JPS5932076B2 - Semiconductor laser device and its manufacturing method - Google Patents

Semiconductor laser device and its manufacturing method

Info

Publication number
JPS5932076B2
JPS5932076B2 JP6957278A JP6957278A JPS5932076B2 JP S5932076 B2 JPS5932076 B2 JP S5932076B2 JP 6957278 A JP6957278 A JP 6957278A JP 6957278 A JP6957278 A JP 6957278A JP S5932076 B2 JPS5932076 B2 JP S5932076B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor substrate
type
active layer
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6957278A
Other languages
Japanese (ja)
Other versions
JPS54160188A (en
Inventor
隆 杉野
国雄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6957278A priority Critical patent/JPS5932076B2/en
Priority to CA327,820A priority patent/CA1127282A/en
Priority to FR7912791A priority patent/FR2426992A1/en
Priority to US06/040,182 priority patent/US4296387A/en
Priority to GB7917476A priority patent/GB2038079B/en
Priority to DE2920454A priority patent/DE2920454C2/en
Publication of JPS54160188A publication Critical patent/JPS54160188A/en
Priority to US06/266,134 priority patent/US4380861A/en
Publication of JPS5932076B2 publication Critical patent/JPS5932076B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 本発明は半導体レーザー装置に関するものである。[Detailed description of the invention] The present invention relates to a semiconductor laser device.

単一横モード発振半導体レーザーについてはこれまでに
様々な提案、試作がなされている。
Various proposals and prototypes of single transverse mode oscillation semiconductor lasers have been made so far.

活性層のストライプ幅を細くし、光の最低次の横モード
だけをとじこめることにより単一モード発振が可能とな
る。最も代表的な単一モード発振レーザーの構造として
は第1図に示すような埋め込みストライプ構造である。
この構造の製造方法は、n型GaAs基板1上にn型G
al−xAlxAs2、n型GaAs活性層3、p型G
al−xAtxAs4、p型GaAs5を順次成長し、
次VCSi02膜をつけストライプ状にしてそれをマス
クにメサエツチングを行ない成長層をストライプ状に形
成する。その後活性層より禁止帯幅が広く、高比抵抗を
有する埋め込み層6の成長を行なう。最後にオーミック
電極Tを形成して完成する。しかし、この製作工程にお
いてはマスクとしてストライプ部VCSi02膜を付着
させ、ストライプ上部に埋め込み層の成長することを防
がねばならない。埋め込み層の成長の間、SiO2膜と
活性層近傍が密着されたまま、高温中に放置されるため
、SiO2膜とGaAs層の熱膨張係数の差異により活
性層に応力が加わり劣化の原因となる。又、埋め込み層
の高比抵抗化のため深いエネルギー準位を形成する不純
物を使用するがその不純物が活性層に拡散、侵入し、特
性の劣化を引き起こす。最近、埋め込みストライプ型レ
ーザーのこれらの問題点を克服するため新構造による単
一モード発振化が行なわれている。
By narrowing the stripe width of the active layer and confining only the lowest order transverse mode of light, single mode oscillation becomes possible. The most typical single mode oscillation laser structure is a buried stripe structure as shown in FIG.
The manufacturing method of this structure is to form an n-type G
al-xAlxAs2, n-type GaAs active layer 3, p-type G
Al-xAtxAs4 and p-type GaAs5 were grown sequentially,
Next, a VCSi02 film is applied and formed into stripes, and mesa etching is performed using the VCSi02 film as a mask to form a grown layer in the form of stripes. Thereafter, a buried layer 6 having a wider forbidden band width and higher specific resistance than the active layer is grown. Finally, the ohmic electrode T is formed to complete the process. However, in this manufacturing process, it is necessary to attach a striped VCSi02 film as a mask to prevent the buried layer from growing above the stripes. During the growth of the buried layer, the SiO2 film and the vicinity of the active layer are left in close contact with each other at high temperatures, so stress is applied to the active layer due to the difference in thermal expansion coefficient between the SiO2 film and the GaAs layer, causing deterioration. . Furthermore, impurities that form deep energy levels are used to increase the resistivity of the buried layer, but these impurities diffuse and invade the active layer, causing deterioration of characteristics. Recently, in order to overcome these problems with buried stripe type lasers, single mode oscillation has been developed using new structures.

その一構成例を第2図に示す。製造方法としては溝をつ
けたn型GaAs基板8上にn型Gal−XAtXAS
9、n型GaAs活性層10、p型Gal−XAtXA
Sll、p型GaAsl2を順次成長し、その表面にS
iO2膜13をつけ、溝をつけた位置に対向させてSi
O2膜13VCストライブ状の窓あけを行なう。その後
オーミツク電極14を形成して完成する。成長の際、第
1層n型Gal−XAlxAs9を非常に薄くし、溝の
部分以外では活性層10から漏れ出す光はn型Gal−
XAtXAS層9を通りぬけ、n型GaAs基板8に吸
収されるような構造になつて卦り、溝の部分にある活性
層で単一モード発振が可能となる。
An example of its configuration is shown in FIG. The manufacturing method is to deposit n-type Gal-XAtXAS on a grooved n-type GaAs substrate 8.
9, n-type GaAs active layer 10, p-type Gal-XAtXA
Sll and p-type GaAsl2 are grown sequentially, and S is deposited on the surface.
Attach the iO2 film 13 and place it opposite to the grooved position.
Open a window in the form of a 13VC strip of O2 film. Thereafter, an ohmic electrode 14 is formed to complete the process. During growth, the first layer n-type Gal-
The structure is such that it passes through the XAtXAS layer 9 and is absorbed by the n-type GaAs substrate 8, and single mode oscillation is possible in the active layer in the groove.

しかし、この構造においては、活性層10は平担であり
、溝の部分の活性層で生じた光は横方向に伝播しやすく
、ひろがるので、発振モードが横方向に歪む。
However, in this structure, the active layer 10 is flat, and the light generated in the active layer in the groove portion easily propagates and spreads in the lateral direction, so that the oscillation mode is distorted in the lateral direction.

放熱特性については、前者の埋め込みストライプ型では
熱伝導度の悪い高抵抗層により活性層をとりまいている
ため放熱が悪く、又、後者に卦いても、絶縁膜により電
流制限を行なつているので良好なヒートシンクへの放熱
特性を示さない。
Regarding heat dissipation characteristics, in the former buried stripe type, the active layer is surrounded by a high-resistance layer with poor thermal conductivity, which results in poor heat dissipation, and in the latter case, current is limited by an insulating film. Therefore, it does not exhibit good heat dissipation characteristics to the heat sink.

本発明は上記の構造とは異なり、優れた放熱特性を有し
、単一モード発振を実現する新しい構造とその製造方法
を提供するものである。以下本発明を図面と共に実施例
に基いて説明する。
The present invention provides a new structure that has excellent heat dissipation characteristics and realizes single mode oscillation, unlike the above structures, and a method for manufacturing the same. The present invention will be described below based on examples together with drawings.

n型基板15上に階段状の段差を第3図aのように作製
する。
Step-like steps are formed on the n-type substrate 15 as shown in FIG. 3a.

それを基板として第3図bに示すようにn型クラツド層
16、ノンドーブ活性層17、p型クラツド層18、p
型オーミツク電極形成層19、第4層19に対し選択エ
ツチングの可能なn型電流制限層20を連続成長し、そ
の上に絶縁膜21を付着し、基板に段差をつけた部分に
対向する上方にストライプ状の窓あけを行なう。窓あけ
を行なつた絶縁膜21をマスクとして、n型電流制限層
20を選択エツチングで除去し、ストライプ状に現われ
たp型オーミツク電極形成層19にコンタクト拡散を行
なつた後、絶縁膜21を除去して第3図cに示すように
作製する。次にp型オーミツク電極22、n型オーミツ
ク電極23を順次設け、第3図dのようにレーザー素子
を作製する。本構造は第1層クラツド層16を、段差部
では活性層17から漏れ出す光が基板15に吸収されな
い程度に厚くし、段差部以外の部分では光が基板15に
吸収される程度に非常に薄くして、第2図で示した構造
と同様の作用をもたせ光のひろがりを抑制し、その上同
時に活性層17に折り曲がり部分を設けることにより横
方向への光の伝播を強く阻止することができる特徴を有
している。
Using this as a substrate, as shown in FIG. 3b, an n-type clad layer 16, a non-doped active layer 17, a p-type clad layer 18,
An n-type current limiting layer 20, which can be selectively etched, is continuously grown on the ohmic electrode forming layer 19 and the fourth layer 19, and an insulating film 21 is attached thereon. Striped windows will be opened in the area. Using the insulating film 21 with the opening as a mask, the n-type current limiting layer 20 is removed by selective etching, and after contact diffusion is performed on the p-type ohmic electrode forming layer 19 that appears in a stripe shape, the insulating film 21 is removed. is removed to produce a structure as shown in FIG. 3c. Next, a p-type ohmic electrode 22 and an n-type ohmic electrode 23 are sequentially provided to produce a laser device as shown in FIG. 3d. In this structure, the first cladding layer 16 is made thick enough that the light leaking from the active layer 17 is not absorbed by the substrate 15 at the step portion, and extremely thick at the portion other than the step portion so that the light is absorbed by the substrate 15. By making the active layer 17 thinner, it can suppress the spread of light by providing the same effect as the structure shown in FIG. It has the characteristics of being able to

活性層17の折り曲がり間を短かくし、最低次の横モー
ドの光だけが閉じ込められるようにし、安定な単一モー
ド発振を得ることができる。又、電流制限層として絶縁
膜を使用せず、絶縁膜より熱伝導度が大きく、第4層の
p型オーミツク電極形成層19と熱膨張係数が違わない
電流制限層20を使用することにより放熱特性を向上さ
せることができる。この新しい構造を有する単一モード
発振半導体レーザーの製造方法について具体例をあげて
以下に述べる。
By shortening the length between the bends of the active layer 17, only the lowest-order transverse mode light is confined, and stable single mode oscillation can be obtained. Moreover, heat dissipation is achieved by not using an insulating film as the current limiting layer, but by using the current limiting layer 20, which has higher thermal conductivity than the insulating film and has a coefficient of thermal expansion that is not different from that of the fourth layer p-type ohmic electrode forming layer 19. Characteristics can be improved. A specific example of a method for manufacturing a single mode oscillation semiconductor laser having this new structure will be described below.

n型GaAs基板上にGaAs,Gal−XAlxAs
により構成した単一モード発振半導体レーザーについて
示す。
GaAs, Gal-XAlxAs on n-type GaAs substrate
A single mode oscillation semiconductor laser constructed by

第3図aに示すようVCn型GaAs基板15の100
面上に化学エツチングにより基板のへき開面である11
0面に直交するように1μmの段差を形成する。
100 of the VCn-type GaAs substrate 15 as shown in FIG.
11 which is the cleavage plane of the substrate by chemical etching on the plane
A step of 1 μm is formed perpendicular to the 0 plane.

次にその表面に液相エピタキシヤル法によつて第1層n
型Gal−XAlxAsl6を平坦部で0.2μm〜第
2層ノンドープGaAsl7を0.1μm1第3層p型
Gal−XAlx′Asl8を1。5μm1第4層p型
GaAsl9を1μm1第5層n型Gal−YAtyA
S2Oを1μm連続成長する。
Next, a first layer n is formed on the surface by liquid phase epitaxial method.
Type Gal-XAlxAsl6 at flat part 0.2 μm~2nd layer non-doped GaAsl7 0.1 μm13rd layer p-type Gal-XAlx'Asl8 1.5 μm14th layer p-type GaAsl9 1 μm15th layer n-type Gal- YAtyA
S2O is continuously grown to 1 μm.

引き続き表面にSi3N4膜21を付け、基板に段差の
ある位置に対応して幅5μmのストライプ状の窓あけを
行ない第3図bのように作製する。次にSi3N4膜2
1をマスクにして第5層n型Gal−YAtyAS2O
をエツチングする。この際、第4層p型GaAsl9で
エツチングが停止するように選択エツチング液として塩
酸、リン酸、又はその混液を使用する。引き続き、スト
ライプ状に露出した第4層p型GaAsl9表面に亜鉛
を拡散し、その後Si3N4膜21を除去して第3図c
のように形成する。次に第3図dに示すようにp型電極
用金属を真空蒸着し、合金処理を行ないp側オーミツク
電極22を形成する。又、基板側にn型電極用金属を真
空蒸着し、合金処理を行ないn側オーミツク電極23を
形成する。最後に素子片に分離してp側電極22をヒー
トシンクに接着し、n側電極金属膜23上に金線を接続
して完成する。このようにして作製したGaAs−Ga
l−XAtxAs半導体レーザーは室温で単一モード連
続発振動作し、優れた放熱特性を示した。
Subsequently, a Si3N4 film 21 is applied to the surface, and striped windows with a width of 5 .mu.m are formed in correspondence with the positions of the steps on the substrate, thereby producing the structure as shown in FIG. 3b. Next, Si3N4 film 2
1 as a mask, the fifth layer n-type Gal-YAtyAS2O
etching. At this time, hydrochloric acid, phosphoric acid, or a mixture thereof is used as a selective etching solution so that etching is stopped at the fourth p-type GaAsl layer 9. Subsequently, zinc is diffused onto the surface of the fourth layer p-type GaAsl9 exposed in a stripe pattern, and then the Si3N4 film 21 is removed to form the structure shown in FIG. 3c.
form like this. Next, as shown in FIG. 3d, p-type electrode metal is vacuum-deposited and alloyed to form the p-side ohmic electrode 22. Further, a metal for an n-type electrode is vacuum-deposited on the substrate side, and an alloying process is performed to form an n-side ohmic electrode 23. Finally, the device is separated into element pieces, the p-side electrode 22 is adhered to a heat sink, and a gold wire is connected on the n-side electrode metal film 23 to complete the process. GaAs-Ga produced in this way
The l-XAtxAs semiconductor laser operated in single mode continuous wave operation at room temperature and exhibited excellent heat dissipation characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は埋め込みストライブ構造をもつたレーザーの断
面図、第2図は溝をつけた基板上に構成されたレーザー
の断面図、第3図a−dは本発明の一実施例の製造方法
の工程断面図である。 15・・・・・・n型GaAs基板、16・・・・・・
n型Gal−ェAtXASll7・・・・・・n型Ga
Asll8・・・・・・p型Gal−o′Alx′As
ll9・・・・・・p型GaAsl2O・・・・・・n
型Gal−YAtyASl2l・・・・・・Si3N4
膜、22・・・・・・p側電極金属膜、23・・・・・
・n側電極金属膜。
FIG. 1 is a cross-sectional view of a laser with a buried stripe structure, FIG. 2 is a cross-sectional view of a laser constructed on a grooved substrate, and FIGS. 3a-d are fabrication of an embodiment of the present invention. It is a process cross-sectional view of a method. 15...n-type GaAs substrate, 16...
n-type Gal-AtXASll7... n-type Ga
Asll8...p-type Gal-o'Alx'As
ll9...p-type GaAsl2O...n
Type Gal-YAtyASl2l...Si3N4
Film, 22...P-side electrode metal film, 23...
・N-side electrode metal film.

Claims (1)

【特許請求の範囲】 1 主面に段差を有する半導体基板の上に、クラッド層
を介して活性層が、前記段差部で前記主面に対して傾斜
するように形成され、前記半導体基板と同一導電型で、
前記活性層の傾斜部と対向した位置にストライプ状開口
を有する電流制限層が形成され、前記傾斜部がストライ
プ状の活性領域をなすとともに、前記クラッド層が、前
記段差部では光が前記半導体基板に吸収されない厚さを
有し、前記段差部以外では光が前記半導体基板に吸収さ
れる厚さを有することを特徴とする半導体レーザ装置。 2 半導体基板の表面に段差を形成する工程と、前記半
導体基板の上にクラッド層を、前記段差部では光が前記
半導体基板に吸収されない厚さに、前記段差部以外では
光が前記半導体基板に吸収される厚さに形成する工程と
、前記クラッド層上に活性層を前記段差部で前記主面に
対して傾斜するように形成する工程と、前記半導体基板
と同一導電型で、前記活性層の傾斜部と対向した位置に
ストライプ状開口を有する電流制限層を形成する工程と
を備えることを特徴とする半導体レーザ装置の製造方法
[Scope of Claims] 1. An active layer is formed on a semiconductor substrate having a step on its main surface, with a cladding layer interposed therebetween, so that the active layer is inclined with respect to the main surface at the step, and is identical to the semiconductor substrate. conductive type,
A current limiting layer having stripe-shaped openings is formed at a position facing the sloped portion of the active layer, and the sloped portion forms a striped active region, and the cladding layer allows light to pass through the semiconductor substrate at the stepped portion. 1. A semiconductor laser device having a thickness such that light is not absorbed by the semiconductor substrate, and a thickness such that light is absorbed by the semiconductor substrate in areas other than the stepped portion. 2. A step of forming a step on the surface of the semiconductor substrate, and forming a cladding layer on the semiconductor substrate to a thickness such that light is not absorbed by the semiconductor substrate in the step portion, and that light is not absorbed into the semiconductor substrate in areas other than the step portion. a step of forming an active layer on the cladding layer so as to be inclined with respect to the main surface at the stepped portion; forming a current limiting layer having a striped opening at a position facing the sloped portion of the semiconductor laser device.
JP6957278A 1978-05-22 1978-06-08 Semiconductor laser device and its manufacturing method Expired JPS5932076B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP6957278A JPS5932076B2 (en) 1978-06-08 1978-06-08 Semiconductor laser device and its manufacturing method
CA327,820A CA1127282A (en) 1978-05-22 1979-05-17 Semiconductor laser and method of making the same
FR7912791A FR2426992A1 (en) 1978-05-22 1979-05-18 SEMICONDUCTOR LASER AND MANUFACTURING OF THIS LASER
US06/040,182 US4296387A (en) 1978-05-22 1979-05-18 Semiconductor laser
GB7917476A GB2038079B (en) 1978-05-22 1979-05-18 Semiconductor laser
DE2920454A DE2920454C2 (en) 1978-05-22 1979-05-21 Semiconductor lasers and processes for their manufacture
US06/266,134 US4380861A (en) 1978-05-22 1981-05-21 Method of making a semiconductor laser by liquid phase epitaxial growths

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6957278A JPS5932076B2 (en) 1978-06-08 1978-06-08 Semiconductor laser device and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS54160188A JPS54160188A (en) 1979-12-18
JPS5932076B2 true JPS5932076B2 (en) 1984-08-06

Family

ID=13406626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6957278A Expired JPS5932076B2 (en) 1978-05-22 1978-06-08 Semiconductor laser device and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS5932076B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728387Y2 (en) * 1980-03-18 1982-06-21

Also Published As

Publication number Publication date
JPS54160188A (en) 1979-12-18

Similar Documents

Publication Publication Date Title
US4124826A (en) Current confinement in semiconductor lasers
JPS61179588A (en) Semiconductor element and manufacture thereof
US4380861A (en) Method of making a semiconductor laser by liquid phase epitaxial growths
JPS609356B2 (en) Manufacturing method of semiconductor light emitting device
JPH0864907A (en) Manufacture of planar buried laser diode
US6108361A (en) Semiconductor laser and method for producing the same
JPS5932076B2 (en) Semiconductor laser device and its manufacturing method
JPS5949716B2 (en) Semiconductor laser device and its manufacturing method
JPS589592B2 (en) Method for manufacturing semiconductor light emitting device
JPS5932075B2 (en) Semiconductor laser device and its manufacturing method
JPS5949717B2 (en) Semiconductor laser device and its manufacturing method
JPS6318875B2 (en)
JPS59155979A (en) Manufacture of semiconductor laser
JPH06104527A (en) Fabrication of semiconductor laser
JP2002314200A (en) Semiconductor laser device and its manufacturing method
JPS6190489A (en) Semiconductor laser device and manufacture thereof
JPS6318874B2 (en)
JPH0414277A (en) Semiconductor laser and its manufacture
JPS6132587A (en) Semiconductor laser and manufacture thereof
JPS5834988A (en) Manufacture of semiconductor laser
JPS6361793B2 (en)
JP3033664B2 (en) Method of manufacturing semiconductor laser device
JP2003152267A (en) Semiconductor laser device and its manufacturing method
GB2038079A (en) A semiconductor laser
JPS62259490A (en) Buried hetero structure semiconductor laser