JPS5929705A - Steam turbine controller of combined plant - Google Patents

Steam turbine controller of combined plant

Info

Publication number
JPS5929705A
JPS5929705A JP13987582A JP13987582A JPS5929705A JP S5929705 A JPS5929705 A JP S5929705A JP 13987582 A JP13987582 A JP 13987582A JP 13987582 A JP13987582 A JP 13987582A JP S5929705 A JPS5929705 A JP S5929705A
Authority
JP
Japan
Prior art keywords
steam
turbine
flow rate
steam turbine
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13987582A
Other languages
Japanese (ja)
Inventor
Takeshi Minagawa
皆川 武司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13987582A priority Critical patent/JPS5929705A/en
Publication of JPS5929705A publication Critical patent/JPS5929705A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/12Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled
    • F01K23/16Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled all the engines being turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To prevent the motoring phenomenon of a steam turbine and reduce the torsional stress in a shaft by providing a means which regulates a flow rate of supplementary steam which flows into the steam turbine regardless of steam from a heat recovering steam generator. CONSTITUTION:A gas turbine 1, a generator 4 and a steam turbine 3 are installed on the same axis. Exhaust gas of the gas turbine 1 is fed to a heat recovering steam generator 2 to produce steam therein. The resultant steam is delivered to the steam turbine 3 via a steam flow stop valve 6 and a steam flow rate regulating valve 7. Other steam is fed from an auxiliary steam header 8 to the steam turbine 3 via an auxiliary steam flow stop valve 10 and an auxiliary steam flow rate regulating valve 11 until the time when the steam produced in the steam generator 2 attains the condition equivalent to that of the steam which flows into the steam turbine 3. Thus, the motoring phenomenon of the steam turbine 3 may be prevented and the torsional stress in the shaft can be reduced.

Description

【発明の詳細な説明】 本発明は、ガスタービン、熱回収用蒸気発生器蒸気ター
ビン、発電機からなるコンバインドプラントに係り、特
に、ガスタービン、発電機、蒸気タービンを同一軸に設
ける一軸形プラントに好適な蒸気タービン流入蒸気流量
制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a combined plant comprising a gas turbine, a steam generator for heat recovery, a steam turbine, and a power generator, and particularly relates to a combined plant comprising a gas turbine, a power generator, and a steam turbine on the same shaft. The present invention relates to a steam turbine inflow steam flow rate control device suitable for use in a steam turbine.

従来のガスタービン、発電機、蒸気タービンを同一軸に
設ける一軸形コンパインドプラントでは、熱回収用蒸気
発生器で発生する蒸気が蒸気タービン流入蒸気条件に達
するまで、蒸気タービンへ蒸気を流入しない方式となっ
ていたので、蒸気タービン内の雰囲気温度の上昇による
蒸気タービン諷の破損(いわゆるモータリング)現象を
引き起こす原因となり、かつ、蒸気タービンの寿命を早
める結果となっている。
In conventional single-shaft compound plants in which a gas turbine, generator, and steam turbine are installed on the same shaft, steam does not flow into the steam turbine until the steam generated in the heat recovery steam generator reaches the steam turbine inflow conditions. This causes damage to the steam turbine (so-called motoring) due to an increase in the atmospheric temperature within the steam turbine, and shortens the life of the steam turbine.

本発明の目的は、ガスタービン及び熱回収用蒸気発生器
で発生する蒸気とは無関係に、蒸気タービンの冷却蒸気
を確保、供給して蒸気タービンの  。
It is an object of the present invention to secure and supply cooling steam for a steam turbine independently of the steam generated in the gas turbine and the steam generator for heat recovery.

モータリング現象の防止、軸のねじり応力低減を可能と
する蒸気タービン制御装置を提供するにある。
An object of the present invention is to provide a steam turbine control device that can prevent motoring phenomena and reduce torsional stress on a shaft.

コンバインドプラントでは、ガスターピント蒸気タービ
ンを組合せたユニットが複数で構成されており、従来の
火力発電プラントに比べて高温高圧の蒸気が容易に得ら
れる。この点に着目して、熱回収用蒸気発生器で発生す
る蒸気が蒸気タービンの蒸気条件に適合する前に、プラ
ント状態により必要となる蒸気を補助蒸気として他ユニ
ットより導入し、そのプラント状態に応じて蒸気流量を
制御し、蒸気タービンへ導く。
Combined plants are made up of multiple units that combine Gaster Pinto steam turbines, and can easily produce high-temperature, high-pressure steam compared to conventional thermal power plants. Focusing on this point, before the steam generated by the heat recovery steam generator matches the steam conditions of the steam turbine, steam that is required depending on the plant condition is introduced from other units as auxiliary steam, and the The steam flow rate is controlled accordingly and guided to the steam turbine.

以下、本発明の一実施例を第1図により説明する。コン
バインドプラントは、ガスタービン1、熱回収用蒸気発
生器2(I〜[1,SO) 、蒸気タービン3、発1「
((幾4を含み、本例では、ガスタービン、蒸気タービ
ン、発電、機が同一軸に結ばれる。(いわゆる−軸形)
本プラント構成では、ガスタービン1の起動と同時に蒸
気タービンも回転を始める。
An embodiment of the present invention will be described below with reference to FIG. The combined plant consists of a gas turbine 1, a heat recovery steam generator 2 (I~ [1, SO), a steam turbine 3, and a steam generator 1.
(Including number 4, in this example, the gas turbine, steam turbine, power generator, and machine are connected to the same shaft. (So-called -shaft type)
In this plant configuration, the steam turbine also starts rotating at the same time as the gas turbine 1 is started.

ガスタービン1の排ガスを熱回収用蒸気発生器2(以下
ボイラと略す)に導き熱回収し蒸気を発生させる。この
蒸気は、蒸気タービンへの蒸気導管5により、蒸気流量
止弁6、蒸気流Jl調節弁7を介して蒸気タービン3へ
導かれる。蒸気タービンへの蒸気流入条件が整うまで蒸
気流量止弁6、蒸気流量調節弁7は全閉のままであり、
ボイラからの蒸気は蒸気タービンへ導かれない。この蒸
気条件成立までの間、蒸気タービンへ蒸気を供給するた
め、他ユニットで発生する蒸気の一部を補助蒸気ヘッダ
8を通して、補助蒸気導管9を経て、補助蒸気流量止弁
10、補助蒸気流量加減弁11を介して蒸気タービン3
へ導くものとする。蒸気タービン3でタービンを駆動し
た蒸気は、復水器12で復水処理され、給水管13で再
び−ボイラ2へ送られる。制御装置14は、蒸気流量止
弁6、蒸気流及調節弁7、補助蒸気流量止弁10、補助
蒸気流量調節弁11を制御する。
Exhaust gas from the gas turbine 1 is guided to a heat recovery steam generator 2 (hereinafter referred to as boiler) to recover heat and generate steam. This steam is guided to the steam turbine 3 via a steam flow stop valve 6 and a steam flow Jl control valve 7 through a steam conduit 5 to the steam turbine. The steam flow stop valve 6 and the steam flow control valve 7 remain fully closed until the conditions for steam inflow into the steam turbine are established.
Steam from the boiler is not directed to the steam turbine. Until this steam condition is established, in order to supply steam to the steam turbine, a part of the steam generated in other units is passed through the auxiliary steam header 8, the auxiliary steam conduit 9, the auxiliary steam flow rate stop valve 10, and the auxiliary steam flow rate. Steam turbine 3 via control valve 11
shall lead to. The steam that has driven the turbine in the steam turbine 3 is condensed in a condenser 12 and sent to the boiler 2 again in a water supply pipe 13. The control device 14 controls the steam flow stop valve 6, the steam flow control valve 7, the auxiliary steam flow stop valve 10, and the auxiliary steam flow control valve 11.

ボイラ2における発生蒸気が、蒸気タービン3の蒸気流
入条件に到達するまでの補助蒸気流量調節弁11の制御
方法を第2図を用いて説明する。
A method of controlling the auxiliary steam flow rate control valve 11 until the steam generated in the boiler 2 reaches the steam inflow conditions of the steam turbine 3 will be described with reference to FIG.

まず、回転数検出器15からの信号、几、は関数(F+
)演算器16中で必要蒸気流量G、に変換される。
First, the signal from the rotation speed detector 15, 几, is a function (F+
) is converted into the required steam flow rate G in the computing unit 16.

G、=Ft(R:) また、圧力検出器17、温度検出器18によシ、蒸気タ
ービン3の排気室入口の圧力Pb、温度l1lbを検出
し、関数(F2)演舞、器19において必要蒸気流Nt
obに変換される。
G, = Ft (R:) In addition, the pressure detector 17 and temperature detector 18 detect the pressure Pb and temperature l1lb at the exhaust chamber inlet of the steam turbine 3, and perform the function (F2) necessary for the function (F2) and the temperature detector 19. Steam flow Nt
converted to ob.

Gb=F2(Pb、’l”b ) 一方、蒸気タービン内の雰囲気温度T、を温度検出器2
0で検出し、関数(F3)演算器21で蒸気流量制限値
G、を算出する。
Gb=F2(Pb,'l"b) On the other hand, the atmospheric temperature T inside the steam turbine is detected by the temperature detector 2.
0, and the function (F3) calculator 21 calculates the steam flow rate limit value G.

G 、 =F3(T −) 本例では、以上のような補助蒸気流量算出値を用いたが
、この他のプラント入力、あるいはそれらから算出する
計算値(熱応力、蒸気タービン寿命消費量他)を加えて
補助蒸気流量を算出する事も[考えられる。
G, =F3(T-) In this example, the above-mentioned auxiliary steam flow rate calculation value was used, but other plant inputs or calculated values calculated from them (thermal stress, steam turbine lifetime consumption, etc.) It is also possible to calculate the auxiliary steam flow rate by adding

そして、先に求めたG−、Gb 、 G 、を加算器2
2で総合し、補助蒸気流量Gtlを求める。
Then, adder 2 calculates G−, Gb, G, which were obtained earlier.
2 to determine the auxiliary steam flow rate Gtl.

一方、補助蒸気の蒸気条件が蒸気タービン蒸気11.・
” 流入条件を満足することを確認するため、圧力検出
器23、温度検出器24でそれぞれ、補助蒸気圧力PD
、補助蒸気温度l1lDを算出し、各々。関数(F4)
演算器25、関数(pg)演算器26で蒸気条件KII
K!を求める。
On the other hand, the steam condition of auxiliary steam is steam turbine steam 11.・
” In order to confirm that the inflow conditions are satisfied, the pressure detector 23 and temperature detector 24 each measure the auxiliary steam pressure PD.
, calculate the auxiliary steam temperature l1lD, respectively. Function (F4)
The steam condition KII is determined by the computing unit 25 and the function (pg) computing unit 26.
K! seek.

但し、A、B及びC、I)は定数 次に、乗算器27によりに1及びに2は乗算され、補助
蒸気流入条件に3を求める。
However, A, B, C, and I) are constants, and then multiplier 27 multiplies 1 and 2 to obtain 3 for the auxiliary steam inflow condition.

Iぐ3  =に+   X   K3 この補助蒸気流入条件に3と先に求め九〇TIとから、
乗算器28で乗算し、Gτ2を求める。
Ig3 = +
Multiply by multiplier 28 to obtain Gτ2.

G 丁2  ”GTI  X  K3 そして、関数(F6)演算器29で、プラントの特性か
ら生じる制限値条件を加え、補助蒸気流量0丁3を得る
G 2 ”GTI

但し、Gtoは定数 さらに、関数(Pa)演算器30で、補助蒸気流it 
G T 3を補助蒸気流量調節弁11の弁特性に適合す
る弁制御指令値GTに変換し、補助蒸気流量調節弁11
を駆動する。
However, Gto is a constant, and the function (Pa) calculator 30 calculates the auxiliary steam flow it
GT3 is converted into a valve control command value GT that matches the valve characteristics of the auxiliary steam flow rate control valve 11, and the auxiliary steam flow rate control valve 11 is
to drive.

本発明によれば次の効果がある。According to the present invention, there are the following effects.

(1)  ガスタービン起動以後、熱回収用蒸気発生器
で発生ずる蒸気が蒸気タービン流入蒸気条件に達するま
での間、蒸気タービンへ必要量の蒸気を任意に供給でき
る。
(1) After the gas turbine is started, the required amount of steam can be supplied to the steam turbine at will until the steam generated by the heat recovery steam generator reaches the steam turbine inflow conditions.

(2)起動時の蒸気タービン熱応力の低減が可能となり
、起動時間が短縮され、風損も防げる。
(2) It is possible to reduce the steam turbine thermal stress during startup, shorten startup time, and prevent wind damage.

(3)短い起動時間による燃料の節約、蒸気タービン寿
命の延長が図れる。
(3) Short start-up time enables fuel savings and extends the life of the steam turbine.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のプラントの概略系統図、第2図は第1
図のうち、補助蒸気」151節に関する制御1411コ
シツク図である。 ■・・・ガスタービン、2・・・熱回収用蒸気発生器、
3・・・蒸気タービン、4・・・発電機、11・・・補
助蒸気流m、調節弁、8・・・補助蒸気ヘッダ、14・
・・制御装置。
Fig. 1 is a schematic system diagram of the plant of the present invention, and Fig. 2 is a schematic diagram of the plant of the present invention.
In the figure, it is a control diagram 1411 regarding section 151 of ``auxiliary steam''. ■...Gas turbine, 2...Steam generator for heat recovery,
3... Steam turbine, 4... Generator, 11... Auxiliary steam flow m, control valve, 8... Auxiliary steam header, 14.
··Control device.

Claims (1)

【特許請求の範囲】[Claims] 1、ガスタービン、蒸気クーピン、熱回収用蒸気発生器
、前記熱回収用蒸気発生器及び前記蒸気タービンを相互
接続する蒸気導管と、この蒸気導管に配置された蒸気流
量調節器に付設され、前記蒸気導管の下流側の蒸気流量
を制御する流量制御手段と、他ユニットからの補助蒸気
の供給手段とからなるコンバインドプラントにおいて、
前記熱回収用蒸気発生器より導かれる蒸気とは無関係に
、プラントの運転状態に応じて、前記蒸気タービンに流
入する前記補助蒸気の流量を調節する手段を設けたこと
を特徴とするコンバインドプラントの蒸気タービン制御
装置。
1, attached to a gas turbine, a steam coupin, a heat recovery steam generator, a steam conduit interconnecting the heat recovery steam generator and the steam turbine, and a steam flow rate regulator disposed in this steam conduit; In a combined plant consisting of a flow rate control means for controlling the steam flow rate on the downstream side of a steam conduit and a means for supplying auxiliary steam from other units,
A combined plant characterized by comprising means for adjusting the flow rate of the auxiliary steam flowing into the steam turbine in accordance with the operating state of the plant, regardless of the steam led from the heat recovery steam generator. Steam turbine control device.
JP13987582A 1982-08-13 1982-08-13 Steam turbine controller of combined plant Pending JPS5929705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13987582A JPS5929705A (en) 1982-08-13 1982-08-13 Steam turbine controller of combined plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13987582A JPS5929705A (en) 1982-08-13 1982-08-13 Steam turbine controller of combined plant

Publications (1)

Publication Number Publication Date
JPS5929705A true JPS5929705A (en) 1984-02-17

Family

ID=15255594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13987582A Pending JPS5929705A (en) 1982-08-13 1982-08-13 Steam turbine controller of combined plant

Country Status (1)

Country Link
JP (1) JPS5929705A (en)

Similar Documents

Publication Publication Date Title
US4519207A (en) Combined plant having steam turbine and gas turbine connected by single shaft
US5203159A (en) Pressurized fluidized bed combustion combined cycle power plant and method of operating the same
US4550565A (en) Gas turbine control systems
JPS6118649B2 (en)
EP0908603B1 (en) Single shaft combined cycle plant
CS199691A3 (en) Process and system for detecting and controlling of a combined turbine unit excessive speed
EP0900921A2 (en) Hydrogen burning turbine plant
US20070144176A1 (en) Methods and apparatus for operating gas turbine engines
JPS6158644B2 (en)
JP2692973B2 (en) Steam cycle startup method for combined cycle plant
US4145995A (en) Method of operating a power plant and apparatus therefor
JPS5929705A (en) Steam turbine controller of combined plant
CN115263565A (en) Wide-load energy-saving control method for gas turbine
JPS59221410A (en) Starting method of combined plant
JPH10131716A (en) Method and device for controlling steam cooling system of gas turbine
JPS6154927B2 (en)
JPS58107805A (en) Control of turbine for combined cycle power generation
JPS6239658B2 (en)
JPH04246244A (en) Pressurizing fluidized bed combined plant and partial load operation control and device therefor
JPS5870007A (en) Apparatus for controlling combined cycle power plant
JP2000213373A (en) Gas turbine power plant
JPH05340205A (en) Controller for combined power generation plant
JPS58206812A (en) Device for adjusting discharged gas of steam turbine with vacuum
JPS61171810A (en) Control of steam turbine plant
JPS58124010A (en) Controller for gas turbine