JPS5932523B2 - Manufacturing method of metal magnetic powder - Google Patents

Manufacturing method of metal magnetic powder

Info

Publication number
JPS5932523B2
JPS5932523B2 JP55095403A JP9540380A JPS5932523B2 JP S5932523 B2 JPS5932523 B2 JP S5932523B2 JP 55095403 A JP55095403 A JP 55095403A JP 9540380 A JP9540380 A JP 9540380A JP S5932523 B2 JPS5932523 B2 JP S5932523B2
Authority
JP
Japan
Prior art keywords
magnetic powder
iron
compounds
suspension
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55095403A
Other languages
Japanese (ja)
Other versions
JPS5723003A (en
Inventor
俊信 末吉
茂雄 平井
政博 雨宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP55095403A priority Critical patent/JPS5932523B2/en
Priority to DE8181104423T priority patent/DE3176436D1/en
Priority to EP81104423A priority patent/EP0041727B1/en
Priority to US06/272,722 priority patent/US4390361A/en
Publication of JPS5723003A publication Critical patent/JPS5723003A/en
Publication of JPS5932523B2 publication Critical patent/JPS5932523B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】 この発明は金属鉄を主体とする金属磁性粉末の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing metal magnetic powder mainly composed of metal iron.

一般的に、金属鉄を主体とする磁性粉末は、Fe3o4
やに−Fe2O3などの酸化鉄系磁性粉末に比較して保
磁力(Hc)などの磁気特性に優れる利点を有しており
、磁気テープを始めとする種々の磁気記録媒体用の記録
素子として脚光を浴びている。
Generally, magnetic powder mainly composed of metallic iron is Fe3o4
It has the advantage of superior magnetic properties such as coercive force (Hc) compared to iron oxide-based magnetic powders such as Fe2O3, and is in the spotlight as a recording element for various magnetic recording media including magnetic tapes. is bathed in

しかしながら、この種の磁性粉末は通常、オキシ水酸化
鉄もしくはこれを加熱脱水して得られる酸化鉄の針状粒
子からなる粉末を気相中で加熱還元して製造されるため
、加熱還元時に粒子相互間の焼結や個々の粒子の部分的
な溶融による形崩れが起こり易く、粒度の不均一化や斜
状性が損なわれることによつて磁気特性が著しく低下す
る欠点がある。さらに、上記の原料となるオキシ水酸化
鉄は、普通には水酸化鉄の懸濁液中に酸素含有ガスを吹
き込んで酸化する方法によつて生成させるが、針状粒子
以外に樹枝状粒子が副生し易く、また粒度も不均一とな
り易い傾向がある。
However, this type of magnetic powder is usually produced by heating reduction in the gas phase of a powder consisting of needle-like particles of iron oxyhydroxide or iron oxide obtained by heating and dehydrating it, so during heating reduction, the particles It is easy to lose its shape due to mutual sintering or partial melting of individual particles, and it has the disadvantage that magnetic properties are significantly deteriorated due to non-uniformity of particle size and loss of obliqueness. Furthermore, iron oxyhydroxide, which is the raw material mentioned above, is normally produced by blowing oxygen-containing gas into a suspension of iron hydroxide to oxidize it, but in addition to needle-like particles, dendritic particles are also produced. It tends to be a by-product and the particle size tends to be non-uniform.

このような樹枝状粒子の存在や粒度の不均一さは直接に
磁気特性に悪影響を及ぼすばかりか、上記の加熱還元時
の粒子間の焼結をより顕著にする要因となる。したがつ
て優れた磁気特性を有する磁性粉末を得るには、α−オ
キシ水酸化鉄の生成段階において樹枝状粒子の副生を抑
制し、かつ粒度を均一化し、しかも加熱還元時の粒子の
焼結や形崩れを防止する必要があるが、まだ充分に満足
できる方法は知られていない。この発明者らは、アルカ
リ領域に調整した水酸化第1鉄の懸濁液中に酸素含有ガ
スを導入する方法によれば、生成したα−オキシ水酸化
鉄を原料として最終的に得られる金属鉄を主体とする磁
性粉末が緻密な粒子となつて磁気特性が改善されること
を既に究明している。
The presence of such dendritic particles and non-uniformity in particle size not only directly affect the magnetic properties, but also become a factor that makes the sintering between particles more noticeable during the above-mentioned thermal reduction. Therefore, in order to obtain magnetic powder with excellent magnetic properties, it is necessary to suppress the by-product of dendritic particles in the production stage of α-iron oxyhydroxide, make the particle size uniform, and reduce the sintering of the particles during thermal reduction. Although it is necessary to prevent knots and deformation, there is no known method that is fully satisfactory. The inventors have discovered that according to a method of introducing an oxygen-containing gas into a suspension of ferrous hydroxide adjusted to an alkaline region, a metal can be finally obtained using the produced α-iron oxyhydroxide as a raw material. It has already been found that magnetic powder mainly composed of iron becomes dense particles and its magnetic properties are improved.

この発明は、さらに継続する研究過程で、上記のα−オ
キシ水酸化鉄の生成反応をアルカリ領域で行なう方法に
おいて、水酸化第1鉄の懸濁液中に水酸化ニツケルを存
在させ、かつ生成したα−オキシ水酸化鉄もしくはこれ
を加熱脱水した酸化鉄を加熱還元するに際し、被還元物
の粒子表面にアルミニウム化合物および亜鉛化合物から
選ばれる少なくとも1種の化合物を含む下層とケイ素化
合物を含む上層とから構成される2重の被覆層を形成し
たとき、上記α−オキシ水酸化鉄が樹枝状粒子の副生が
抑制されて粒度の揃つた針状粒子となり、しかも加熱還
元時の粒子の焼結や形崩れが効果的に防止され、優れた
磁気特性を有する磁性粉末が得られることを見い出し、
到達したものである。
In the course of further research, this invention was developed in a method of carrying out the above-mentioned α-iron oxyhydroxide production reaction in an alkaline region, in which nickel hydroxide is present in a suspension of ferrous hydroxide, and the production reaction is carried out in an alkaline region. When thermally reducing α-iron oxyhydroxide or iron oxide obtained by heating and dehydrating it, a lower layer containing at least one compound selected from an aluminum compound and a zinc compound and an upper layer containing a silicon compound are formed on the particle surface of the reductant. When a double coating layer consisting of We discovered that it is possible to obtain magnetic powder that effectively prevents knotting and deformation and has excellent magnetic properties.
It has been reached.

水酸化第1鉄の懸濁液中に水酸化ニツケルを存在させる
手段は種々あり、たとえば上記懸濁液に水酸化ニツケル
自体を添加してもよいが、普通には上記懸濁液中ないし
水酸化第1鉄を生成させる反応の系内に種々の水可溶性
ニツケル塩の形で加え、PH調整によつて水酸化物とす
ればよく、特に第1鉄塩とアルカリとの反応にて水酸化
第1鉄を析出させる際に同時に水酸化ニツケルを析出さ
せて共沈物とする方法が推奨される。
There are various ways to make nickel hydroxide present in a suspension of ferrous hydroxide. For example, nickel hydroxide itself may be added to the suspension, but usually nickel hydroxide is present in the suspension or in water. It can be added in the form of various water-soluble nickel salts to the reaction system that produces ferrous oxide, and converted to hydroxide by adjusting the pH. In particular, hydroxide can be produced by the reaction of ferrous salt with an alkali. A method is recommended in which nickel hydroxide is simultaneously precipitated when ferrous iron is precipitated to form a coprecipitate.

水酸化ニツケルは、水酸化第1鉄の懸濁液中に存在する
ことにより、この懸濁液中に酸素含有ガスを導入してα
−オキシ水酸化鉄を生成させる反応において、樹枝状粒
子の生成を抑制し、かつ析出粒子の粒度を均一にすると
いう作用を示す。
By being present in a suspension of ferrous hydroxide, nickel hydroxide introduces an oxygen-containing gas into this suspension and α
- In the reaction for producing iron oxyhydroxide, it has the effect of suppressing the production of dendritic particles and making the particle size of precipitated particles uniform.

その量は、水酸化第1鉄に対してNlAeの原子比で0
.001〜0.15となる量が好適であり、過少では実
質的な効果が期待できず、過多ではそれ以上の効果の上
昇を望めず、磁気特性面でも悪影響がある。なお、この
発明では上記の水酸化ニツケルを共に水酸化第1鉄の懸
濁液中にアルミニウム化合物、亜鉛化合物およびケイ素
化合物から選ばれる1種以上の化合物を含有させてもよ
い。
The amount is 0 in the atomic ratio of NlAe to ferrous hydroxide.
.. An amount of 0.001 to 0.15 is suitable; if it is too small, no substantial effect can be expected, and if it is too large, no further increase in effect can be expected, and there is also an adverse effect on magnetic properties. In addition, in this invention, one or more compounds selected from aluminum compounds, zinc compounds, and silicon compounds may be contained in the suspension of ferrous hydroxide together with the above-mentioned nickel hydroxide.

これらの含有量の加減によつて析出するα−オキシ水酸
化鉄の粒度調整が可能となり、したがつて加熱還元を経
て最終的に得られる金属鉄を主体とする磁性粉末を用途
や目的性能に適した粒度とすることができる。さらに、
これらは析出したα−オキシ水酸化鉄粒子の内部ないし
表面にイオン状態で捕捉されて残留し、加熱還元や加熱
脱水などの熱処理工程における粒子の焼結や形崩れを抑
制する効果も示す。上記で使用するアルミニウム化合物
としては硫酸アルミニウム、硝酸アルミニウム、塩化ア
ルミニウムなど、亜鉛化合物では硫酸亜鉛、硝酸亜鉛、
塩化亜鉛など、ケイ素化合物ではオルトケイ酸ナトリウ
ム、メタケイ酸ナトリウム、メタケイ酸カリウム、種々
の組成の水ガラスなどの水溶性ケイ酸塩類が挙げられ、
これらはアルミニウム、亜鉛、ケイ素の原子をMeとし
たとき、Me/Feの原子比で0.1以下となる量が推
奨され、多過ぎると磁気特性の低下を招来するので望ま
しくない。
Adjusting these contents makes it possible to adjust the particle size of the α-iron oxyhydroxide that precipitates, making it possible to adjust the magnetic powder mainly composed of metallic iron that is finally obtained through thermal reduction to suit the application and desired performance. A suitable particle size can be obtained. moreover,
These particles remain trapped in an ionic state inside or on the surface of precipitated α-iron oxyhydroxide particles, and also exhibit the effect of suppressing sintering and deformation of particles during heat treatment steps such as thermal reduction and thermal dehydration. The aluminum compounds used above include aluminum sulfate, aluminum nitrate, and aluminum chloride; the zinc compounds used include zinc sulfate, zinc nitrate,
Silicon compounds such as zinc chloride include water-soluble silicates such as sodium orthosilicate, sodium metasilicate, potassium metasilicate, and water glass of various compositions.
When Me is the atom of aluminum, zinc, and silicon, the recommended amount is such that the atomic ratio of Me/Fe is 0.1 or less, and too much is not desirable because it causes deterioration of the magnetic properties.

この発明では水酸化第1鉄の懸濁液中に酸素含有ガスを
導入してα−オキシ水酸化鉄を生成させる反応をアルカ
リ領域下で行なうが、アルカリ領域とする手段は種々存
在する。たとえば、硫酸第1鉄などの第1鉄塩の水溶液
と水酸化ナトリウムなどのアルカリ成分を反応させて水
酸化第1鉄を生成させる一般的な方法において過剰量の
アルカリ成分を使用したり、あるいは種々の方法にて得
られた水酸化第1鉄の懸濁液に後からアルカリ成分を添
加してもよい。いずれの場合でも酸素含有ガスの導入前
の懸濁液のPHが1L以上の高アルカリ領域であればよ
く、このようなアルカリ領域下の反応によつて最終的に
得られる金属鉄を主体とする磁性粉末粒子が緻密性に富
むものとなる。生成したα−オキシ水酸化鉄は、水洗、
P過、乾燥の後、直接もしくは加熱脱水して酸化鉄とし
てこれを水素気流中などの還元雰囲気中で300〜60
0℃程度で加熱すれば、金属鉄を主体とする磁性粉末と
なるが、この発明では被還元物の粒子表面にアルミニウ
ム化合物および亜鉛化合物から選ばれる少なくとも1種
の化合物を含む下層とケイ素化合物を含む上層とから構
成される2重の被覆層を形成する。この被覆層が存在す
ること、ならびに被還元物が均一で樹枝状粒子を殆んど
含まないことにより、加熱還元時の粒子の焼結や形崩れ
が効果的に抑制される。上記の被覆層を形成するには、
アルミニウム化合物では硫酸アルミニウム、塩化アルミ
ニウム、硝酸アルミニウムなどの水可溶性塩類、もしく
はアルミン酸ナトリウムなどの水可溶性アルミン酸塩、
亜鉛化合物では硫酸亜鉛、塩化亜鉛、硝酸亜鉛など、ケ
イ素化合物ではオルトケイ酸ナトリウム、メタケイ酸ナ
トリウム、メタケイ酸カリウム、種々の組成の水ガラス
などの水溶性ケイ酸塩類を使用し、これらを含むアルカ
リ性水溶液中に被還元物粉末を分散させ、粒子表面に単
に吸着させてもよいが、好適には上記懸濁液中に炭酸ガ
スを吹き込んだり、酸を添加することによつてアルミニ
ウム成分では結晶質ないし非晶質の水酸化物やアルミナ
ゾル、亜鉛成分では水酸化物、ケイ素成分ではケイ酸ゾ
ルとして粒子表面に沈着させる。
In this invention, an oxygen-containing gas is introduced into a suspension of ferrous hydroxide to produce α-iron oxyhydroxide, and the reaction is carried out in an alkaline region, but there are various means for achieving an alkaline region. For example, in the common method of reacting an aqueous solution of a ferrous salt such as ferrous sulfate with an alkaline component such as sodium hydroxide to produce ferrous hydroxide, an excessive amount of an alkaline component is used; An alkaline component may be added later to the suspension of ferrous hydroxide obtained by various methods. In either case, it is sufficient that the pH of the suspension before introducing the oxygen-containing gas is in a highly alkaline region of 1 L or more, and the main component is metallic iron, which is finally obtained by the reaction in such an alkaline region. The magnetic powder particles become highly dense. The generated α-iron oxyhydroxide is washed with water,
After P filtration and drying, it is directly or heated and dehydrated to form iron oxide, which is heated to 300 to 60% in a reducing atmosphere such as in a hydrogen stream.
If heated at about 0°C, it becomes a magnetic powder mainly composed of metallic iron, but in this invention, a lower layer containing at least one compound selected from an aluminum compound and a zinc compound and a silicon compound are formed on the particle surface of the reductant. A double covering layer is formed, consisting of an upper layer containing: Due to the presence of this coating layer and the fact that the substance to be reduced is uniform and contains almost no dendritic particles, sintering and deformation of the particles during thermal reduction are effectively suppressed. To form the above coating layer,
For aluminum compounds, water-soluble salts such as aluminum sulfate, aluminum chloride, aluminum nitrate, or water-soluble aluminates such as sodium aluminate,
For zinc compounds, use zinc sulfate, zinc chloride, zinc nitrate, etc. For silicon compounds, use water-soluble silicates such as sodium orthosilicate, sodium metasilicate, potassium metasilicate, and water glass of various compositions, and create alkaline aqueous solutions containing these. It is also possible to disperse the reductant powder in the suspension and simply adsorb it on the particle surface, but preferably, by blowing carbon dioxide into the suspension or adding an acid, the aluminum component is made into a crystalline or It is deposited on the particle surface as amorphous hydroxide or alumina sol, hydroxide for zinc component, and silicate sol for silicon component.

アルミニウム化合物または/および亜鉛化合物の被着処
理とケイ素化合物の被着処理は下層の被着後、加熱処理
を経て、上層を被着するという段階的工程をとる。また
、被還元物としてα−オキシ水酸化鉄の加熱脱水を経た
酸化鉄を使用するときは、加熱脱水前のα−オキシ水酸
化鉄に対して上記の両被着処理を施してもよいし、一方
の被着処理のみを行なつて加熱脱水して得られた酸化鉄
に対して他方の被着処理を行なうこともできる。特に両
被着処理を段階的に行なう場合には、アルミニウム化合
物または/および亜鉛化合物の被着後に150℃以上の
温度で加熱処理を行ない、被覆層の組成を酸化物ないし
含水酸化物の形とし、次いで水溶性ケイ酸塩のアルカリ
性水溶液中に分散して液を中和し、粒子表面に2重の被
覆層を形成する方法が推奨され、この方法によれば先に
被着した前者の被覆層が後者の被着処理時に液中に溶出
することが防止される他、同時被着処理および逆の順序
の被着処理に比較して、得られる金属鉄を主体とする磁
性粉末の磁気特性が良好である。この場合の加熱処理は
上記のα−オキシ水酸化鉄から酸化鉄への加熱脱水工程
で兼ねてもよい。アルミニウム化合物または/および亜
鉛化合物の被着量は(Al/Zn)/Feの原子換算重
量%で0.01〜10wt%となる量が好ましく、過少
では実質的な効果が期待できず、過多では逆に粒子の多
孔化や形崩れをきたす恐れがあり、磁気特性面でも問題
がある。またケイ素化合物の被着量はS1/Feの原子
換算重量?で0.1〜10wt01)、好適には0.1
〜5wt(f)となる量であり、過少では実質的な効果
が期待できず、また多くなるほど飽和磁化(σS′X)
5低下する傾向がある。以下、この発明を実施例にて具
体的に示す。
The process of depositing the aluminum compound and/or zinc compound and the process of depositing the silicon compound take a step-by-step process in which the lower layer is deposited, followed by heat treatment, and then the upper layer is deposited. In addition, when iron oxide obtained by heat dehydration of α-iron oxyhydroxide is used as the reductant, both of the above adhesion treatments may be applied to α-iron oxyhydroxide before heat dehydration. However, it is also possible to perform the other deposition treatment on the iron oxide obtained by performing only one deposition treatment and then heating and dehydrating the iron oxide. In particular, when performing both deposition treatments in stages, heat treatment is performed at a temperature of 150°C or higher after deposition of the aluminum compound and/or zinc compound to change the composition of the coating layer to an oxide or hydrous oxide. Next, a method is recommended in which a water-soluble silicate is dispersed in an alkaline aqueous solution to neutralize the liquid and form a double coating layer on the particle surface. In addition to preventing the layer from leaching into the liquid during the latter deposition process, the magnetic properties of the resulting metallic iron-based magnetic powder are improved compared to simultaneous deposition processes and reverse order deposition processes. is good. The heat treatment in this case may also serve as the heat dehydration step for converting α-iron oxyhydroxide into iron oxide. The amount of the aluminum compound or/and zinc compound deposited is preferably 0.01 to 10 wt% in terms of (Al/Zn)/Fe atomic weight%; if it is too little, no substantial effect can be expected; if it is too much, On the contrary, there is a risk that the particles may become porous or lose their shape, and there are also problems in terms of magnetic properties. Also, is the amount of silicon compound adhered to the atomic weight of S1/Fe? 0.1 to 10wt01), preferably 0.1
The amount is ~5wt(f), and if it is too small, no substantial effect can be expected, and if it is too large, the saturation magnetization (σS′X)
5 tends to decrease. This invention will be specifically illustrated in Examples below.

実施例 12009/10FeS04・7H20を溶解
した水溶液1.51中に攪拌しつつ114g/10)N
iSO4・6H20を溶解した水溶液0.11および2
009/l濃度のNaOH水溶液1.51を添加し、F
e(0H)2とNl(0H)2との共沈物を含みPHl
2以上である懸濁液を得た。
Example 12009/10 114g/10)N was added to an aqueous solution of 1.51g/12009/10FeS04/7H20 with stirring.
Aqueous solution 0.11 and 2 in which iSO4 6H20 was dissolved
0.009/l concentration of NaOH aqueous solution was added, and F
PHL containing a coprecipitate of e(0H)2 and Nl(0H)2
A suspension of 2 or more was obtained.

次いで液温を40℃に加温し、液中に1.61/分の割
合で空気を10時間吹き込んで、Niを固溶したα−F
eOOHを得た。このα−FeOOHを水洗、ろ過、乾
燥後、その109を採取し、800m1の水中に分散さ
せ、この液中に、1N−NaOHlOOmlと1m01
e/2濃度のZnsO4、水溶液5m1との混合液を攪
拌しながら添加し、続いて液中にCO2ガスを液のPH
が7〜8となるまで吹き込み、Zn(0H)2を被着し
たα−FeOOHを得た。このα−FeOOHを空気中
で300℃にて2時間脱水焼成してα−Fe2O3とし
た。続いてこのα−Fe2O3を800m1の水中に分
散させ、攪拌しつつ1N−NaOH水溶液100m1お
よび1m01e々濃度のNa4SlO4水溶液20m1
とを添加混合し、ついで液中にCO2ガスを液のPHが
7〜8となるまで吹き込んで、水洗、ろ過、乾燥し、上
層がSiO2、下層がZnOである2重被覆層を有する
α−Fe2O3(Zn/Fe=4.9wt0I)、Si
/Fe=2wt(I:/)を得た。得られたα−Fe2
O3を電気炉中でH2流量11/分にて第1表記載の温
度、時間条件で還元してNi,ZnおよびS1を含む金
属鉄粉末を得た。この粉末の磁気特性を第1表に示す。
実施例 2 実施例1と同一の方法によつて得られたNi固溶のα−
FeOOHlO9を用いて、これを800dの水中に分
散し、この液中に1N−NaOH水溶液100m1と0
.01m01e/l濃度のAl2(SO4)3水溶液2
0m1とを添加混合し、次いで液中に002ガスを液の
PHが7〜8となるまで吹き込み、水洗、ろ過、乾燥し
てAl(0H)3を被着したα−FeOOHを得た。
Next, the liquid temperature was raised to 40°C, and air was blown into the liquid at a rate of 1.61/min for 10 hours to form α-F in which Ni was dissolved as a solid solution.
eOOH was obtained. After washing, filtering and drying this α-FeOOH, 109 of the α-FeOOH was collected and dispersed in 800 ml of water.
A mixed solution of ZnsO4 with a concentration of
By blowing until the value of 7 to 8 was reached, α-FeOOH coated with Zn(0H)2 was obtained. This α-FeOOH was dehydrated and fired in air at 300° C. for 2 hours to obtain α-Fe2O3. Subsequently, this α-Fe2O3 was dispersed in 800 ml of water, and while stirring, 100 ml of 1N-NaOH aqueous solution and 20 ml of Na4SlO4 aqueous solution with a concentration of 1 mO1e were added.
Then, CO2 gas is blown into the liquid until the pH of the liquid becomes 7 to 8, followed by washing with water, filtration, and drying. Fe2O3 (Zn/Fe=4.9wt0I), Si
/Fe=2wt (I:/) was obtained. Obtained α-Fe2
O3 was reduced in an electric furnace at a H2 flow rate of 11/min under the temperature and time conditions listed in Table 1 to obtain metallic iron powder containing Ni, Zn, and S1. The magnetic properties of this powder are shown in Table 1.
Example 2 α- of Ni solid solution obtained by the same method as Example 1
Using FeOOHlO9, it was dispersed in 800 d of water, and 100 ml of 1N-NaOH aqueous solution and 0
.. Al2(SO4)3 aqueous solution 2 with a concentration of 01m01e/l
0ml was added and mixed, and then 002 gas was blown into the liquid until the pH of the liquid became 7 to 8, followed by washing with water, filtration, and drying to obtain α-FeOOH coated with Al(0H)3.

このα−FeOOHを空気中で300℃にて2時間脱水
焼成してα−Fe2O3とした。続いてこのα−Fe2
O3を800m1の水中に分散させ、攪拌しつつ1N−
NaOH水溶液50dおよび1r]])1e/l濃度の
Na4SiO4水溶液20m1とを添加混合し、続いて
液中にCO2ガスを液のPHが7〜8となるまで吹き込
んで、水焼、ろ過乾燥し、上層がSlO2、下層がAl
2O3である2重被覆層を有するα−Fe2O3(Al
//1?e=0.2wt%)を得た。この500Tn9
を採取して電気炉中でH2流量11/分、温度500℃
にて1時間の加熱還元を行なつて、Nl,Allおよび
Slを含む金属鉄粉末を得た。この粉末の磁気特性は、
Hc=14000e1σs=154emu/9、σr/
σs=0.51であつた。参考例実施例1の方法におい
て、FesO4水溶液中へNlSO4水溶液と共に35
9/l(7)Al2(SO4)3・17H20を溶解し
た水溶液を種々の添加量で配合して、実施例1と同様の
条件でα−FeOOHを析出させた。
This α-FeOOH was dehydrated and fired in air at 300° C. for 2 hours to obtain α-Fe2O3. Next, this α-Fe2
Disperse O3 in 800ml of water and add 1N- while stirring.
NaOH aqueous solution 50d and 1r]]) Add and mix 20ml of Na4SiO4 aqueous solution with a concentration of 1e/l, then blow CO2 gas into the liquid until the pH of the liquid becomes 7 to 8, water calcination, filter drying, Upper layer is SlO2, lower layer is Al
α-Fe2O3 (Al
//1? e=0.2wt%). This 500Tn9
was collected and heated in an electric furnace at a H2 flow rate of 11/min and a temperature of 500°C.
The mixture was heated and reduced for 1 hour to obtain metallic iron powder containing Nl, All, and Sl. The magnetic properties of this powder are
Hc=14000e1σs=154emu/9, σr/
σs=0.51. Reference Example In the method of Example 1, 35
α-FeOOH was precipitated under the same conditions as in Example 1 by blending various amounts of aqueous solutions in which 9/l(7)Al2(SO4)3.17H20 was dissolved.

得られたα−FeOOHの平均長径とAl/Feの原子
比の関係を第1図に示す。また同様に、上記Al2(S
O4)3水溶液の代わりに、31.19/l(7)Zn
SO4・7H20を溶解した水溶液を使用した場合、な
らびに20.09/l濃度のNa4SiO4水溶液を使
用した場合の析出α−FeOOH粒子の平均長径とZn
/TeおよびSl/Feの原子比との関係を図面に示す
。図中、曲線AはAll曲線BはZnl曲線CはS1を
意味する。比較例 1実施例1、7i62の方法におい
て、ZnsO4水溶液を使用せず、他の条件を全て同一
として、NlおよびSiを含む金属鉄粉末を得た。
FIG. 1 shows the relationship between the average major axis of the obtained α-FeOOH and the Al/Fe atomic ratio. Similarly, the above Al2(S
31.19/l(7)Zn instead of O4)3 aqueous solution
Average major axis and Zn of precipitated α-FeOOH particles when using an aqueous solution containing SO4 7H20 and when using a Na4SiO4 aqueous solution with a concentration of 20.09/l
The relationship between /Te and the atomic ratio of Sl/Fe is shown in the drawing. In the figure, curve A means All, curve B means Znl, and curve C means S1. Comparative Example 1 A metallic iron powder containing Nl and Si was obtained using the method of Example 1 and 7i62 without using the ZnsO4 aqueous solution and keeping all other conditions the same.

この粉末のHc=9600e1σs=156emu/9
、σr/0s=0.45であつた。比較例 2 実施例1、試料滝2の方法において、NiSO4水溶液
を使用せず、他の条件を全て同一として、ZnおよびS
lを含む金属鉄粉末を得た。
Hc of this powder = 9600e1σs = 156emu/9
, σr/0s=0.45. Comparative Example 2 In the method of Example 1 and Sample Waterfall 2, Zn and S
A metallic iron powder containing 1 was obtained.

この粉末のHc=12500e1σs=164emu/
9、σr/σs=0.49であつた。比較例 3 実施例2の方法において、Na4SiO4水溶液による
被着処理を行なわず、他の条件を同一としてAlおよび
Niを含む金属鉄粉末を得た。
Hc of this powder = 12500e1σs = 164emu/
9, σr/σs=0.49. Comparative Example 3 A metal iron powder containing Al and Ni was obtained using the method of Example 2 without performing the deposition treatment with the Na4SiO4 aqueous solution and keeping the other conditions the same.

この粉末のHc=8000e1σs=150emu/9
、σr/σs=0.43であつた。比較例 4 実施例1、試料/164の方法において、ZnsO4水
溶液およびNa4SlO4水溶液による被着処理を行な
わず、他の条件を同一としてNiを含む金属鉄粉末を得
た。
Hc of this powder = 8000e1σs = 150emu/9
, σr/σs=0.43. Comparative Example 4 Metallic iron powder containing Ni was obtained using the method of Example 1, Sample 164, except that the deposition treatment with ZnsO4 aqueous solution and Na4SlO4 aqueous solution was not performed, and other conditions were the same.

この粉末のHc=5600e1σs=178emu/9
、σr/σs=0.28であつた。以上の実施例および
比較例の結果から明らかなように、この発明の方法によ
れば、樹枝状粒子の混入が少なく粉度の揃つたα−オキ
シ水酸化鉄が得られ、これを直接もしくは加熱脱水した
酸化鉄を原料として加熱還元を行なつた際に粒子の焼結
や形崩れが極めて効果的に抑制される結果、優れた磁気
特性を有する金属鉄を主体とする磁性粉末が得られる。
また、α−オキシ水酸化鉄の生成反応をアルミニウム化
合物、亜鉛化合物およびケイ素化合物の存在下で行なえ
ば、図面に示すようにその量の増減によつて、生成する
α−オキシ水酸化鉄の粒度を用途や目的性能に応じた大
きさに調整することが可能である。
Hc of this powder = 5600e1σs = 178emu/9
, σr/σs=0.28. As is clear from the results of the above Examples and Comparative Examples, according to the method of the present invention, α-iron oxyhydroxide with little contamination of dendritic particles and uniform powder size can be obtained, and α-iron oxyhydroxide can be directly or heated. When thermal reduction is performed using dehydrated iron oxide as a raw material, sintering and deformation of particles are extremely effectively suppressed, resulting in a magnetic powder mainly made of metallic iron with excellent magnetic properties.
Furthermore, if the production reaction of α-iron oxyhydroxide is carried out in the presence of aluminum compounds, zinc compounds, and silicon compounds, the particle size of the produced α-iron oxyhydroxide will change depending on the amount of the aluminum compound, zinc compound, and silicon compound, as shown in the drawing. It is possible to adjust the size to suit the purpose and performance.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、参考例の方法におけるアルミニウム化合物、亜
鉛化合物およびケイ素化合物の各使用量と析出するα−
オキシ水酸化鉄の平均長径との関係を示す図である。 A・・・・・・アルミニウム化合物、B・・・・・・亜
鉛化合物、C ・・・・・・ケイ素化合物。
The drawing shows the amounts of aluminum compounds, zinc compounds, and silicon compounds used and the precipitated α-
FIG. 3 is a diagram showing the relationship with the average major axis of iron oxyhydroxide. A: Aluminum compound, B: Zinc compound, C: Silicon compound.

Claims (1)

【特許請求の範囲】 1 pH11以上に調整した水酸化第1鉄のアルカリ性
懸濁液中に酸素含有ガスを導入してα−オキシ水酸化鉄
もしくはこれを加熱脱水した酸化鉄を気相中で加熱還元
して金属鉄を主体とする磁性粉末とするに当たり、上記
懸濁液中に水酸化ニッケルを存在させ、かつ加熱還元に
供するα−オキシ水酸化鉄もしくは酸化鉄の粒子表面に
アルミニウム化合物および亜鉛化合物から選ばれる少な
くとも1種の化合物を含む下層を被着させ150℃以上
の温度で加熱処理を行ないその後、ケイ素化合物を含む
上層を被着させ2重の被覆層を形成したことを特徴とす
る金属磁性粉末の製造方法。 2 水酸化第1鉄の懸濁液中に水酸化ニッケルと共に、
アルミニウム化合物、亜鉛化合物およびケイ素化合物よ
り選ばれる少なくとも1種を含有させる特許請求の範囲
第1項記載の金属磁性粉末の製造方法。 3 加熱還元に供するオキシ水酸化鉄もしくは酸化鉄の
粒子表面にアルミニウム化合物および亜鉛化合物から選
ばれる少なくとも1種の化合物を被着し、これを気相中
で150℃以上の温度で加熱処理し、次いで水溶性ケイ
酸塩のアルカリ性水溶液中に分散し、液を中和して粒子
表面にケイ酸ゾルを沈着させることによつて2重の被覆
層を形成する特許請求の範囲第1項または第2項記載の
金属磁性粉末の製造方法。
[Claims] 1. Oxygen-containing gas is introduced into an alkaline suspension of ferrous hydroxide adjusted to a pH of 11 or more to produce α-iron oxyhydroxide or iron oxide obtained by heating and dehydrating it in the gas phase. When heat-reducing the powder to obtain a magnetic powder mainly composed of metallic iron, nickel hydroxide is present in the suspension, and aluminum compounds and A lower layer containing at least one compound selected from zinc compounds is applied and heat treated at a temperature of 150°C or higher, and then an upper layer containing a silicon compound is applied to form a double coating layer. A method for producing metal magnetic powder. 2 together with nickel hydroxide in a suspension of ferrous hydroxide,
The method for producing metal magnetic powder according to claim 1, which contains at least one selected from aluminum compounds, zinc compounds, and silicon compounds. 3. At least one compound selected from aluminum compounds and zinc compounds is deposited on the surface of iron oxyhydroxide or iron oxide particles to be subjected to thermal reduction, and this is heat-treated at a temperature of 150° C. or higher in a gas phase, The particles are then dispersed in an alkaline aqueous solution of a water-soluble silicate, the liquid is neutralized, and a silicic acid sol is deposited on the particle surface to form a double coating layer. 2. The method for producing metal magnetic powder according to item 2.
JP55095403A 1980-06-11 1980-07-11 Manufacturing method of metal magnetic powder Expired JPS5932523B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP55095403A JPS5932523B2 (en) 1980-07-11 1980-07-11 Manufacturing method of metal magnetic powder
DE8181104423T DE3176436D1 (en) 1980-06-11 1981-06-10 Process for preparing ferromagnetic particles comprising metallic iron
EP81104423A EP0041727B1 (en) 1980-06-11 1981-06-10 Process for preparing ferromagnetic particles comprising metallic iron
US06/272,722 US4390361A (en) 1980-06-11 1981-06-11 Process for preparing ferromagnetic particles comprising metallic iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55095403A JPS5932523B2 (en) 1980-07-11 1980-07-11 Manufacturing method of metal magnetic powder

Publications (2)

Publication Number Publication Date
JPS5723003A JPS5723003A (en) 1982-02-06
JPS5932523B2 true JPS5932523B2 (en) 1984-08-09

Family

ID=14136695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55095403A Expired JPS5932523B2 (en) 1980-06-11 1980-07-11 Manufacturing method of metal magnetic powder

Country Status (1)

Country Link
JP (1) JPS5932523B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62219326A (en) * 1986-03-20 1987-09-26 Hitachi Maxell Ltd Magnetic recording medium
JP2670901B2 (en) * 1990-11-27 1997-10-29 富士写真フイルム株式会社 Magnetic materials with improved transparency
CN111902869B (en) * 2018-03-30 2022-06-24 索尼公司 Method for producing magnetic powder and method for producing magnetic recording medium

Also Published As

Publication number Publication date
JPS5723003A (en) 1982-02-06

Similar Documents

Publication Publication Date Title
JPS5932523B2 (en) Manufacturing method of metal magnetic powder
JPS5919163B2 (en) Method for producing magnetic metal powder
JPS60135506A (en) Production of ferromagnetic metallic powder
JPS5919169B2 (en) Manufacturing method of metal magnetic powder
JPS5919168B2 (en) Manufacturing method of metal magnetic powder
JPH0420241B2 (en)
JPS58161705A (en) Production of magnetic metallic powder
JPS6122604A (en) Magnetic metal powder and manufacture thereof
JPS5931003A (en) Metal magnetic powder and manufacture thereof
JP3129823B2 (en) Method for producing ferromagnetic iron oxide powder for magnetic recording
JPH02175806A (en) Manufacture of metal magnetic powder for magnetic recorder
JPS5919167B2 (en) Manufacturing method of metal magnetic powder
JPH0343325B2 (en)
JPS5919165B2 (en) Manufacturing method of metal magnetic powder
JPS58161723A (en) Production of magnetic metallic powder
JPH0151524B2 (en)
JP2740922B2 (en) Method for producing metal magnetic powder for magnetic recording material
JPS5919166B2 (en) Manufacturing method of metal magnetic powder
JPS62219902A (en) Manufacture of metal magnetic powder
JPS59159904A (en) Metallic magnetic powder and its production
JPS5921364B2 (en) Method for producing acicular Fe-Zn alloy magnetic particle powder
JPS58213804A (en) Production of fine particle of ferromagnetic metal
JPS5917196B2 (en) Manufacturing method of metallic iron magnetic powder
JP2022135542A (en) Method for manufacturing iron-based oxide magnetic powder
JP2021150448A (en) Manufacturing method of ferrous oxide magnetic powder