JPS5932075B2 - Semiconductor laser device and its manufacturing method - Google Patents

Semiconductor laser device and its manufacturing method

Info

Publication number
JPS5932075B2
JPS5932075B2 JP6936278A JP6936278A JPS5932075B2 JP S5932075 B2 JPS5932075 B2 JP S5932075B2 JP 6936278 A JP6936278 A JP 6936278A JP 6936278 A JP6936278 A JP 6936278A JP S5932075 B2 JPS5932075 B2 JP S5932075B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor substrate
active layer
laser device
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6936278A
Other languages
Japanese (ja)
Other versions
JPS54159890A (en
Inventor
隆 杉野
国雄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6936278A priority Critical patent/JPS5932075B2/en
Priority to CA327,820A priority patent/CA1127282A/en
Priority to FR7912791A priority patent/FR2426992A1/en
Priority to GB7917476A priority patent/GB2038079B/en
Priority to US06/040,182 priority patent/US4296387A/en
Priority to DE2920454A priority patent/DE2920454C2/en
Publication of JPS54159890A publication Critical patent/JPS54159890A/en
Priority to US06/266,134 priority patent/US4380861A/en
Publication of JPS5932075B2 publication Critical patent/JPS5932075B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 本発明は半導体レーザ装置に関するものである。[Detailed description of the invention] The present invention relates to a semiconductor laser device.

単一横モード発振半導体レーザについてはこれまでに様
々な提案、試作がなされている。活性層のストライプ幅
を細くし、光の最低次の横モードだけをとじこめること
により単一モード発振が可能となる。最も代表的な単一
モード発振レーザは構造としては第1図に示すような埋
め込みストライプ構造である。この構造の製造方法は、
n型GaAs基板1上にn型Gal−xAιxAs2、
n型GaAs活性層3、p型Gal−xAlxAs4、
n型GaAs5を順次成長し、次VCSi02膜をつけ
ストライプ状にしてそれをマスクにメサエツチングを行
ない成長層をストライプ状に形成する。
Various proposals and prototypes of single transverse mode oscillation semiconductor lasers have been made so far. By narrowing the stripe width of the active layer and confining only the lowest order transverse mode of light, single mode oscillation becomes possible. The most typical single mode oscillation laser has a buried stripe structure as shown in FIG. The manufacturing method for this structure is
n-type Gal-xAιxAs2 on n-type GaAs substrate 1;
n-type GaAs active layer 3, p-type Gal-xAlxAs4,
N-type GaAs 5 is sequentially grown, and then a VCSi02 film is applied to form a stripe pattern, and mesa etching is performed using the film as a mask to form the grown layer in a stripe pattern.

その後活性層より禁止帯幅が広く、高比抵抗を有する埋
め込み層6の成長を行なう。最後にオーミック電極Tを
形成して完成する。しかし、この製作工程においてはマ
スクとしてストライプ部にSiO2膜を付着させ、スト
ライプ上部に埋め込み層6の成長することを防がねばな
らない。
Thereafter, a buried layer 6 having a wider forbidden band width and higher specific resistance than the active layer is grown. Finally, the ohmic electrode T is formed to complete the process. However, in this manufacturing process, it is necessary to attach a SiO2 film to the stripe portion as a mask to prevent the buried layer 6 from growing above the stripe.

埋め込み層6の成長の間、SiO2膜と活性層近傍が密
着されたまま、高温中に放置されるため、SiO2膜と
GaAs層の熱膨張係数の差異により活性層に応力が加
わり劣化の原因となる。又、埋め込み層6の高比抵抗化
のため深いエネルギー準位を形成する不純物を使用する
が、その不純物が活性層に拡散、侵入し、特性の劣化を
引き起こす。最近、埋め込みストライプ型レーザのこれ
らの問題点を克服するため新構造による単一モード発振
化が行なわれている。
During the growth of the buried layer 6, the SiO2 film and the vicinity of the active layer are left in close contact with each other at high temperatures, so stress is applied to the active layer due to the difference in thermal expansion coefficient between the SiO2 film and the GaAs layer, which can cause deterioration. Become. Furthermore, impurities that form deep energy levels are used to increase the specific resistance of the buried layer 6, but these impurities diffuse and invade the active layer, causing deterioration of characteristics. Recently, in order to overcome these problems of the buried stripe type laser, single mode oscillation has been developed using a new structure.

その一構成例を第2図に示す。製造方法としては溝をつ
けたn型GaAs基板8上にn型Gal−XAtXAS
9、n型GaAs活性層10、p型Gal−XAlxA
sll、p型GaAsl2を順次成長し、その表面にS
iO2膜13をつけ、溝をつけた位置に対向させてSi
O2膜13にストライプ状の窓あけを行なう。その後オ
ーミツク電極14を形成して完成する。成長の際、第1
層n型Gal−XAtXAS9を非常に薄くし、溝の部
分以外では活性層10から漏れ出す光はn型Gal.X
AtXAS層9を通りぬけ、n型GaAs基板8に吸収
されるような構造になつて卦り、溝の部分にある活性層
で単一モード発振が可能となる。
An example of its configuration is shown in FIG. The manufacturing method is to deposit n-type Gal-XAtXAS on a grooved n-type GaAs substrate 8.
9, n-type GaAs active layer 10, p-type Gal-XAlxA
sll, p-type GaAsl2 are grown sequentially, and S is deposited on the surface.
Attach the iO2 film 13 and place it opposite to the grooved position.
Striped windows are formed in the O2 film 13. Thereafter, an ohmic electrode 14 is formed to complete the process. During growth, the first
The layer n type Gal-XAt X
The structure is such that it passes through the AtXAS layer 9 and is absorbed by the n-type GaAs substrate 8, and single mode oscillation becomes possible in the active layer in the groove.

しかし、この構造においては、活性層10は平担であり
、溝の部分の活性層で生じた光は横方向に伝播しやすく
、ひろがるので、発振モードが横方向に歪む。
However, in this structure, the active layer 10 is flat, and the light generated in the active layer in the groove portion easily propagates and spreads in the lateral direction, so that the oscillation mode is distorted in the lateral direction.

本発明は上記の構造とは異なり、単一モード発振半導体
レーザーを実現する新しい構造とその製造方法を提供す
るものである。
The present invention is different from the above structure and provides a new structure for realizing a single mode oscillation semiconductor laser and a method for manufacturing the same.

以下本発明を図面とともに実施例に基いて説明する。The present invention will be described below based on examples together with drawings.

n型基板15上に階段状の段差を第3図aのように作製
する。
Step-like steps are formed on the n-type substrate 15 as shown in FIG. 3a.

それを基板として第3図bに示すようVCn型クラツド
層16、ノンドープ活性層17、p型クラツド層18、
p型オーミツク電極形成層19を連続成長する。続いて
絶縁膜20を表面に付着し、第3図cに示すように基板
に段差をつけた部分の上方にストライプ状の窓あけを行
なう。その上にp型オーミツク電極21を形成し、又、
n側にもオーミツク電極22を設け、第3図dのように
レーザー素子を作製する。本構造の特徴は、第1層クラ
ツド層16を、段差部では活性層17から漏れ出す光が
基板15に吸収されない程度に厚くし、段差部以外の部
分では光が基板15に吸収される程度に非常に薄くして
、第2図で示した構造と同様の作用をもたせた光の拡が
りを抑制すると同時に、活性層17に折り曲がり部分を
設け、横方向への光の伝播を強く阻止する所にある。
Using this as a substrate, as shown in FIG. 3b, a VC n-type clad layer 16, a non-doped active layer 17, a p-type clad layer 18,
A p-type ohmic electrode forming layer 19 is continuously grown. Subsequently, an insulating film 20 is deposited on the surface, and a striped window is formed above the stepped portion of the substrate, as shown in FIG. 3c. A p-type ohmic electrode 21 is formed thereon, and
An ohmic electrode 22 is also provided on the n side, and a laser device is fabricated as shown in FIG. 3d. The feature of this structure is that the first cladding layer 16 is made thick enough that the light leaking from the active layer 17 is not absorbed by the substrate 15 in the step portion, and that the light is absorbed by the substrate 15 in the portion other than the step portion. The active layer 17 is made very thin to suppress the spread of light, which has the same effect as the structure shown in FIG. It's there.

基板15の段差を制御し、活性層17の折り曲がり間に
最低次の横モードの光だけが閉じ込められるようにし、
単一モード発振が得られる。この製造方法により作製し
たレーザーに}いては、埋め込みストライプ構造の製造
工程で生じるような問題をもつて卦らず、又、第2図に
示した構造のレーザーより発振モードの安定性を有して
いる。
Controlling the step height of the substrate 15 so that only the lowest order transverse mode light is confined between the folds of the active layer 17;
Single mode oscillation is obtained. The laser fabricated using this manufacturing method does not have the problems that occur in the manufacturing process of the buried stripe structure, and also has a more stable oscillation mode than the laser with the structure shown in Figure 2. ing.

この新しい構造を有する単一モード発振半導体レーザー
の製造方法について具体例を以下に述べる。
A specific example of a method for manufacturing a single mode oscillation semiconductor laser having this new structure will be described below.

n型GaAs基板上にGaAs,Gal−XAtx.A
sにより構成した単一モード発振半導体レーザーについ
て示す。
GaAs, Gal-XAtx. A
A single mode oscillation semiconductor laser constructed by s is shown below.

第3図aに示すようにn型GaAs基板15の100面
上に化学エツチングにより基板のへき開面である110
面に直交するように1μmの段差を形成する。
As shown in FIG. 3a, the 110 plane, which is the cleavage plane of the substrate, is etched by chemical etching on the 100 plane of the n-type GaAs substrate 15.
A step of 1 μm is formed perpendicular to the surface.

次にその表面に液相エピタキシヤル法によつて第3図b
に示すように第1層n型Gal−XAtXASl6を平
坦部で0.2μm1第2層ノンドープGaAsl7を0
.1μm1第3層p型Gal−ぇ′Atr′ASl8を
1.5μm1第4層p型GaAsl9を1μm連続成長
する。引き続き全面にSi3N4膜20を付け、基板に
段差のある位置に幅5μmのストライブ状の窓あけを行
ない、第3図cのように作製する。次に第3図dに示す
ようにp型GaAsl9表面に亜鉛拡散を行なつた後、
p型電極用金属を真空蒸着し、合金処理を行ないp側オ
ーミツク電極21を形成する。続いてn型電極用金属を
GaAs基板15側全面へ真空蒸着し、合金処理を行な
いn側オーミツク電極22を形成する。最後に素子片に
分離してp側電極21をヒートシンクに接着し、n側電
極金属膜22上に金線を接続して完成する。このように
して構成したGaAs−Gal−XAtxAs半導体レ
ーザーは室温で単一モード連続発振動作を行ない優れた
特性を示した。
Next, the liquid phase epitaxial method is applied to the surface as shown in Fig. 3b.
As shown in the figure, the first layer n-type Gal-XAt
.. A third layer of p-type Gal-Atr'ASl8 of 1.5 μm and a fourth layer of p-type GaAsl9 of 1 μm are continuously grown. Subsequently, a Si3N4 film 20 is applied to the entire surface, and a stripe-shaped window with a width of 5 μm is formed at a step position on the substrate to produce a structure as shown in FIG. 3c. Next, as shown in Figure 3d, after zinc was diffused onto the p-type GaAsl9 surface,
A p-side ohmic electrode 21 is formed by vacuum-depositing a p-type electrode metal and performing an alloying process. Subsequently, a metal for an n-type electrode is vacuum-deposited on the entire surface of the GaAs substrate 15, and an alloying process is performed to form an n-side ohmic electrode 22. Finally, the device is separated into element pieces, the p-side electrode 21 is adhered to a heat sink, and a gold wire is connected on the n-side electrode metal film 22 to complete the process. The GaAs-Gal-XAtxAs semiconductor laser constructed in this manner performed single mode continuous wave operation at room temperature and exhibited excellent characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は埋め込みストライプ構造をもつたレーザーの断
面図、第2図は溝を有する基板上に構成されたレーザー
の断面図、第3図a−dは本発明の一実施例の製造方法
の工程断面図である。 15・・・・・・n型GaAs基板、16・・・・・・
n型Gal−0AtXAS117・・・・・・n型Ga
Asll8・・・・・・p型Gal−ェ′AtXlAS
ll9・・・・・・P型GaAsl2O・・・・・・S
i3N4膜、21・・・・・・p側電極金属膜、・・・
・・・n側電極金属膜。
FIG. 1 is a cross-sectional view of a laser with a buried stripe structure, FIG. 2 is a cross-sectional view of a laser constructed on a substrate with grooves, and FIGS. It is a process sectional view. 15...n-type GaAs substrate, 16...
n-type Gal-0AtXAS117...n-type Ga
Asll8...p-type Gal-E'AtXlAS
ll9...P-type GaAsl2O...S
i3N4 film, 21... p-side electrode metal film,...
...N-side electrode metal film.

Claims (1)

【特許請求の範囲】 1 主面に段差を有する半導体基板の上に、クラッド層
を介して活性層が、前記段差部で前記主面に対して傾斜
するように形成され、前記活性層の傾斜部と対向した位
置にストライプ状電流注入領域を定める電流制限層が形
成され、前記傾斜部がストライプ状の活性領域をなすと
ともに、前記クラッド層が、前記段差部では光が前記半
導体基板に吸収されない厚さを有し、前記段差部以外で
は光が前記半導体基板に吸収される厚さを有することを
特徴とする半導体レーザ装置。 2 電流制限層が、ストライプ状開口を有する絶縁層で
あることを特徴とする特許請求の範囲第1項に記載の半
導体レーザ装置。 3 半導体基板の表面に段差を形成する工程と、前記半
導体基板の上にクラッド層を、前記段差部では光が前記
半導体基板に吸収されない厚さに、前記段差部以外では
光が前記半導体基板に吸収される厚さに形成する工程と
、前記クラッド層上に活性層を前記段差部で前記主面に
対して傾斜するように形成する工程と、前記活性層の傾
斜部と対向した位置に電流注入領域を定める電流制限層
を形成する工程とを備えることを特徴とする半導体レー
ザ装置の製造方法。 4 電流制限層が、ストライプ状開口を有する絶縁層で
あることを特徴とする特許請求の範囲第3項に記載の半
導体レーザ装置の製造方法。
[Scope of Claims] 1. An active layer is formed on a semiconductor substrate having a step on its main surface, with a cladding layer interposed therebetween, so that the active layer is inclined with respect to the main surface at the step, and the slope of the active layer is A current limiting layer defining a stripe-shaped current injection region is formed at a position opposite to the part, the inclined part forms a striped active region, and the cladding layer prevents light from being absorbed by the semiconductor substrate in the stepped part. A semiconductor laser device having a thickness such that light is absorbed by the semiconductor substrate in areas other than the stepped portion. 2. The semiconductor laser device according to claim 1, wherein the current limiting layer is an insulating layer having striped openings. 3. Forming a step on the surface of the semiconductor substrate, and forming a cladding layer on the semiconductor substrate to a thickness such that light is not absorbed by the semiconductor substrate in the step portion, and light is not absorbed into the semiconductor substrate in areas other than the step portion. a step of forming an active layer on the cladding layer to a thickness that absorbs the absorption; a step of forming an active layer on the cladding layer so as to be inclined with respect to the main surface at the stepped portion; and a step of applying an electric current to a position opposite to the inclined portion of the active layer. A method of manufacturing a semiconductor laser device, comprising the step of forming a current limiting layer that defines an injection region. 4. The method of manufacturing a semiconductor laser device according to claim 3, wherein the current limiting layer is an insulating layer having striped openings.
JP6936278A 1978-05-22 1978-06-07 Semiconductor laser device and its manufacturing method Expired JPS5932075B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP6936278A JPS5932075B2 (en) 1978-06-07 1978-06-07 Semiconductor laser device and its manufacturing method
CA327,820A CA1127282A (en) 1978-05-22 1979-05-17 Semiconductor laser and method of making the same
FR7912791A FR2426992A1 (en) 1978-05-22 1979-05-18 SEMICONDUCTOR LASER AND MANUFACTURING OF THIS LASER
GB7917476A GB2038079B (en) 1978-05-22 1979-05-18 Semiconductor laser
US06/040,182 US4296387A (en) 1978-05-22 1979-05-18 Semiconductor laser
DE2920454A DE2920454C2 (en) 1978-05-22 1979-05-21 Semiconductor lasers and processes for their manufacture
US06/266,134 US4380861A (en) 1978-05-22 1981-05-21 Method of making a semiconductor laser by liquid phase epitaxial growths

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6936278A JPS5932075B2 (en) 1978-06-07 1978-06-07 Semiconductor laser device and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS54159890A JPS54159890A (en) 1979-12-18
JPS5932075B2 true JPS5932075B2 (en) 1984-08-06

Family

ID=13400360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6936278A Expired JPS5932075B2 (en) 1978-05-22 1978-06-07 Semiconductor laser device and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS5932075B2 (en)

Also Published As

Publication number Publication date
JPS54159890A (en) 1979-12-18

Similar Documents

Publication Publication Date Title
JP2595457B2 (en) RWG type semiconductor laser device and manufacturing method
US4380861A (en) Method of making a semiconductor laser by liquid phase epitaxial growths
US4366568A (en) Semiconductor laser
JPH08148752A (en) Manufacture of semiconductor laser device and semiconductor laser device
US4791647A (en) Semiconductor laser
US6108361A (en) Semiconductor laser and method for producing the same
JPS5932075B2 (en) Semiconductor laser device and its manufacturing method
JPH0945999A (en) Semiconductor device and manufacture thereof
JPS5932076B2 (en) Semiconductor laser device and its manufacturing method
JPS5949716B2 (en) Semiconductor laser device and its manufacturing method
EP0032401B1 (en) Semiconductor laser
JP3010823B2 (en) Tunable laser and its fabrication method
JPS6318874B2 (en)
JPH06104527A (en) Fabrication of semiconductor laser
JPH0936484A (en) Semiconductor laser and fabrication thereof
JP2002314200A (en) Semiconductor laser device and its manufacturing method
JPS5949717B2 (en) Semiconductor laser device and its manufacturing method
JPS58106885A (en) Semiconductor laser
JP2849423B2 (en) Semiconductor laser device and method of manufacturing the same
JPS6136720B2 (en)
JPS61104687A (en) Manufacture of buried semiconductor laser
JPS6318875B2 (en)
JPS5834988A (en) Manufacture of semiconductor laser
JPS6136719B2 (en)
JPS6112399B2 (en)