JPS6132587A - Semiconductor laser and manufacture thereof - Google Patents
Semiconductor laser and manufacture thereofInfo
- Publication number
- JPS6132587A JPS6132587A JP59154359A JP15435984A JPS6132587A JP S6132587 A JPS6132587 A JP S6132587A JP 59154359 A JP59154359 A JP 59154359A JP 15435984 A JP15435984 A JP 15435984A JP S6132587 A JPS6132587 A JP S6132587A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- region
- type inp
- type
- buried
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 43
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- 239000000758 substrate Substances 0.000 claims abstract description 18
- 238000005530 etching Methods 0.000 claims abstract description 4
- 238000005253 cladding Methods 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 abstract description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 8
- 229910052681 coesite Inorganic materials 0.000 abstract 4
- 229910052906 cristobalite Inorganic materials 0.000 abstract 4
- 239000000377 silicon dioxide Substances 0.000 abstract 4
- 235000012239 silicon dioxide Nutrition 0.000 abstract 4
- 229910052682 stishovite Inorganic materials 0.000 abstract 4
- 229910052905 tridymite Inorganic materials 0.000 abstract 4
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 241000238557 Decapoda Species 0.000 description 2
- 240000002329 Inga feuillei Species 0.000 description 1
- 201000001880 Sexual dysfunction Diseases 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/227—Buried mesa structure ; Striped active layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/227—Buried mesa structure ; Striped active layer
- H01S5/2275—Buried mesa structure ; Striped active layer mesa created by etching
- H01S5/2277—Buried mesa structure ; Striped active layer mesa created by etching double channel planar buried heterostructure [DCPBH] laser
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Geometry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、半導体レーザの構造及びその製造方法に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to the structure of a semiconductor laser and its manufacturing method.
従来例の構成とその問題点
従来より、低しきい値電流かつ単一モード発振可能な半
導体レーザの構造に関し、各種の構造が考案されている
が、その中でも埋込み(BH)構造の半導体レーザが優
れている。Conventional configurations and their problems Various structures have been devised in the past for semiconductor laser structures that are capable of low threshold current and single-mode oscillation, but among them, buried (BH) structure semiconductor lasers have been proposed. Are better.
以下、図面を参照しながら、従来のInGaAsP/I
nP系のBH槽構造半導体レーザについて説明する。Below, with reference to the drawings, conventional InGaAsP/I
An nP-based BH tank structure semiconductor laser will be explained.
第1図は、従来のBH槽構造半導体レーザの構造断面図
である。第1図において、1はn型InP基板、2はn
型InPクラッド層、3はInGaAgP 活性層、4
はp型InPクラッド層、5はp型I nGaAsPコ
ンタクト層である。FIG. 1 is a structural sectional view of a conventional BH tank structure semiconductor laser. In FIG. 1, 1 is an n-type InP substrate, 2 is an n-type InP substrate, and 2 is an n-type InP substrate.
type InP cladding layer, 3 is InGaAgP active layer, 4
5 is a p-type InP cladding layer, and 5 is a p-type InGaAsP contact layer.
以上の4層で半導体レーザの発光部を形成し、ストライ
プ状の8i02膜形成後、逆メサエッチングを施し、加
えて逆メサ側面にp−InP層6、n−InP層7の埋
込み層を順次r、pg 成長にて形成し、電流狭搾及び
活性層領域からの横方向の光の閉じ込め効果を持たせて
いる。しかしながら上記のような構造では、半導体表面
は平坦でなくメサ状になり、pサイドダウンにマウント
した場合、マウント金属とp側電極9との接触が悪いた
め熱抵抗は上がり、半導体レーザの温度特性に悪影響を
及ぼす結果になる。またワイヤーボンディングする際、
メサ部に圧力が集中し、活性層3ヘダメージが入り特性
の劣化を引き起こす。一方マウントと活性層3との平行
度が精度良くとれないため、レーザ光の出射方向が変化
する。The above four layers form the light emitting part of the semiconductor laser, and after forming the striped 8i02 film, reverse mesa etching is performed, and in addition, a buried layer of p-InP layer 6 and n-InP layer 7 is sequentially formed on the side surface of the reverse mesa. It is formed by r, pg growth, and has the effect of current confinement and lateral light confinement from the active layer region. However, in the above structure, the semiconductor surface is not flat but mesa-shaped, and when mounted down on the p-side, the thermal resistance increases due to poor contact between the mount metal and the p-side electrode 9, and the temperature characteristics of the semiconductor laser deteriorate. This results in a negative impact on Also, when wire bonding,
Pressure concentrates on the mesa portion, damaging the active layer 3 and causing deterioration of its characteristics. On the other hand, since the parallelism between the mount and the active layer 3 cannot be achieved with high precision, the emission direction of the laser beam changes.
そこで、半導体表面の平坦度を良くするために、埋込み
層の最上部に、InGaAs P層8 を付加した方法
も試みられている。第2図にInGaAsP層8を付加
したBHL/−ザの構造断面図を示す。この方法では、
InGaAs P ノL P K成長はXnPに比べ、
(100)面においては水平方向の成長速度が垂直方向
の成長速度より速いため平坦化しやすいという特徴を利
用したものである。しかしながら、半導体表面の平坦性
は安全でなく第1図の構造の欠点はあまり回避されない
。また、埋込み層6゜7.8を厚く積むため、コンタク
ト層6上にくぼみが生じ、活性層3からの熱放散が悪く
なる。また、第1,2図の側構造ともいえることである
が、埋込みエビ層厚とメサ部の高さの相関で半導体表面
の平坦性の程度が決まるため、エビ厚制御が厳密になり
、再現性に問題がある。Therefore, in order to improve the flatness of the semiconductor surface, attempts have been made to add an InGaAs P layer 8 on top of the buried layer. FIG. 2 shows a cross-sectional view of the structure of the BHL/-ZA to which an InGaAsP layer 8 is added. in this way,
Compared to XnP, InGaAs P no L PK growth is
This method takes advantage of the characteristic that the (100) plane can be easily flattened because the growth rate in the horizontal direction is faster than the growth rate in the vertical direction. However, the flatness of the semiconductor surface is not secure and the drawbacks of the structure of FIG. 1 are not largely avoided. Further, since the buried layer 6°7.8 is stacked thickly, a depression is formed on the contact layer 6, and heat dissipation from the active layer 3 becomes poor. In addition, this can be said to be the side structure shown in Figures 1 and 2, but since the degree of flatness of the semiconductor surface is determined by the correlation between the thickness of the buried shrimp layer and the height of the mesa part, strict control of the shrimp thickness is required to reproduce the I have a sexual problem.
発明の目的
本発明は、上記欠点に鑑みて、半導体表面の平坦性が良
く、かつ作製の容易な埋込み構造の半導体レーザを提供
するものである。OBJECTS OF THE INVENTION In view of the above-mentioned drawbacks, the present invention provides a buried structure semiconductor laser which has a good semiconductor surface flatness and is easy to manufacture.
発明の構成
本発明は、” + pクラッド層及び活性層を有するメ
サストライプ状の第1領域と1.前記第1領域の両側に
、はぼ同じ高さのりッジ状の第2領域を形成し、前記第
1領域と前記第2領域の間にp及びn型半導体層を埋め
込んで表面をほぼ平坦化したことを特徴とする半導体レ
ーザ装置である。Structure of the Invention The present invention comprises: 1. A mesa stripe-shaped first region having a p cladding layer and an active layer; and ridge-shaped second regions having approximately the same height on both sides of the first region. The semiconductor laser device is characterized in that p- and n-type semiconductor layers are buried between the first region and the second region to substantially planarize the surface.
実施例の説明
以下本発明の実施例について、図面を参照しながら説明
する。第3図は本発明の一実施例における半導体レーザ
の構造断面図を示すものである。DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 3 shows a cross-sectional view of the structure of a semiconductor laser according to an embodiment of the present invention.
第3図において、1は]型InP基板、2はn型InP
クラッド層、3はInGa、Ag P活性層、4はp型
InPクラッド層、5はp型InGaAsP :I :
yタクト層で、以上は第1図の構成と同じものである。In FIG. 3, 1 is a ]-type InP substrate, 2 is an n-type InP substrate, and 2 is an n-type InP substrate.
cladding layer, 3 is InGa, AgP active layer, 4 is p-type InP cladding layer, 5 is p-type InGaAsP:I:
The structure of the y tact layer is the same as that shown in FIG.
従来例と異なる点は、活性層を含むメサ領域20の両側
にリッジ領域21を設け、領域20と21の間にp型I
nP基板み層11及びn型1nP埋込み層12を形成し
た点である。以上のように構成された半導体レーザにつ
いて、以下に、その製造方法ど特徴について説明する。The difference from the conventional example is that ridge regions 21 are provided on both sides of the mesa region 20 including the active layer, and p-type I
This is because an nP substrate layer 11 and an n-type 1nP buried layer 12 are formed. The features of the semiconductor laser configured as described above, including its manufacturing method, will be described below.
まず第4図でn型InP基板1」二にn型InP基板、
1nGaAs P層3、p型InP基板及びp型InG
aAsPコンタクト層6をエビ成長した半導体表面に、
ヌトライプ状の5102膜13及び5i02膜13の近
傍両側に8102膜14を形成する。そしてBrメタノ
ール溶液で逆メサエツチングを施し第5図のような形状
にする。最後に、第6図のように5i02膜13直下の
メサ領域20と5i02膜14直下のリッジ領域21の
間にp型1nP層11及びn型InP層12をLPX成
長により埋込みエビを行なう。First, in Figure 4, n-type InP substrate 1'', second n-type InP substrate,
1nGaAs P layer 3, p-type InP substrate and p-type InG
An aAsP contact layer 6 is formed on the surface of the grown semiconductor.
An 8102 film 14 is formed on both sides near the nutripe-shaped 5102 film 13 and 5i02 film 13. Then, reverse mesa etching is performed using a Br methanol solution to form a shape as shown in FIG. Finally, as shown in FIG. 6, a p-type 1nP layer 11 and an n-type InP layer 12 are buried between the mesa region 20 directly under the 5i02 film 13 and the ridge region 21 directly under the 5i02 film 14 by LPX growth.
以上のような製造方法で作られる埋込み型の半導体レー
ザでは、メサ領域2oの両側近傍にメサ領域20と同じ
高さのりッジ領域21を設けているため、実効的にメサ
領域20とリッジ領域21で平坦になっており、p型I
nP基板1及びn型InP層12を平坦化する必要はな
い。また、例え埋込み成長でn型InP層12が異常に
厚く成長してメサ領域20の表面を超えることがあって
も、本発明の構造では、第6図の構造において5i02
膜13.14をマスクにしてn型InP層12にエツチ
ング処理を施してメサ領域2oの表面と同等かそれより
低くしてやればよい。いわゆる従来のBH槽構造おいて
埋込みLPE成長の工程で必要とする半導体表面の平坦
化のための埋込み層6゜7の膜厚制御が非常に簡単化さ
れ、平坦性の良いBH槽構造半導体レーザが得られる。In the buried semiconductor laser manufactured by the above manufacturing method, the ridge regions 21 having the same height as the mesa region 20 are provided near both sides of the mesa region 2o, so that the mesa region 20 and the ridge region are effectively 21 and is flat, p-type I
There is no need to planarize the nP substrate 1 and the n-type InP layer 12. Furthermore, even if the n-type InP layer 12 grows abnormally thick due to buried growth and exceeds the surface of the mesa region 20, in the structure of the present invention, 5i02
Using the films 13 and 14 as a mask, the n-type InP layer 12 may be etched to a level equal to or lower than the surface of the mesa region 2o. This is a semiconductor laser with a BH tank structure that greatly simplifies the control of the thickness of the buried layer 6.7 for flattening the semiconductor surface, which is required in the buried LPE growth process in the so-called conventional BH tank structure, and has good flatness. is obtained.
もちろん本発明の構造の半導体レーザの特性は従来のB
H槽構造ものに比べ、遜色は無く、また歩留り良く作製
可能という特徴を有している。Of course, the characteristics of the semiconductor laser with the structure of the present invention are the same as those of the conventional B.
It is comparable to the H-tank structure and can be manufactured at a high yield.
発明の効果
以上のように本発明によれば、活性層3を有するメサ領
域2oの両側近傍にリッジ領域21を設けて、領域20
と21の間にp、n型InP埋込み層11.12を形成
することにより、半導体表面が実効的に平坦になり、従
来のBH槽構造おいて必要としたp、n型埋込み層11
.12の厳密な膜厚制御は不要になる。そのため従来の
BH槽構造半導体レーザと1−1′特性的に遜色の無い
状態で、歩留如及び再現性が向上するという効果を有し
ている。また表面の平坦性が良いため、従来マクント時
に起きていた不良も無くなるという特徴も有している。Effects of the Invention As described above, according to the present invention, the ridge regions 21 are provided near both sides of the mesa region 2o having the active layer 3, and the region 20
By forming the p, n type InP buried layers 11 and 12 between the p and n type buried layers 11 and 21, the semiconductor surface becomes effectively flat, and the p and n type buried layers 11 and 21, which are required in the conventional BH tank structure, are effectively flattened.
.. 12 strict film thickness control becomes unnecessary. Therefore, it has the effect of improving yield and reproducibility while being comparable in 1-1' characteristics to conventional BH tank structure semiconductor lasers. In addition, because the surface is flat, it also eliminates the defects that previously occurred with Makunto.
一方実施例においてInGaAg P/InP系のレー
ザについて説明を行なったが、ムlGaAg/G a
A s系のものについても同様のことがいえる。On the other hand, in the embodiment, an InGaAg P/InP-based laser was explained;
The same can be said for As-based materials.
また埋込みエビの工程でp型InP層11及びn型Xn
P層12だけエビ成長した例を示しだが、n型InP層
12上にInGaAs P層を付は加えても良い。In addition, the p-type InP layer 11 and the n-type
Although an example is shown in which only the P layer 12 is overgrown, an InGaAs P layer may be added on the n-type InP layer 12.
また基板をp型にした場合、他の半導体層の導電型も同
様に逆になることはいうまでもない。Furthermore, if the substrate is made p-type, it goes without saying that the conductivity types of the other semiconductor layers are also reversed.
第1図、第2図は従来のBH槽構造半導体レーザの構造
断面図、第3図は本発明の一実施例の半導体レーザの構
造断面図、第4図〜第6図は本発明め実施例における半
導体レーザの製造方法の説明図である。
1・・・・・・基板、3・・・・・・活性層、11・・
・・p型埋込み層、12・・・・・n型埋込み層、20
・・・・メサ領域、21・・・・・リッジ領域。
代理人の氏名 弁理士 中 尾 敏 男 ほか1基筒
1 図
第2図
第3図
第 4 図1 and 2 are structural cross-sectional views of a conventional BH tank structure semiconductor laser, FIG. 3 is a structural cross-sectional view of a semiconductor laser according to an embodiment of the present invention, and FIGS. 4 to 6 are structural cross-sectional views of a semiconductor laser according to an embodiment of the present invention. FIG. 2 is an explanatory diagram of a method for manufacturing a semiconductor laser in an example. 1...Substrate, 3...Active layer, 11...
...p-type buried layer, 12...n-type buried layer, 20
...Mesa area, 21...Ridge area. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Figure 2 Figure 3 Figure 4
Claims (2)
有するメサストライプ状の第1領域と、前記第1領域の
両側に前記第1領域とほぼ同じ高さの半導体第2領域を
形成し、前記第1領域と前記第2領域の間に、前記第1
領域のpn接合とは逆方向のpn接合の半導体層を埋込
んで表面をほぼ平坦化したことを特徴とする半導体レー
ザ。(1) On a semiconductor substrate, a mesa stripe-shaped first region having an n- and p-gradation layer and an active layer is formed, and a second semiconductor region having approximately the same height as the first region is formed on both sides of the first region. and between the first region and the second region, the first
1. A semiconductor laser characterized in that a pn junction semiconductor layer is buried in a direction opposite to that of a pn junction in a region to substantially flatten the surface.
ラッド層を順次エピタキシャル成長した半導体層上に、
ストライプ状の第1の絶縁膜及び前記第1の絶縁膜の両
側の近傍に第2の絶縁膜を形成し、前記第1の絶縁膜と
前記第2の絶縁膜の間の半導体層を前記基板または前記
基板の直上のクラッド層までメサエッチングを施した後
、直ちにp型及びn型半導体層を埋込みエピタキシャル
成長させることを特徴とする半導体レーザの製造方法。(2) On a semiconductor layer, an n-cladding layer, an active layer, and a p-cladding layer are sequentially epitaxially grown on a semiconductor substrate,
A striped first insulating film and a second insulating film are formed near both sides of the first insulating film, and a semiconductor layer between the first insulating film and the second insulating film is formed on the substrate. Alternatively, a method for manufacturing a semiconductor laser, characterized in that after performing mesa etching up to the cladding layer directly above the substrate, p-type and n-type semiconductor layers are immediately buried and epitaxially grown.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59154359A JPS6132587A (en) | 1984-07-25 | 1984-07-25 | Semiconductor laser and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59154359A JPS6132587A (en) | 1984-07-25 | 1984-07-25 | Semiconductor laser and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6132587A true JPS6132587A (en) | 1986-02-15 |
Family
ID=15582430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59154359A Pending JPS6132587A (en) | 1984-07-25 | 1984-07-25 | Semiconductor laser and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6132587A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6346789A (en) * | 1986-08-15 | 1988-02-27 | Nec Corp | Buried high resistance type semiconductor laser |
EP0704913A2 (en) * | 1994-09-28 | 1996-04-03 | Nippon Telegraph And Telephone Corporation | Optical semiconductor device and method of fabricating the same |
WO2023281741A1 (en) * | 2021-07-09 | 2023-01-12 | 三菱電機株式会社 | Semiconductor optical element |
-
1984
- 1984-07-25 JP JP59154359A patent/JPS6132587A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6346789A (en) * | 1986-08-15 | 1988-02-27 | Nec Corp | Buried high resistance type semiconductor laser |
EP0704913A2 (en) * | 1994-09-28 | 1996-04-03 | Nippon Telegraph And Telephone Corporation | Optical semiconductor device and method of fabricating the same |
EP0704913A3 (en) * | 1994-09-28 | 1997-03-19 | Nippon Telegraph & Telephone | Optical semiconductor device and method of fabricating the same |
WO2023281741A1 (en) * | 2021-07-09 | 2023-01-12 | 三菱電機株式会社 | Semiconductor optical element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6647044B2 (en) | Semiconductor light-emitting device with an improved ridge waveguide structure and method of forming the same | |
JPH09116222A (en) | Manufacture of semiconductor laser and semiconductor laser | |
JP2659937B2 (en) | Semiconductor light emitting device | |
US4599787A (en) | Method of manufacturing a light emitting semiconductor device | |
JPS6132587A (en) | Semiconductor laser and manufacture thereof | |
JPH0632331B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JP3108183B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JPS589592B2 (en) | Method for manufacturing semiconductor light emitting device | |
JPH0682886B2 (en) | Method of manufacturing semiconductor laser device | |
JP3146501B2 (en) | Semiconductor laser and method of manufacturing the same | |
JP2523643B2 (en) | Semiconductor laser device | |
JP2002314200A (en) | Semiconductor laser device and its manufacturing method | |
JP2685499B2 (en) | Semiconductor laser device | |
JP2554192B2 (en) | Semiconductor laser manufacturing method | |
JP2000294877A (en) | High output semiconductor laser and manufacture of the same | |
JPH05190970A (en) | Manufacturing method of semiconductor laser | |
JPS61176181A (en) | Semiconductor light emitting device | |
JP2814124B2 (en) | Embedded semiconductor light emitting device | |
JP2743769B2 (en) | Semiconductor laser and manufacturing method thereof | |
JPS5884483A (en) | Buried hetero-structure semiconductor laser | |
JP2708949B2 (en) | Method of manufacturing semiconductor laser device | |
JPH11251678A (en) | Semiconductor laser and its manufacture | |
JPH06216470A (en) | Manufacture of semiconductor light-emitting element | |
JP2547459B2 (en) | Semiconductor laser device and manufacturing method thereof | |
JP2644998B2 (en) | Embedded semiconductor laser device |