with little quality deterioration and outputs the digital signal. Regarding equipment.

従来技術 第1図は従来のA/D変換装置の一例のフロック系統図
を示す。同図中、入力端子1に入来したアナログ信号は
、アナログ低域フィルタ2に供給され、ここで後述の出
力端子4より取り出されるディジタル信号(PCM信号
)の愕本化周tl数f11 の−倍の周?7I2数−>11以上の周波数bi分が減
衰される。これは上記出力ディジタル信号中に折り返し
歪が混入しないようにするためであり、ナイキス1 トのサンプリング定狸に従ってり11以上の周波数が減
衰される。このアナログ低域フィルタ2の出力信号は、
サンプリングホールド回路部3a及びA/D変換部3b
よりなるA/D変換器3に供給され、サンプリングホー
ルド回路部3aでサンプリングホールドされた後、A/
D変換部3bで量子化及び符号化されてパルス符号変調
(PCM)されたディジタル信号に変換されて出力端子
4へ出力される。上記の入力アナログ信号がオーディオ
信号やビデオ信号等の情報信号である場合、出力ディジ
タル信号はI夕lえは磁気テープ、ディスク等の記録媒
体に記録される。
BACKGROUND OF THE INVENTION FIG. 1 shows a block system diagram of an example of a conventional A/D converter. In the figure, an analog signal input to an input terminal 1 is supplied to an analog low-pass filter 2, where the frequency tl number f11 of the digital signal (PCM signal) extracted from an output terminal 4 (to be described later) is - Double laps? 7I2 number -> Frequencies bi equal to or greater than 11 are attenuated. This is to prevent aliasing distortion from being mixed into the output digital signal, and frequencies of 11 or more are attenuated according to the Nyquist sampling constant. The output signal of this analog low-pass filter 2 is
Sampling hold circuit section 3a and A/D conversion section 3b
After being sampled and held in the sampling and holding circuit section 3a, the A/D converter 3 consists of
The signal is quantized and encoded by the D converter 3b, converted into a pulse code modulated (PCM) digital signal, and outputted to the output terminal 4. When the input analog signal is an information signal such as an audio signal or a video signal, the output digital signal is then recorded on a recording medium such as a magnetic tape or a disk.

ここで、アナログ低域フィルタ2の徹幅−周汲を講壇す
るよう構成されており、また通過帯域をできるだけ広く
とるために、IIl過域端周波数f、が1■止域端周S
数f5に極めて近く選定されており、画周波数f、とf
sとの間の周波数帯域(遷移帯域幅)が狭い。
Here, the analog low-pass filter 2 is configured to have a thorough width-circumference, and in order to make the pass band as wide as possible, IIl passband edge frequency f, is 1■stopband edge circumference S
It is selected very close to the number f5, and the image frequencies f, and f
The frequency band (transition bandwidth) between s and s is narrow.

他方、上記フィルタ2による減衰量は、A/l)変換器
3の量子化ビット数に対心しており、量子化ビット数1
ビツト当たり−6dBの減衰量が必要であるので、−例
として量子化ビット数を16ビツトとすると略−96d
l:lの減衰量が必敷七なる。
On the other hand, the attenuation amount by the filter 2 is opposite to the quantization bit number of the A/l) converter 3, and the quantization bit number 1
Since an attenuation of -6 dB is required per bit, for example, if the number of quantization bits is 16 bits, the amount of attenuation is approximately -96 dB.
The attenuation amount of l:l must be 7.

従って、例えば入力アナログ信号がオーディオ信号であ
る場合は、上記通過域端周e、叔f、が20kHz桿[
#′、標本化周波数f1が50 k)Iz程朕となるか
ら、周波数fからf、までの約5 kHzの狭い周波数
範囲で一96dB以上のl吠良量が必少となり、アナロ
グ低域フィルタ2は極めて急峻な減衰特性が゛辰求され
る。このため従来ではアナログ低域フィルタ2は連立チ
ェビシェフ1.1″どのフィルタをオ0用して構成され
ることが多い。
Therefore, for example, when the input analog signal is an audio signal, the passband edge circumferences e and f are 20kHz [
#', since the sampling frequency f1 is about 50 k) Iz, the amount of noise of -96 dB or more is necessarily small in the narrow frequency range of about 5 kHz from frequency f to f, and the analog low-pass filter 2 requires an extremely steep attenuation characteristic. For this reason, conventionally, the analog low-pass filter 2 is often constructed by using a combination of Chebyshev 1.1'' filters.

発明が解決しようとする問題点 アナログ低域フィルタ2は上記のクロく襖めで急峻な減
衰粘性が佼求されるため、その減衰量+−1を侍ようと
すると、必然的に位相−周波数特性が第2図03)に示
す如く、通過域端流波数f。以下の通過帯域内で±π(
rad)の範囲で大きく位相が変動してしまう。従って
、A/D変換器3に供給される帯域制限アナログ信号は
、所安帯域内において大幅に歪むという欠点があった。
Problems to be Solved by the Invention Since the analog low-pass filter 2 is required to have a steep damping viscosity with the above-mentioned black sliding door, if you try to meet the attenuation amount +-1, the phase-frequency characteristic will inevitably change. As shown in Fig. 2 (03), the passband edge current wave number f. Within the passband of ±π(
rad), the phase fluctuates greatly. Therefore, the band-limited analog signal supplied to the A/D converter 3 has the disadvantage that it is significantly distorted within the normal band.

また、このアナログ低域フィル・り2の設計は極めて難
かしく、例えば連立チェビシェフ13次などのフィルタ
を設計すると、素子の棺Wによりバラツキが生じ、また
訓整も難かしく、四に所要減衰量の確保が困難であり、
通過帯域においてリップルが生ずる(設計値からずれる
)など数多くの設計上の問題点があった。また、従来装
置はアナログ低域フィルタ2の規模が大型となり、PC
Mディジタル信号の群遅延時間が一定でないなどの品質
劣化がある等の欠点があった。
In addition, designing this analog low-pass filter is extremely difficult. For example, if you design a filter such as a simultaneous Chebyshev 13th order, there will be variations due to the width of the element, and it is also difficult to adjust the amount of attenuation required. It is difficult to secure
There were many design problems, such as ripples occurring in the passband (deviation from the design value). In addition, in the conventional device, the scale of the analog low-pass filter 2 is large, and the PC
There were drawbacks such as quality deterioration such as the group delay time of the M digital signal being inconsistent.

そこで、本発明は、A/D変換器を標本化周波数11の
N倍(Nは2以上の自然数)で動作させると共に、その
出力ディジタル信号をディジタル低域フィルタと間引き
器とを夫々通すことにより、アナログ低域フィルタの設
計を容易にすると共に、最終出力P CMディジタル信
号の品質を向上し得るA、/D変変装装置提供すること
を目的さする。
Therefore, the present invention operates the A/D converter at N times the sampling frequency 11 (N is a natural number of 2 or more), and passes the output digital signal through a digital low-pass filter and a decimator, respectively. It is an object of the present invention to provide an A,/D disguise device that can facilitate the design of an analog low-pass filter and improve the quality of the final output PCM digital signal.

問題点を解決するための手段 本発明は通過域端流波数が目的とする標本化周成端周波
数が上記標本化周波数t数の略了倍(Niま2以上の自
然数)以下の周波数に遣デされ、アナログ信号の高周波
数成分を減衰するアナログ低域フィルタと、このフィル
タの出力アナログ信号が供給され上記傍本化周波数のN
倍の周波数で鞭本化を行なった後量子化及び符号化を行
ぼってディジタル信号を得るA/D変換器と、A/l)
裂仲器の出カテイジタルイに号が供給され一過域端周波
数が上かつ、田土成端周波数が上記標本化周波数の略1
倍以下の同波数に】祠定されたディジタル低域フィルタ
と、ディジタル低域フィルタの出力ディジタ小信号を上
記標本化周波数のN倍の周板数毎に取り出してこの種本
化周波数で標本化されたディジタル信号を出力する間引
き器とより・開成することにより、前記従来装置の欠点
を除去したものであリ、以下その一実施例について第3
図及び鵬4図と共に;況明する。
Means for Solving the Problems The present invention is characterized in that the passband edge current wave number is sent to a frequency where the target sampling frequency termination frequency is approximately equal to or less than the sampling frequency t (a natural number greater than or equal to 2). , an analog low-pass filter that attenuates the high frequency components of the analog signal, and the output analog signal of this filter is supplied to the
an A/D converter that performs quantization and encoding at twice the frequency and then obtains a digital signal;
The signal is supplied to the output voltage of the splitting device, and the transient frequency is higher, and the Tado terminal frequency is approximately 1 of the above sampling frequency.
[to the same wave number that is twice or less] The digital low-pass filter that has been fixed and the output digital small signal of the digital low-pass filter are taken out every N times the frequency of the above sampling frequency and sampled at this kind of standard frequency. This device eliminates the drawbacks of the conventional device by developing a decimator that outputs a digital signal.
With Figure and Peng 4 figures; the situation is clear.

実施例 第3図は本発明装置の一実施例のブロック系統図を示す
。同図中、時間及び糸幅共に連続的なアナログ信号が入
力端子5を経てアナログ低域フィルタ6に供給される。
Embodiment FIG. 3 shows a block system diagram of an embodiment of the apparatus of the present invention. In the figure, an analog signal that is continuous in time and thread width is supplied to an analog low-pass filter 6 via an input terminal 5.

このアナログ低域フィルタ6は本実症例で最終的に得よ
うとするディジタル信号の標本化周波数f1の陥グ倍以
上の同波数がこては一例としてNが2で、阻止域端yb
汲数f、が標本化lI!d波数11に等しいものとする
と、そのJ、賢匝−周波数物性は第4図(5)に実線I
で示す如くになるO 従って、入力アナログ信号はアナログ低域フィルタ6に
より周波数f1以上9高域周波数成分を除去されて次段
のA/D変換器7に供給される。
This analog low-pass filter 6 has the same wave number that is more than double the sampling frequency f1 of the digital signal to be finally obtained in this actual case.For example, N is 2, and the stopband edge yb
The number of pumps f is sampled lI! Assuming that d is equal to the wave number 11, its J-frequency physical properties are shown by the solid line I in Figure 4 (5).
Therefore, the input analog signal is supplied to the A/D converter 7 at the next stage after nine high-frequency components above frequency f1 are removed by the analog low-pass filter 6.

このA/D変換器7はサンプリングホールド回路部7a
とA/l)変換部7bとからなり、サンプリングホール
ド回路部7aで入力帯域制限アナログ信号を標本化周波
数Nf、にこではN=2であるから2f1)で標本化し
た後、A/D変換部7bで例えば墳子化ビット数16ビ
ツトで直II ’3量子化し、かつ、符号化してPCM
ディジタル1ざ号を生成する。この樟本化周fI数2f
1の時間及び↑“キ幅共ににiE敗的なディジタル信号
は、ディジタル1成域フィルタ8に供給される。
This A/D converter 7 has a sampling hold circuit section 7a.
and A/l) conversion section 7b, and after sampling the input band-limited analog signal at the sampling frequency Nf (2f1 in Japan since N=2) in the sampling hold circuit section 7a, A/D conversion is performed. In the section 7b, for example, the data is quantized by II '3 with the number of embedding bits being 16 bits, and encoded and converted into PCM.
Generate a digital 1za number. This number of rounds fI of this camphor is 2f
The digital signal, which is iE negative in both time and width 1, is supplied to a digital 1 bandpass filter 8.

ディジタル低域フィルタ8はノ巾過域端周波数fp′か
つ、ト1止成端周波数f5′が焔±f1μ下の角波数’
1 tこ選定されており、ここでは−イナ;1としてJ’、
−Tf。
The digital low-pass filter 8 has a width end frequency fp' and a termination end frequency f5' of an angular wave number below flame ±f1μ.
1 is selected, and here -in;1 is J',
-Tf.

と−すると、ぞの糸幅−周波数時!′11:を才記4図
G勺に−A ”g[、HNQ IIで示す如くになる。
-Then, the thread width - frequency time! '11: is shown in Figure 4, G-A ``g[, HNQ II.

ディジクル低域フィルタ8は例えば次式の差分方程式で
示される角限インパルスレスポンス(F I R)テ・
rジ々ルフィルクの、4成きされている。
For example, the digital low-pass filter 8 has a angular limited impulse response (F I R) signal expressed by the following difference equation.
It is made up of 4 pieces of r.

1( ■ = Σh・・X パ n  、i=l l  n−1+4 たたし、上式中、xn、ynは時刻nT(Tは標本化周
期)における入力ディジタル信号の値、出力ディジタル
信号の値を示し、またh・は1番目のフィルタ係数を示
す。−例として第4図(八に示す通過域端層波数f、′
を20 kHz 、阻止域端局波数fs′を22.05
 kHzとし、それらの周波数f、′とf、’ 七の間
で一96dBの減衰量を得ることができるディジタル低
域フィルタ8は、フィルタ次数kが186次のfi” 
I Rディジクルフィルタで構成でき、その場合の上式
におけるフィルタ係数り、は以下に示す如くになる。た
だし、H(tlはhlを示し、同様にH(2) 、 H
(3) 、・・・、 H(185) 、 H(186)
はh2゜h31 ”’ ! h11151 h186を
示し、またH (nl = H(187−n)となる(
n=1.2.3+・・・、93)。
1 ( ■ = Σh... In addition, h represents the first filter coefficient.-For example, the passband edge layer wavenumber f,' shown in FIG.
is 20 kHz, and the stopband terminal wave number fs' is 22.05.
kHz, and the digital low-pass filter 8 is capable of obtaining an attenuation of -96 dB between the frequencies f,' and f,'.
It can be configured with an IR digital filter, and in that case, the filter coefficient in the above equation is as shown below. However, H(tl indicates hl, and similarly H(2), H
(3) ,..., H(185) , H(186)
indicates h2゜h31 ''! h11151 h186, and H (nl = H(187-n)) (
n=1.2.3+..., 93).

)1(10)=−0,19287142g−03=[(
(177)H(11)=    0.13711511
−03=1((176)H(13)=−0,10766
091E−03=H(174)H(14)=−0,32
001726E−03=H(173)H(15)=  
0.51143498E−04=1−1(172)1−
1(16)=     0.39017018E−03
= lI(171)H(17)=  0.298161
16E−04=I−[(170)H(41)=、  0
.14927421E−02=)((146)H(42
)=  0.1957057.6g−02=H(145
)H(43)=  −〇、12965321Fi−02
=H(144)H(44)=−0,24,498986
E−02=H(143)H(45)=  0.9793
5335E−03=H(142)H(46)=  0.
29338680E−02=H(1411H(47)=
−o、531697s 7E−o 3 =x−+(14
0)T−((48)=−0,338313071D−0
2,=I((13,9)[1’(49)= =0.53
371290g−04= H(138)H(50)= 
 0.37669609E−02=H(137)H(5
1)=    0.77671176E−03=H(1
36)1−1(52)=−0,40522388g−0
2=H(135)1−1(53)=−0,]]6330
981E−’02=H134)H(54)=     
0.42043891 E−02= H(133)H(
55)=  0.26113042E−02=H(l3
2)H(56)=−0,41872268E−02=H
(131)H(57)=−0,36923668B−0
2=H(130)H(58)=  0.3965042
5E−02=)i(129)1−1(’  59)= 
 0.48498770E−02=H(128)H(6
0)=−0,35037783g−02=)1(127
)H(61)=−0,60507477E−02=)I
(126)H(62)=  0.27703853E−
02=)i(125))1(63)=  0.7253
2864E−02=H(124)T((64)=−0,
17355734E−02=H(123)H(67)=
  0.94625316B−02=1((120)H
(68)=  0.13405322B−02=H(1
19)H(69)ニー〇、10350283E−01=
H(118)H(70)  ニ − 0.:う4267
842E−02=H(117)H(71)=  0.1
1000999B−01=)−1(116)H(72)
==  0.59065911E−02=f((115
)H(73)=−0,1,1333941E−01=H
,(114)H(74)=−0,880559!dtl
D−02=H(113)H(75,に 〇、1]254
631E−01 =l[112)H(76)=  0.
12]61401E−01=HC111)H(77)=
−0,10646204E−01=lI(1,10)H
(78)=−0,]]6035434E−01=1−1
 1.09)H(79)=’  Q、93549951
E−02=H(108)1−((80)=  0.20
53R495E−01,=1((107)H(81)=
−1’)、71580947E−02=+((106)
T−1,(82)= −Q、2588]、453E−0
1= )((105)H(83)=   0.3691
2166E−02=)[(104。ン1−[(84)=
  0.32487035B−01=H(103)■(
85)=  (117255398E−02=H(10
2)H(86)ニー0.41.278972E−01=
H(101))((87)=−0,10584752B
−01=H(100)H(F18)二 □、54600
508E−01=1((9,9)H’(893=  0
.27017994B−01=H(98)1−1(90
)=−0,80275354E−01=H,(97)H
(9])=−tl、68390612E−01=H(9
’6)H(92)=  0.1681403.8E+O
O二l−1(95))1.(93)=  0.4301
6557E+0O=H(94)ディジタル低域フィルタ
8より取り出された帯域制限テイジタル信号は、間引き
器9に供給され、ここで所望の標本化周波数f1のディ
ジタル信号に間引きされた後出力端子10へ出、力され
る。すf、7わち、ディジタル低域フィルタ8よりjl
yり出さ分が除去されて帯域制限されているが、標本化
周波数はA/D変換器7における標本化周波数2f。
)1(10)=-0,19287142g-03=[(
(177)H(11)=0.13711511
-03=1((176)H(13)=-0,10766
091E-03=H(174)H(14)=-0,32
001726E-03=H(173)H(15)=
0.51143498E-04=1-1(172)1-
1(16) = 0.39017018E-03
= lI(171)H(17) = 0.298161
16E-04=I-[(170)H(41)=, 0
.. 14927421E-02=)((146)H(42
)=0.1957057.6g-02=H(145
)H(43)=-〇, 12965321Fi-02
=H(144)H(44)=-0,24,498986
E-02=H(143)H(45)=0.9793
5335E-03=H(142)H(46)=0.
29338680E-02=H(1411H(47)=
-o, 531697s 7E-o 3 =x-+(14
0)T-((48)=-0,338313071D-0
2,=I((13,9)[1'(49)==0.53
371290g-04=H(138)H(50)=
0.37669609E-02=H(137)H(5
1)=0.77671176E-03=H(1
36) 1-1(52)=-0,40522388g-0
2=H(135)1-1(53)=-0,]]6330
981E-'02=H134)H(54)=
0.42043891 E-02=H(133)H(
55)=0.26113042E-02=H(l3
2) H(56)=-0,41872268E-02=H
(131)H(57)=-0,36923668B-0
2=H(130)H(58)=0.3965042
5E-02=)i(129)1-1('59)=
0.48498770E-02=H(128)H(6
0)=-0,35037783g-02=)1(127
)H(61)=-0,60507477E-02=)I
(126)H(62)=0.27703853E-
02=)i(125))1(63)=0.7253
2864E-02=H(124)T((64)=-0,
17355734E-02=H(123)H(67)=
0.94625316B-02=1((120)H
(68)=0.13405322B-02=H(1
19) H (69) Knee〇, 10350283E-01=
H(118)H(70) Ni - 0. :U4267
842E-02=H(117)H(71)=0.1
1000999B-01=)-1(116)H(72)
== 0.59065911E-02=f((115
)H(73)=-0,1,1333941E-01=H
, (114)H(74)=-0,880559! dtl
D-02=H(113)H(75, 〇, 1]254
631E-01 =l[112)H(76)=0.
12]61401E-01=HC111)H(77)=
-0,10646204E-01=lI(1,10)H
(78)=-0,]]6035434E-01=1-1
1.09) H(79)=' Q, 93549951
E-02=H(108)1-((80)=0.20
53R495E-01,=1((107)H(81)=
-1'), 71580947E-02=+((106)
T-1, (82) = -Q, 2588], 453E-0
1= )((105)H(83)=0.3691
2166E-02=) [(104.n1-[(84)=
0.32487035B-01=H(103)■(
85)=(117255398E-02=H(10
2) H(86) knee 0.41.278972E-01=
H(101))((87)=-0,10584752B
-01=H(100)H(F18)2 □, 54600
508E-01=1((9,9)H'(893=0
.. 27017994B-01=H(98)1-1(90
)=-0,80275354E-01=H,(97)H
(9])=-tl, 68390612E-01=H(9
'6)H(92)=0.1681403.8E+O
O2l-1(95))1. (93) = 0.4301
6557E+0O=H (94) The band-limited digital signal extracted from the digital low-pass filter 8 is supplied to the decimator 9, where it is decimated into a digital signal with a desired sampling frequency f1, and then output to the output terminal 10. Powered. f, 7, that is, jl from the digital low-pass filter 8
The sampling frequency is the sampling frequency 2f in the A/D converter 7, although the y-output is removed and the band is limited.

と同一であり、目的とする標本化周波数f1吉は異なっ
ている。そこで、間引き器9は入力帯域制限ディジタル
信号を1標本化周期おき毎に間引き、2サンプルのうち
の1サンプルのみを取り出すことにより、目的とする標
本化周波数f1のディジタル信号が得られる。なお、デ
ィジタル低域フィルタ8で帯域制限をするのは、間引き
益9により間引き動作を行なった場合、折り返し歪が出
力テイジタル信号に混入しないようサンプリング定理を
満足させるためである。
are the same, and the target sampling frequency f1 is different. Therefore, the decimator 9 decimates the input band-limited digital signal every other sampling period and extracts only one sample out of two samples, thereby obtaining a digital signal with the target sampling frequency f1. The digital low-pass filter 8 limits the band in order to satisfy the sampling theorem so that aliasing distortion will not be mixed into the output digital signal when the thinning operation is performed using the thinning gain 9.

本丈施例によイ1ば、ディジタル低域フィルタ8の振幅
−周波数特注は第4園内に一点穎線■で示す如くになり
、遷移帯域幅は狭くなるが、ディジタルフィルタは精度
良くし成でき、しかもディジタル信号処理であるためS
N比の劣化がなく、またその位相−周波数植性は第4図
(ト))に一点鎖線■で示す叩く直線位相であり、位相
の乱れによる信号重賞の劣化はない。
According to the actual example, the amplitude-frequency customization of the digital low-pass filter 8 becomes as shown by the dotted line (■) in the fourth garden, and the transition bandwidth becomes narrow, but the digital filter can be made with high accuracy. Moreover, since it is digital signal processing, S
There is no deterioration in the N ratio, and the phase-frequency stability is a linear phase as shown by the dashed line (■) in FIG.

従って、A/D変換器7は2f、の(≠本化周仮数で動
作させても信号の劣化なく標本化周波数f。
Therefore, the A/D converter 7 maintains the sampling frequency f without signal deterioration even when operated at 2f (≠ regularized mantissa).

のディジタル何月を得ることができる。他方、A/D変
換器7を2f工の標本化周波数で動作させることができ
るので、その入力段に折り返しφ除去のために設けら7
するアナログ低域フィルタ60)振幅−周波数特性は第
4図(Nに実線Iで承゛憎。口〈従来のアナログ−成域
)・fルタ2のそれlζ比し忰めて緩やかな傾斜特性で
所要の減衰紬を得ることができる。例えば、第4園内に
示す悪ノ1べ域端周カタ費f、が30 kl−1z 、
q 7;1−11!1」止成端周波数f、が50 kH
z程關吉すると、約20 kHzという従来の4倍程庫
の広い周波数範囲で−96dB以上の7版衰橘2倚られ
れはよい。
You can get the digital number of months. On the other hand, since the A/D converter 7 can be operated at a sampling frequency of 2f, the A/D converter 7 is provided at its input stage to eliminate aliasing.
The analog low-pass filter 60) whose amplitude-frequency characteristics are shown in Figure 4 (solid line I at N) has a slope characteristic that is much gentler than that of filter 2. You can obtain the required attenuated pongee. For example, the edge Kata cost f of the Aku no 1 area shown in the 4th park is 30 kl-1z,
q 7;1-11!1” Termination frequency f is 50 kHz
If the frequency range is approximately 20 kHz, which is four times as wide as the conventional frequency range, it will be possible to achieve a frequency range of -96 dB or more.

従って、従求のアナログ低域フィルタ2に比べてアナロ
グ低域フィルタ6・の設計は容易となり、その規模も小
さくでき、史に素子のバラツキによる設計値からのすれ
も発生しない。しかも、アナログ低域フィルタ6の位相
−周波数特性は第4図(Blに実線■で示す如く、少な
くともユ以下の周波数帯域では近似的に直線位相であり
、最終的に必要な帯域内における位相の乱れは殆どない
。従って、以上より出力端子10には従来装置に比し、
位相−周波数特性が改善さね、また折り返し歪も軽減さ
れた高品質のディジタル信号が取り出される。
Therefore, compared to the conventional analog low-pass filter 2, the design of the analog low-pass filter 6 is easier, its scale can be reduced, and deviations from design values due to variations in elements do not occur. Moreover, the phase-frequency characteristic of the analog low-pass filter 6 is approximately a linear phase at least in the frequency band below U, as shown by the solid line ■ in FIG. There is almost no disturbance. Therefore, from the above, compared to the conventional device, the output terminal 10 has
A high-quality digital signal with improved phase-frequency characteristics and reduced aliasing distortion can be extracted.

なお、上記の実施例ではNが2の場合について説明した
が、3以上の自然数でもよいことは勿論である。
In the above embodiment, the case where N is 2 has been described, but it goes without saying that it may be a natural number of 3 or more.

効果 上述の如く、本発明によりは、A/D変換器を、最終的
に得ようとするディジタル信号の標本化周波数f1のN
倍の標本化周波数のディジタル信号の変換出力が得られ
るように動作させるので、A/])変換器の入力側に設
けられる折り返し歪除去用アナログ低域フィルタの傾斜
特性を従来装置に比しはるかに緩やかにすることができ
、従って従来にくらべてアナログ低域フィルタの設計、
製作がはるかに容易にでき、フィルタの規模も小さくで
き、また素子のバラツキによる設計値からのrれの発生
を殆ど無くすことができ、更に出力ディジタル信号の断
髪帯域におけるアナログ低域フィルタの位相−周波数特
性を近似的に直線位相にで^るので、位相の歪みを除去
でき、以上より従階にくらべて高品質のテ゛イジクル信
号を出力することができる等の特長を有するものである
Effects As described above, according to the present invention, the A/D converter can be set to N of the sampling frequency f1 of the digital signal to be finally obtained.
Since the operation is performed so as to obtain a converted output of a digital signal with twice the sampling frequency, the slope characteristic of the analog low-pass filter for eliminating aliasing distortion provided on the input side of the A/]) converter is much greater than that of conventional equipment. The design of analog low-pass filters can be made more gradual, therefore compared to traditional analog low-pass filter designs,
It is much easier to manufacture, the scale of the filter can be made smaller, and the occurrence of r deviation from the design value due to element variations can be almost eliminated. Since the frequency characteristics are approximated by a linear phase, phase distortion can be removed, and as a result, it has the advantage of being able to output a higher quality product signal than the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来装置の一例を示すブロック系成因、第2図
囚、同は夫々第1図図示装置におけるアナログ低域フィ
ルタの′掘幅−周波数時性1位相−周肢叔特性を示す図
、第3図は本発明装置の一実施例を示すブロック系統図
、第4図四、(B)は夫々第1図図示装置dにおけるア
ナログ低域フィルタとディジタル低域フィルタの糸幅−
周波数特性1位相−周波数判性を示す図である。 1.5・・・アナログ信号、入力端子、2,6・・拳ア
ナログ低域フィルタ、3,7−・、A/D変換4錘。 4.10・・φテイシタル信号出力癩子、8・拳・ディ
ジタル低域フィルタ、9・・・間引き器。 第1図 第2図 第3図 ’h   7b 第4図 fp’ ty2fI声J4
Fig. 1 is a diagram showing the block system characteristics of an example of a conventional device, and Fig. 2 is a diagram showing the width-frequency-temporal-1-phase-circumferential characteristic of the analog low-pass filter in the device shown in Fig. 1, respectively. , FIG. 3 is a block system diagram showing one embodiment of the device of the present invention, and FIG.
FIG. 2 is a diagram showing frequency characteristics 1 phase-frequency discrimination. 1.5...Analog signal, input terminal, 2,6...Fist analog low-pass filter, 3,7-..., A/D conversion 4 spindles. 4.10...φ tactile signal output leprosy, 8.Fist digital low-pass filter, 9...decimator. Figure 1 Figure 2 Figure 3 'h 7b Figure 4 fp' ty2fI voice J4

Claims (1)

【特許請求の範囲】[Claims] アナログ信号を目的とする標本化周波数で標本化した後
、時間及び振幅が共に離散的なディジタル信号に変換す
るA/D変換装置において、通過域端局波数が上記標本
化周波数の略1倍以上の周波数に選定され、かつ、阻止
域端局波数が上記標本化周波数の略丁倍(ただし、Nは
2以上の自然数)以下の周波数に選定されて上記アナロ
グ信号の高域周波数成分を減衰するアナログ低域フィル
タと、該アナログ低域フィルタの出力アナログ信号が供
給され上記標本化周波数のN倍の周波数で標本化を行な
った後量子化及び符号化を行なってディジタル信号を得
るA/D変換器と、該A/D変換器の出力ディジタル信
号が供給され通過域端層波数が上記標本化周波数の略丁
倍未満の周波数に選定され、かつ、■止城端周波数が上
記標本化周波数の略工倍以下の周波数に選定されたディ
ジタル低域フィルタと、該ディジタル低域フィルター出
力ディジタル信号を上記標本化周波数のN倍の周波数毎
に取り出して該標本化周波数で標本化さねたディジタル
信号を出力する間引き椅とより構成したことを特徴とす
るA/D変候装置。
In an A/D conversion device that samples an analog signal at a target sampling frequency and then converts it into a digital signal that is discrete in both time and amplitude, the passband terminal wave number is approximately one or more times the sampling frequency or more. , and the stopband end-office wave number is selected to be a frequency approximately equal to or less than the sampling frequency (N is a natural number of 2 or more) to attenuate the high frequency components of the analog signal. An analog low-pass filter and an A/D conversion where the output analog signal of the analog low-pass filter is supplied, samples it at a frequency N times the sampling frequency, and then performs quantization and encoding to obtain a digital signal. and the output digital signal of the A/D converter is supplied, the passband end layer wave number is selected to be less than approximately 1 times the sampling frequency, and (1) the toe end frequency is approximately equal to the sampling frequency. A digital low-pass filter selected to have a frequency equal to or lower than the above-mentioned sampling frequency, and a digital signal output from the digital low-pass filter at every frequency N times the sampling frequency, and a digital signal that is not sampled at the sampling frequency. An A/D variable device characterized by comprising a thinning chair for outputting data.
JP14362682A 1982-08-19 1982-08-19 Analog/digital converter Pending JPS5933927A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14362682A JPS5933927A (en) 1982-08-19 1982-08-19 Analog/digital converter
US06/522,057 US4542369A (en) 1982-08-19 1983-08-10 Digital-to-analog converting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14362682A JPS5933927A (en) 1982-08-19 1982-08-19 Analog/digital converter

Publications (1)

Publication Number Publication Date
JPS5933927A true JPS5933927A (en) 1984-02-24

Family

ID=15343123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14362682A Pending JPS5933927A (en) 1982-08-19 1982-08-19 Analog/digital converter

Country Status (1)

Country Link
JP (1) JPS5933927A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145730A (en) * 1984-01-10 1985-08-01 Pioneer Electronic Corp A/d converting device
JPS6229219A (en) * 1985-07-29 1987-02-07 Nippon Precision Saakitsutsu Kk Sampling circuit for analog signal
JPS62146003A (en) * 1985-12-20 1987-06-30 Sony Corp Digital signal processor
JPS63105961U (en) * 1986-12-26 1988-07-08
JPS63113256U (en) * 1987-01-13 1988-07-21
JPS63256018A (en) * 1987-04-13 1988-10-24 Nippon Precision Saakitsutsu Kk A/d converter
JPH0593742A (en) * 1991-02-15 1993-04-16 Crystal Semiconductor Corp Method and device for reducing sensitivity to jamming signal and noise of proportional converter type circuit
JP2007040046A (en) * 2005-08-05 2007-02-15 Asahi Glass Matex Co Ltd Roof material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4949552A (en) * 1972-05-01 1974-05-14
JPS5575345A (en) * 1978-11-30 1980-06-06 Philips Nv *b*a*bit a*d converter with b bit auxiliary a*d converter
JPS5687926A (en) * 1979-12-18 1981-07-17 Matsushita Electric Ind Co Ltd Digital signal processor
JPS5687925A (en) * 1979-12-18 1981-07-17 Matsushita Electric Ind Co Ltd Digital signal processor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4949552A (en) * 1972-05-01 1974-05-14
JPS5575345A (en) * 1978-11-30 1980-06-06 Philips Nv *b*a*bit a*d converter with b bit auxiliary a*d converter
JPS5687926A (en) * 1979-12-18 1981-07-17 Matsushita Electric Ind Co Ltd Digital signal processor
JPS5687925A (en) * 1979-12-18 1981-07-17 Matsushita Electric Ind Co Ltd Digital signal processor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145730A (en) * 1984-01-10 1985-08-01 Pioneer Electronic Corp A/d converting device
JPS6229219A (en) * 1985-07-29 1987-02-07 Nippon Precision Saakitsutsu Kk Sampling circuit for analog signal
JPS62146003A (en) * 1985-12-20 1987-06-30 Sony Corp Digital signal processor
JPS63105961U (en) * 1986-12-26 1988-07-08
JPS63113256U (en) * 1987-01-13 1988-07-21
JPS63256018A (en) * 1987-04-13 1988-10-24 Nippon Precision Saakitsutsu Kk A/d converter
JPH0593742A (en) * 1991-02-15 1993-04-16 Crystal Semiconductor Corp Method and device for reducing sensitivity to jamming signal and noise of proportional converter type circuit
US5579247A (en) * 1991-02-15 1996-11-26 Crystal Semiconductor Corporation Method and apparatus for decreasing the interference and noise sensitivity of a ratiometric converter type of circuit
JP2007040046A (en) * 2005-08-05 2007-02-15 Asahi Glass Matex Co Ltd Roof material

Similar Documents

Publication Publication Date Title
US6741650B1 (en) Architecture for intermediate frequency encoder
JPS5933927A (en) Analog/digital converter
US4542369A (en) Digital-to-analog converting device
JP2002540667A (en) DAC filter
JPS6221420B2 (en)
JPS63252015A (en) D/a converting device
US5124939A (en) Signal modification circuit
JPH04152779A (en) Nonlinear digital signal processing circuit
JPH0732343B2 (en) Asynchronous sampling frequency conversion method
JPH0515087B2 (en)
JP4856121B2 (en) converter
JPH02124622A (en) Quantizing error reducing device
JP2000349579A (en) Band limiting analog filter for digital audio and audio signal amplifier using it
JPS6316472A (en) Reproducing device
JPS60145730A (en) A/d converting device
JPH0731875B2 (en) Digital Ode Recorder
Busby Principles of digital television simplified
JPS5933928A (en) Digital/analog converter
JP2563277B2 (en) Video signal processing device
JPH0481279B2 (en)
JPH02911B2 (en)
Rosenbaum et al. Two classes of cosine-modulated IIR/IIR and IIR/FIR NPR filter banks
Adams et al. VLSI Architectures for Asynchronous Sample-Rate Conversion
JPS6353737B2 (en)
JPS63274214A (en) Digital/analog converting circuit