JPS5919165B2 - Manufacturing method of metal magnetic powder - Google Patents

Manufacturing method of metal magnetic powder

Info

Publication number
JPS5919165B2
JPS5919165B2 JP55073012A JP7301280A JPS5919165B2 JP S5919165 B2 JPS5919165 B2 JP S5919165B2 JP 55073012 A JP55073012 A JP 55073012A JP 7301280 A JP7301280 A JP 7301280A JP S5919165 B2 JPS5919165 B2 JP S5919165B2
Authority
JP
Japan
Prior art keywords
iron
magnetic powder
particles
zinc
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55073012A
Other languages
Japanese (ja)
Other versions
JPS56169706A (en
Inventor
茂雄 平井
俊信 末吉
政博 雨宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP55073012A priority Critical patent/JPS5919165B2/en
Priority to EP81104141A priority patent/EP0041257B1/en
Priority to DE8181104141T priority patent/DE3167164D1/en
Publication of JPS56169706A publication Critical patent/JPS56169706A/en
Priority to US06/516,432 priority patent/US4456475A/en
Publication of JPS5919165B2 publication Critical patent/JPS5919165B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は金属鉄を主体とする磁性粉末の製造方法に関
するものであサ、粒度調整が容易であり、かつ熱処理工
程における粒子の焼結や形崩れが抑制されて緻密で優れ
た磁気特性を有する磁性粉末を得る上記製造方法を提供
することを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing magnetic powder mainly composed of metallic iron, which allows for easy particle size adjustment, suppresses sintering and deformation of particles during the heat treatment process, and produces dense particles. An object of the present invention is to provide the above manufacturing method for obtaining magnetic powder having excellent magnetic properties.

一般的に、金属鉄を主体とする磁性粉末は、Fe3o4
やγ−Fe2O3などの酸化鉄系磁性粉末に比較して保
磁力(Hc)などの磁性特性に優れる利点を有しておわ
、磁気テープを始めとする種種の磁気記録媒体用の記録
素子として脚光を浴びているが、通常は湿式反応工程か
ら裏山される針状粒子からなるα−オキシ水酸化鉄やこ
れを加熱脱水して得られるα−Fe2O3を原料として
加熱還元して製造されるため、粒子径や粒子の形状など
の性状は上記原料自体の性状に大きく依存し、またこれ
らの性状によつて磁気特性ならびに磁気記録媒体用とし
ての適性が大きく左右される。一方、熱処理工程すなわ
ち上記の加熱還元時およびα−Fe2O3を経る場合の
加熱脱水時において、粒子間の焼結、個々の粒子の部分
的な溶融、脱水および脱酸素による粒子の多孔化が起こ
わ易く、粒度の不均一化や粒子の斜状形状および緻密性
が損なわれることにより、得られる金属鉄を主体とする
磁性粉末の磁気特性が著しく低下する傾向がある。した
がつて、優れた磁性粉末を得るためには、前記のα−オ
キシ水酸化鉄そのものを良好な性状のものとすること、
ならびに熱処理工程における上記欠点を改善して原料の
α−オキシ水酸化鉄のシャープな針状形状と均一性を金
属鉄を主体とする磁性粉末粒子に継承させる必要がある
が、現状ではまだ十分に満足できる方法は知られていな
い。
Generally, magnetic powder mainly composed of metallic iron is Fe3o4
It has the advantage of superior magnetic properties such as coercive force (Hc) compared to iron oxide magnetic powders such as γ-Fe2O3 and γ-Fe2O3, and can be used as a recording element for various types of magnetic recording media including magnetic tapes. Although it has been in the spotlight, it is usually manufactured by heating and reducing α-iron oxyhydroxide, which is made up of acicular particles that are left behind in the wet reaction process, and α-Fe2O3, which is obtained by heating and dehydrating it, as a raw material. Properties such as particle diameter and particle shape greatly depend on the properties of the raw materials themselves, and these properties greatly influence magnetic properties and suitability for magnetic recording media. On the other hand, during the heat treatment process, that is, during the above-mentioned thermal reduction and thermal dehydration when passing through α-Fe2O3, sintering between particles, partial melting of individual particles, and porosity of the particles due to dehydration and deoxidation occur. As a result, the magnetic properties of the obtained magnetic powder mainly composed of metallic iron tend to deteriorate significantly due to non-uniform particle size and loss of oblique shape and compactness of the particles. Therefore, in order to obtain an excellent magnetic powder, the α-iron oxyhydroxide itself must have good properties;
In addition, it is necessary to improve the above-mentioned drawbacks in the heat treatment process and inherit the sharp acicular shape and uniformity of the raw material α-iron oxyhydroxide to the magnetic powder particles mainly composed of metallic iron. There is no known satisfactory method.

この発明者らは、上述の事情に照らし鋭意研究を重ねる
過程で、α−オキシ水酸化鉄を生成させる反応、すなわ
ち第1鉄塩にアルカリを作用させる方法などによつて得
られた水酸化第1鉄の懸濁液中に酸素含有ガスを導入し
て酸化を行なう方法において、懸濁液をアルカリ領域に
維持して反応を行なえば、生成したα−オキシ水酸化鉄
もしくはこれを加熱脱水したα−Fe2O3を原料とし
て加熱還元して製造した金属鉄を主体とする磁性粉末が
非常に緻密な粒子となることを既に究明している。この
発明は、さらに継続する研究過程で、上記のα−オキシ
水酸化鉄の生成反応をアルカリ領域で行なう反応におい
て、水酸化第1鉄の懸濁液中に亜鉛化合物とアルミニウ
ム化合物から選ばれる少なくとも1種を溶存させ、かつ
生成したα−オキシ酸化鉄もしくはこれを加熱脱水した
酸化鉄を加熱還元して金属鉄を主体とする磁性粉末とす
るに当たつて被処理物の粒子表面にケイ素化合物を被着
させて加熱脱水または/および加熱還元を行なえば、溶
解させる亜鉛化合物およびアルミニウム化合物の量の加
減によつて生成するα−オキシ水酸化鉄ひいては最終的
に得られる金属鉄を主体とする磁性粉末の粒度を調整で
き、しかも熱処理工程における粒子の焼結や形崩れが抑
制され、さらにアルカリ領域の反応による既述した粒子
の緻密性が失なわれないことを見い出して到達したもの
である。
In the course of intensive research in light of the above-mentioned circumstances, the inventors discovered ferrous hydroxide obtained by a reaction that produces α-iron oxyhydroxide, that is, a method in which alkali is applied to ferrous salt. In the method of oxidizing by introducing an oxygen-containing gas into a suspension of iron, if the suspension is maintained in an alkaline region and the reaction is carried out, the α-iron oxyhydroxide produced or this can be heated and dehydrated. It has already been found that magnetic powder mainly composed of metallic iron produced by heating and reducing α-Fe2O3 as a raw material forms extremely dense particles. In the course of further research, this invention discovered that at least one compound selected from a zinc compound and an aluminum compound was added to a suspension of ferrous hydroxide in a reaction for producing α-iron oxyhydroxide described above in an alkaline region. A silicon compound is added to the particle surface of the object to be treated by heating and reducing the α-oxyiron oxide produced by dissolving one kind of α-oxyiron oxide or the iron oxide obtained by heating and dehydrating it to obtain a magnetic powder mainly composed of metallic iron. By applying heat dehydration and/or heat reduction after depositing α-iron oxyhydroxide, which is produced depending on the amount of zinc compounds and aluminum compounds to be dissolved, the final product is mainly composed of metallic iron. This was achieved by discovering that the particle size of the magnetic powder can be adjusted, that sintering and deformation of the particles during the heat treatment process are suppressed, and that the already mentioned density of the particles is not lost due to the reaction in the alkaline region. .

図面は、後述する実施例1および3の方法において亜鉛
化合物(ZuSq)とアルミニウム化合物〔A4(SO
4)3〕の添加量を種々変化させたときの生成するα−
オキシ水酸化鉄の平均長径を示す。
The drawings show that zinc compound (ZuSq) and aluminum compound [A4 (SO
4) α- produced when varying the amount of addition of 3]
The average major axis of iron oxyhydroxide is shown.

図中、曲線Aは亜鉛化合物、曲線Bはアルミニウム化合
物であり、いずれも添加量が大きいほど生成するα−オ
キシ水酸化鉄の粒子が小さくなる。したがつて、これら
の添加量の増減により、加熱置元を経て最終的に得られ
る金属鉄を主体とする磁性粉末の粒度を容易に調整する
ことが可能となる。使用する亜鉛化合物としては硫酸亜
鉛、塩化亜鉛、硝酸亜鉛など、アルミニウム化合物では
硫酸アルミニウム、塩化アルミニウム、硝酸アルミニウ
ムなどが挙げられ、これらは水酸化第1鉄の懸濁液中に
加えてもよいし、水酸化第1鉄を生成させる反応の原液
中ないし反応途上の系内に添加してもよい。
In the figure, curve A is for a zinc compound, and curve B is for an aluminum compound, and in both cases, the larger the amount added, the smaller the particles of α-iron oxyhydroxide produced. Therefore, by increasing or decreasing the amount of these additives, it is possible to easily adjust the particle size of the magnetic powder mainly composed of metallic iron that is finally obtained through heating. Zinc compounds to be used include zinc sulfate, zinc chloride, zinc nitrate, etc., and aluminum compounds include aluminum sulfate, aluminum chloride, aluminum nitrate, etc., and these may be added to the suspension of ferrous hydroxide. It may be added to the stock solution of the reaction to produce ferrous hydroxide or to the system during the reaction.

その添加量は亜鉛およびアルミニウムの原子をMeで示
したとき、Me/Feの原子比で0.001〜0.1と
なる量が好適であり1過少では実質な効果が認められず
、過多では生成する粒子の微細化が進み過ぎて磁気特性
面でも問題がある。亜鉛およびアルミニウムはアルカリ
溶液中では水酸化物の沈殿を生成せずに溶解しているが
、α.一オキシ水酸化鉄が生成する過程でその粒子中に
イオン状態で捕捉されたり、あるいは粒子表面に強固に
付着して、水洗によつても除去されずに残留する。
When the atoms of zinc and aluminum are represented by Me, the appropriate amount is such that the atomic ratio of Me/Fe is 0.001 to 0.1. If it is less than 1, no substantial effect will be observed, and if it is too much, The particles produced have become too fine and there are problems in terms of magnetic properties. Zinc and aluminum are dissolved in alkaline solutions without forming hydroxide precipitates, but α. During the production process of iron oxyhydroxide, iron oxyhydroxide is trapped in the particles in an ionized state, or it is firmly attached to the surface of the particles and remains without being removed even by washing with water.

このため、この発明の方法では、亜鉛化合物およびアル
ミニウム化合物は上述の粒度調整効果と共に加熱還元な
どの熱処理工程における粒子の焼結や形崩れを抑制する
機能をも発揮する。この発明では水酸化第1鉄の懸濁液
中に空気などの酸素含有ガスを導入してα−オキシ水酸
化鉄を生成する反応をアルカリ領域下で行なうが、上記
懸濁液をアルカリ性とする手段は種々存在する。たとえ
ば、普通には硫酸第1鉄などの第1鉄塩の水溶液と水酸
化ナトリウムなどのアルカリ水溶液とを反応させて水酸
化第1鉄を生成させる一般的な方法において過剰量のア
ルカリを使用することによつて容易に行なえ、また種々
の方法によつて得られた水酸化第1鉄の懸濁液中に後か
らアルカリを添加してもよい。いずれにおいても酸素含
有ガスの導入前のPHが11以上の高アルカリ領域であ
ればよく、このようなアルカリ領域での反応によつて最
終的に得られる金属鉄を主体とする磁性粉末粒子が緻密
性に富むものとなる。生成したα−オキシ水酸化鉄は、
水洗および乾燥後、直接もしくは加熱脱水してα−Fe
2O3としたのち、還元性雰囲気中で加熱することによ
り、金属鉄を主体とする粉末となるが、この発明では上
記の加熱脱水または/および加熱還元に供する被処理物
の粒子表面にケイ素化合物を被着させる。
Therefore, in the method of the present invention, the zinc compound and the aluminum compound exhibit the above-mentioned particle size adjustment effect as well as the function of suppressing sintering and deformation of particles in a heat treatment process such as thermal reduction. In this invention, an oxygen-containing gas such as air is introduced into a suspension of ferrous hydroxide, and the reaction for producing α-iron oxyhydroxide is carried out in an alkaline region. There are various means. For example, an excess amount of alkali is used in a common process in which ferrous hydroxide is produced by reacting an aqueous solution of a ferrous salt, such as ferrous sulfate, with an aqueous alkaline solution, such as sodium hydroxide. In particular, the alkali can be easily carried out, and an alkali can be added afterwards to the suspension of ferrous hydroxide obtained by various methods. In either case, it is sufficient that the pH before introducing the oxygen-containing gas is in a highly alkaline region of 11 or higher, and the magnetic powder particles mainly composed of metallic iron that are finally obtained by the reaction in such an alkaline region are dense. It becomes rich in sexuality. The α-iron oxyhydroxide produced is
After washing with water and drying, α-Fe can be directly or heated and dehydrated.
After converting to 2O3, it is heated in a reducing atmosphere to form a powder mainly composed of metallic iron.In the present invention, a silicon compound is added to the particle surface of the object to be treated to be subjected to the above-mentioned thermal dehydration and/or thermal reduction. to cover.

上記ケイ素化合物としては、種々のケイ酸ナトリウム、
ケイ酸カリウムなどの無機ケイ酸塩、ならびに各種のシ
リコンオイルなどの有機ケイ素化合物を使用でき、これ
らは前記の亜鉛およびアルミニウムと相乗的に作用して
熱処理工程における粒子の焼結や形崩れを極めて効果的
に抑制する機能を持つている。ケイ素化合物による被着
処理は、これらを溶解した液中、たとえばケイ酸アルカ
リではアルカリ水溶液、シリコンオイルでは種々の有機
溶媒に溶かした液中に被処理物粉末を単に浸漬してその
粒子表面に付着させてもよいが、ケイ酸アルカリを使用
する場合には上記浸漬状態下で炭酸ガスを吹き込むか酸
を添加して中和し、ケイ酸ゾルの形で粒子表面に沈着さ
せる方法が推奨される。
The silicon compounds include various sodium silicates,
Inorganic silicates, such as potassium silicate, and organosilicon compounds, such as various silicone oils, can be used, and these act synergistically with the aforementioned zinc and aluminum to greatly reduce sintering and deformation of particles during the heat treatment process. It has the ability to effectively suppress For adhesion treatment with silicon compounds, the powder to be treated is simply immersed in a solution containing these compounds, such as an aqueous alkaline solution for alkali silicate, and various organic solvents for silicone oil, and the powder is adhered to the particle surface. However, when using alkali silicate, it is recommended to neutralize it by blowing carbon dioxide gas or adding acid under the above immersion conditions and deposit it on the particle surface in the form of silicate sol. .

また加熱脱水を経て加熱還元を行なう場合は、加熱脱水
または加熱還元のどちらかの工程の前処理として上記被
着処理を行なえばよいが、両工程の前処理として重複し
て行なつても差しつかえない。ケイ素化合物の被着量は
総量でSi/Feの原子比が0.001〜0.06の範
囲内となる量が好ましく、より少ないときは実質的な効
果が期待できず、より多い場合は磁気特性面での問題が
ある。加熱還元は、被還元物の上記種類と粒度な.どに
よつて最適条件が異なるが、通常は水素気流中で300
〜500℃の温度下で行なう。得られた金属鉄を主体と
する粉末は、粒子表面ないし粒子内部に亜鉛または/お
よびアルミニウムとケイ素とを含有するものであり、α
−オキシ水酸化鉄のシヤープな針状形状と均一性を継承
しておジ、保磁力(Hc)や角型比(σr/σs)など
の磁気特性に優れたものである。
In addition, when thermal reduction is performed after thermal dehydration, the above-mentioned adhesion treatment may be performed as a pretreatment for either the thermal dehydration or thermal reduction process, but it may be performed at the same time as a pretreatment for both processes. can not use. The total amount of silicon compound deposited is preferably such that the Si/Fe atomic ratio is within the range of 0.001 to 0.06; if it is less, no substantial effect can be expected, and if it is more than that, the magnetic There are problems with the characteristics. Thermal reduction requires the above-mentioned types and particle sizes of the material to be reduced. Optimum conditions vary depending on the situation, but usually 300°C in a hydrogen stream.
It is carried out at a temperature of ~500°C. The obtained powder mainly composed of metallic iron contains zinc or/and aluminum and silicon on the particle surface or inside the particle, and α
- Inheriting the sharp acicular shape and uniformity of iron oxyhydroxide, it has excellent magnetic properties such as coercive force (Hc) and squareness ratio (σr/σs).

以下、実施例によつてこの発明を具体的に示す。The present invention will be specifically illustrated below with reference to Examples.

実施例 1200y/t濃度のNaOH水溶液1.5t
中に、撹拌しつつ200v/t(7)FesO4・7H
20と1.17t/t(7)At2(SO4)3 ・1
7H20を溶解した水溶液1.5tを添加混合し、Fe
(0H)2の懸濁液を得た。
Example 1.5t of NaOH aqueous solution with a concentration of 1200y/t
Inside, 200v/t (7) FesO4・7H with stirring
20 and 1.17t/t(7) At2(SO4)3 ・1
1.5 t of an aqueous solution containing 7H20 was added and mixed, and Fe
A suspension of (0H)2 was obtained.

この時、PHは12以上であつた。続いて液温を40℃
に加温し、液中に2t/分の割合で空気を8時間吹き込
み、α一FeOOHの針状粒子を析出させた。得られた
α−FeOOHを水洗、乾燥の後、その10Vを採取し
て47/t濃度のNa4・SiO4溶液0.5t中に分
散させ、液中にCO2ガスを1.5t/分の割合で30
分間吹き込み、粒子表面にケイ酸ゾルが沈着したα−F
eOOHを得た。このα一FeOOHを水洗、乾燥後、
その17を採取して電気炉中で450℃の温度下、水素
ガス流量1t/分にて2時間還元し、アルミニウムとケ
イ素とを含む金属鉄粉末を得た。実施例 2 200y/TOFeSO4・7H20を溶解した水溶液
1.4t中に、撹拌しつつ200v/t濃度のNaOH
水溶液1.5tを添加してFe(0H)2の懸濁液を得
た。
At this time, the pH was 12 or higher. Next, increase the liquid temperature to 40℃
Air was blown into the liquid at a rate of 2 t/min for 8 hours to precipitate acicular particles of α-FeOOH. After washing and drying the obtained α-FeOOH, 10V of it was collected and dispersed in 0.5t of Na4.SiO4 solution with a concentration of 47/t, and CO2 gas was added to the liquid at a rate of 1.5t/min. 30
α-F with silicic acid sol deposited on the particle surface after blowing for minutes
eOOH was obtained. After washing this α-FeOOH with water and drying,
The sample No. 17 was collected and reduced in an electric furnace at a temperature of 450° C. at a hydrogen gas flow rate of 1 t/min for 2 hours to obtain metallic iron powder containing aluminum and silicon. Example 2 200v/t concentration of NaOH was added to 1.4t of an aqueous solution containing 200y/TOFeSO4・7H20 while stirring.
1.5 t of aqueous solution was added to obtain a suspension of Fe(0H)2.

次いでこの懸濁液中に、23.4f/t<7)At2(
SO4)3 ・17H20を溶解した水溶液0.1tを
添加混合してPHl2以上の懸濁液とし、続いて液温を
30℃に加温して2t/分の割合で空気を30分間吹き
込み、α一F′EOOHの種晶を生成させ、さらに液温
を50℃に昇温して2t/分の割合で空気を10時間吹
き込んでα−FeOOHの針状粒子を析出させた。
Then, in this suspension, 23.4f/t<7)At2(
Add and mix 0.1 t of an aqueous solution containing SO4)3 ・17H20 to obtain a suspension with a pH of 2 or more, then heat the liquid temperature to 30°C, blow air at a rate of 2 t/min for 30 minutes, and α Seed crystals of -F'EOOH were generated, and the liquid temperature was further raised to 50 DEG C., and air was blown at a rate of 2 t/min for 10 hours to precipitate needle-like particles of α-FeOOH.

得られたα−FeOOHを水洗、乾燥の後、その10t
を採取してマツフル炉中で600℃の温度下、空気を1
.5t/分の割合で通して3時間の酸化を行なつてα−
Fe2O3とした。このα−Fe2O3を2v/t濃度
のNa4siO4水溶液0,5t中に分散させ、0.1
N−HCt水溶液を添加してPH7となるまで中和し、
粒子表面にケイ酸ゾルが沈着したα−Fe2O3粒子を
得た。このα−Fe2O3を水洗、乾燥の後、その1t
を採取して電気炉中で450℃の温度下、水素ガス流量
]t/分にて2時間還元し、アルミニウムとケイ素とを
含む金属粉末を得た。実施例 3 実施例1における硫酸第1鉄一硫酸アルミニウム混合水
溶液の代わ勺に、200f/tのFeSO4・7H20
と2,07t/t<7)ZnSO4・7H20とを溶解
した水溶液1.5tを使用し、他は全て実施例1と同一
条件として、亜鉛およびケイ素を含む金属鉄粉末を得た
After washing the obtained α-FeOOH with water and drying, 10 tons of it
was collected and heated in a Matsufuru furnace at a temperature of 600°C with 1 part of air.
.. α-
It was set as Fe2O3. This α-Fe2O3 was dispersed in 0.5t of Na4siO4 aqueous solution with a concentration of 2v/t, and 0.1
Neutralize by adding N-HCt aqueous solution until pH 7,
α-Fe2O3 particles with silicic acid sol deposited on the particle surface were obtained. After washing and drying this α-Fe2O3, 1 ton of
The sample was collected and reduced in an electric furnace at a temperature of 450° C. at a hydrogen gas flow rate of [t/min] for 2 hours to obtain a metal powder containing aluminum and silicon. Example 3 In place of the ferrous sulfate monoaluminum sulfate mixed aqueous solution in Example 1, 200 f/t of FeSO4.7H20 was added.
Metallic iron powder containing zinc and silicon was obtained using 1.5 t of an aqueous solution in which 2,07 t/t<7) ZnSO4.7H20 was dissolved, and all other conditions were the same as in Example 1.

比較例 1 実施例1における硫酸第1鉄一硫酸アルミニウム混合水
溶液の代わシに、200v/tのFeSO4・7H20
のみを溶解した水溶液1.5tを使用し、他は全て実施
例1と同一条件として、ケイ素を含む金属鉄粉末を得た
Comparative Example 1 In place of the ferrous sulfate monoaluminum sulfate mixed aqueous solution in Example 1, 200 v/t of FeSO4.7H20 was added.
Metallic iron powder containing silicon was obtained using 1.5 t of an aqueous solution in which only silicon was dissolved, and all other conditions were the same as in Example 1.

比較例 2 実施例1の方法においてNa4siO4による処理を行
なわなかつた以外は、全て実施例1と同一条件として、
アルミニウムを含む金属磁性粉末を得た。
Comparative Example 2 All conditions were the same as in Example 1 except that the treatment with Na4siO4 was not performed in the method of Example 1.
Metal magnetic powder containing aluminum was obtained.

比較例 3 実施例3の方法においてNa4siO4による処理を行
なわなかつた以外は、全て実施例1と同一条件として、
亜鉛を含む金属磁性粉末を得た。
Comparative Example 3 All conditions were the same as in Example 1, except that the treatment with Na4siO4 was not performed in the method of Example 3.
Metal magnetic powder containing zinc was obtained.

以上の実施例および比較例にて得られた金属鉄粉末につ
いて、それぞれ飽和磁化(σs)、保磁力(Hc)およ
び角型比(σr/σs)を測定した結果を下表に示す。
上表にて示すように、 この発明の方法によれば 加熱還元などの熱処理工程での粒子間の焼結や粒子の形
崩れが抑制されて優れた磁気特性を有する金属鉄を主体
とする磁性粉末が得られ、かつ図面で明らかなように亜
鉛化合物およびアルミニウム化合物の添加量を増減する
ことによつて容易に粒度調整を行ない得る。
The saturation magnetization (σs), coercive force (Hc), and squareness ratio (σr/σs) of the metallic iron powders obtained in the above Examples and Comparative Examples were measured, and the results are shown in the table below.
As shown in the above table, according to the method of the present invention, sintering between particles and deformation of particles during heat treatment processes such as thermal reduction are suppressed, and magnetic properties mainly made of metallic iron have excellent magnetic properties. A powder is obtained, and the particle size can be easily adjusted by increasing or decreasing the amount of zinc compound and aluminum compound added, as shown in the drawing.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、この発明の方法における亜鉛化合物とアルミニ
ウム化合物のそれぞれの添加量と生成するα−オキシ水
酸化鉄の平均長径との関係を示す図である。 A・・・亜鉛化合物、B・・・アルミニウム化合物。
The drawing is a diagram showing the relationship between the amounts of zinc compounds and aluminum compounds added and the average length of the produced α-iron oxyhydroxide in the method of the present invention. A...zinc compound, B...aluminum compound.

Claims (1)

【特許請求の範囲】[Claims] 1 PH11以上に調整した水酸化第1鉄のアルカリ性
懸濁液中に酸素含有ガスを導入してα−オキシ水酸化鉄
を生成させ、このα−オキシ水酸化鉄もしくはこれを加
熱脱水した酸化鉄を気相中で加熱還元して金属鉄を主体
とする磁性粉末を製造するに当たり、上記懸濁液中に亜
鉛化合物とアルミニウム化合物から選ばれる少なくとも
1種を溶存させ、かつ前記の加熱脱水および加熱還元の
少なくとも1つの工程の前処理として前記α−オキシ水
酸化鉄もしくは酸化鉄の粒子表面にケイ素化合物を被着
させる工程を含むことを特徴とする金属磁性粉末の製造
方法。
1. Introducing an oxygen-containing gas into an alkaline suspension of ferrous hydroxide adjusted to pH 11 or higher to produce α-iron oxyhydroxide, or iron oxide obtained by heating and dehydrating this α-iron oxyhydroxide. In producing a magnetic powder mainly composed of metallic iron by thermal reduction in a gas phase, at least one selected from a zinc compound and an aluminum compound is dissolved in the suspension, and the above-mentioned thermal dehydration and heating are performed. A method for producing metal magnetic powder, comprising a step of depositing a silicon compound on the surface of the α-iron oxyhydroxide or iron oxide particles as a pretreatment for at least one step of reduction.
JP55073012A 1980-05-30 1980-05-30 Manufacturing method of metal magnetic powder Expired JPS5919165B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP55073012A JPS5919165B2 (en) 1980-05-30 1980-05-30 Manufacturing method of metal magnetic powder
EP81104141A EP0041257B1 (en) 1980-05-30 1981-05-29 Process for preparing ferromagnetic particles comprising metallic iron
DE8181104141T DE3167164D1 (en) 1980-05-30 1981-05-29 Process for preparing ferromagnetic particles comprising metallic iron
US06/516,432 US4456475A (en) 1980-05-30 1983-07-25 Process for preparing ferromagnetic particles comprising metallic iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55073012A JPS5919165B2 (en) 1980-05-30 1980-05-30 Manufacturing method of metal magnetic powder

Publications (2)

Publication Number Publication Date
JPS56169706A JPS56169706A (en) 1981-12-26
JPS5919165B2 true JPS5919165B2 (en) 1984-05-02

Family

ID=13505993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55073012A Expired JPS5919165B2 (en) 1980-05-30 1980-05-30 Manufacturing method of metal magnetic powder

Country Status (1)

Country Link
JP (1) JPS5919165B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63120669U (en) * 1987-01-29 1988-08-04
WO2015030045A1 (en) * 2013-08-30 2015-03-05 国立大学法人東北大学 Porous metal wire, film containing same, and methods for manufacturing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63120669U (en) * 1987-01-29 1988-08-04
WO2015030045A1 (en) * 2013-08-30 2015-03-05 国立大学法人東北大学 Porous metal wire, film containing same, and methods for manufacturing same
JPWO2015030045A1 (en) * 2013-08-30 2017-03-02 国立大学法人東北大学 Porous metal wire, film containing the same, and manufacturing method thereof

Also Published As

Publication number Publication date
JPS56169706A (en) 1981-12-26

Similar Documents

Publication Publication Date Title
JPH02167810A (en) Superfine magnetic particles of epsilon&#39; iron carbide and its production
US4456475A (en) Process for preparing ferromagnetic particles comprising metallic iron
JPS5919165B2 (en) Manufacturing method of metal magnetic powder
JPS5919163B2 (en) Method for producing magnetic metal powder
JPS5919169B2 (en) Manufacturing method of metal magnetic powder
JPS6021307A (en) Production of ferromagnetic metallic powder
JPS58161705A (en) Production of magnetic metallic powder
JPS6217364B2 (en)
JPS6122604A (en) Magnetic metal powder and manufacture thereof
JPS5919166B2 (en) Manufacturing method of metal magnetic powder
JP3129823B2 (en) Method for producing ferromagnetic iron oxide powder for magnetic recording
JPS5919168B2 (en) Manufacturing method of metal magnetic powder
JPS5877505A (en) Production of metallic magnetic powder
JPS5932523B2 (en) Manufacturing method of metal magnetic powder
JPS5919167B2 (en) Manufacturing method of metal magnetic powder
JPS63140005A (en) Production of fine ferromagnetic metal particle powder
JPH0237403B2 (en)
JPS58161723A (en) Production of magnetic metallic powder
JPH0343325B2 (en)
JPH02175806A (en) Manufacture of metal magnetic powder for magnetic recorder
JP2740922B2 (en) Method for producing metal magnetic powder for magnetic recording material
JPS59159904A (en) Metallic magnetic powder and its production
JPS5917196B2 (en) Manufacturing method of metallic iron magnetic powder
JPS58126905A (en) Production of magnetic metal powder consisting of iron or essentially of iron
JP3141907B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder