JPS61171810A - Control of steam turbine plant - Google Patents
Control of steam turbine plantInfo
- Publication number
- JPS61171810A JPS61171810A JP1241485A JP1241485A JPS61171810A JP S61171810 A JPS61171810 A JP S61171810A JP 1241485 A JP1241485 A JP 1241485A JP 1241485 A JP1241485 A JP 1241485A JP S61171810 A JPS61171810 A JP S61171810A
- Authority
- JP
- Japan
- Prior art keywords
- steam
- pressure
- steam turbine
- turbine
- auxiliary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K7/00—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
- F01K7/34—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
- F01K7/345—Control or safety-means particular thereto
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、ガスタービンと蒸気タービンのコンバインド
プラントに係シ、特に補助蒸気の供給方式に関し、プラ
ント運転を良好に運転するに好適な補助蒸気制御方法に
関する。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a combined plant of a gas turbine and a steam turbine, and particularly relates to an auxiliary steam supply method, and an auxiliary steam control suitable for good plant operation. Regarding the method.
コンバインドプラントハ、火力原子力発電誌、Vol−
35,JI65(昭56−12)に記載のように、ガス
タービンと蒸気タービンが発電機を介し直結され一軸型
となっている場合、その軸出力は、一般には、100M
Wないし150MW程度であり、600MWないし10
100O級のコンバインドプラントとしては、6ないし
7軸の複数軸による構成となる。Combined Plant Ha, Thermal and Nuclear Power Generation Magazine, Vol.
35, JI65 (Sho 56-12), when a gas turbine and a steam turbine are directly connected via a generator and are a single-shaft type, the shaft output is generally 100 M
W to 150MW, 600MW to 10
A 100O class combined plant has a configuration with 6 or 7 axes.
第3図にコンバインドプラントの全体構成を示す。Figure 3 shows the overall configuration of the combined plant.
ガスタービン1は、大気11を吸引し、燃料12を燃焼
し、発電機2を駆動する。ガスタービンの排ガス13は
、排熱回収ボイラ3に導入され、熱回収され、給水ポン
プ35で送水された給水44は、排熱回収ボイラ3に導
入され、排熱回収ボイラ3を通過するうち、排ガス13
との熱交換により蒸気41となる。蒸気41t!、蒸気
タービン31へ導入され、発電機2t−駆動する。また
蒸気41は、その一部を圧力調整弁33を介し補助蒸気
42として各目的に使われる。補助蒸気42は、圧力発
信器3Bの信号により圧力調整弁33により一定圧力に
調整され、蒸気タービングランド蒸気調整機37t−介
し蒸気タービン31のグランド部シール蒸気、及び、復
水器34の加熱脱気蒸気36に使用されると伴に、補助
蒸気連絡管443、を介し共通補助蒸気ヘッダ51へと
導入され、他のコンバインドプラントの起動時の補助蒸
気源として前述の各目的へと使用される。Gas turbine 1 sucks in atmospheric air 11, burns fuel 12, and drives generator 2. The exhaust gas 13 of the gas turbine is introduced into the exhaust heat recovery boiler 3, where its heat is recovered, and the feed water 44 sent by the water supply pump 35 is introduced into the exhaust heat recovery boiler 3, and as it passes through the exhaust heat recovery boiler 3, Exhaust gas 13
Steam 41 is generated by heat exchange with 41 tons of steam! , is introduced into the steam turbine 31 and drives the generator 2t. Further, a portion of the steam 41 is used for various purposes as auxiliary steam 42 via the pressure regulating valve 33. The auxiliary steam 42 is regulated to a constant pressure by the pressure regulating valve 33 in response to a signal from the pressure transmitter 3B, and is passed through the steam turbine gland steam regulator 37t to the gland sealing steam of the steam turbine 31 and the thermal desorption of the condenser 34. Along with being used for the steam 36, it is also introduced into the common auxiliary steam header 51 via the auxiliary steam communication pipe 443, and is used for each of the above-mentioned purposes as an auxiliary steam source when starting up other combined plants. .
第4図に、従来技術によるコンバインドプラントの軸負
荷と蒸気41の圧力の特性を示す。FIG. 4 shows the characteristics of the shaft load and the pressure of steam 41 in a conventional combined plant.
該コンバインドプラントハ、火力原子力発電誌Vo1.
33−A5に記載のように、プラント負荷に応じ、蒸気
41の圧力を変化させ、蒸気タービン31の蒸気加減弁
32t−絞る事なく、変圧運転を行なっている。これは
一般に知られて―るように、部分負荷時、ガスタービン
排ガス温度が低下する為、この特性に合わせ、蒸気41
の圧力を変える事により、プラント熱効率の改善を図る
為である。従って、第4図に示すように蒸気41の圧力
は、軸負荷に直線的に変化する特性となる。The combined plant was published in Thermal and Nuclear Power Generation Magazine Vol.
As described in 33-A5, the pressure of the steam 41 is changed according to the plant load, and variable pressure operation is performed without throttling the steam control valve 32t of the steam turbine 31. This is because, as is generally known, the gas turbine exhaust gas temperature decreases during partial load.
This is to improve the plant thermal efficiency by changing the pressure. Therefore, as shown in FIG. 4, the pressure of the steam 41 has a characteristic that changes linearly with the shaft load.
一方排熱回収ボイラ3より発生する蒸気41は、その−
it圧力調斃弁33を介し補助蒸気42として、蒸気タ
ービン31のグランド部シール蒸気37、及び、復水器
34の加熱脱気蒸気36に使用されると伴に、補助蒸気
連絡管43、共通補助蒸気ヘッダ51を介し他軸のコン
バインドプラントの起動時の補助蒸気源として供給され
る。On the other hand, the steam 41 generated from the exhaust heat recovery boiler 3 is
It is used as the auxiliary steam 42 through the pressure control valve 33 for the gland section sealing steam 37 of the steam turbine 31 and the heated deaeration steam 36 of the condenser 34. It is supplied via the auxiliary steam header 51 as an auxiliary steam source when starting up the combined plant of other shafts.
この時、他軸へ供給される補助蒸気量によっては、その
蒸気量が多量に抽気された場合、すなわち、蒸気41が
蒸気タービン31を通過せず補助蒸気連絡管43、共通
補助蒸気ヘッダ51を介し自軸の系統外へ多量に供給さ
れ九場合、蒸気41の圧力は著しく低下する。この為、
第5図に示す如く、補助蒸気42には供給制限が有り、
これを考慮して補助蒸気の供給を行う必要が6つ九。At this time, depending on the amount of auxiliary steam supplied to the other shafts, if a large amount of steam is extracted, that is, the steam 41 does not pass through the steam turbine 31 and flows through the auxiliary steam communication pipe 43 and the common auxiliary steam header 51. If a large amount of steam 41 is supplied outside the system, the pressure of the steam 41 will drop significantly. For this reason,
As shown in FIG. 5, there is a supply limit to the auxiliary steam 42,
It is necessary to take this into consideration when supplying auxiliary steam.
本発明の目的は、上記の如く、従来技術の欠点
1を解消し、補助蒸気の過大抽気による蒸気タービン
入口蒸気圧力の低下を改善するに好適な補助蒸気制御方
式を提供するにある。The purpose of the present invention is to solve the drawbacks of the prior art as described above.
An object of the present invention is to provide an auxiliary steam control system suitable for solving the above problems and improving the drop in steam pressure at the inlet of a steam turbine due to excessive extraction of auxiliary steam.
上記目的の為に、第3図に示す如く、蒸気タービン蒸気
45には圧力発信器39が設置され、蒸気41より抽気
される補助蒸気42の抽気量が過大となシ、蒸気タービ
ン蒸気45の圧力が低下した場合、蒸気タービン蒸気4
5の圧力を検出し補助蒸気42による抽気量を改善せし
めた。For the above purpose, a pressure transmitter 39 is installed in the steam turbine steam 45 as shown in FIG. If the pressure decreases, the steam turbine steam 4
5 pressure was detected and the amount of air extracted by the auxiliary steam 42 was improved.
以下、本発明の一実施例を第3図、及び第1図により説
明する。An embodiment of the present invention will be described below with reference to FIG. 3 and FIG. 1.
第3図において、プラントは、ガスタービン1及び蒸気
タービン31が定格負荷にて運転されており、ガスター
ビン1からの排ガス13は、排熱回収ボイラ3に導入さ
れ、熱回収され、給水44は加熱され約60気圧の蒸気
となり蒸気タービン31へ導入されている。また蒸気4
1は、ソノ一部を圧力調整弁33を介し、補助蒸気42
として各目的に使用される。圧力発信器38は、補助蒸
気42の圧力を検出しその信号により圧力調整弁33に
より、補助蒸気42の圧力を約15気圧に保つ後圧制御
上行なって−る。In FIG. 3, in the plant, the gas turbine 1 and the steam turbine 31 are operated at the rated load, the exhaust gas 13 from the gas turbine 1 is introduced into the exhaust heat recovery boiler 3, where the heat is recovered, and the feed water 44 is It is heated to become steam at about 60 atmospheres and is introduced into the steam turbine 31. Also steam 4
1, a part of the solenoid is supplied to the auxiliary steam 42 through the pressure regulating valve 33.
used for various purposes. The pressure transmitter 38 detects the pressure of the auxiliary steam 42, and based on the signal, the pressure regulating valve 33 performs afterpressure control to maintain the pressure of the auxiliary steam 42 at approximately 15 atmospheres.
第1図は、本発明による一軸塁コンパインドプラントの
、軸負荷と蒸気タービン蒸気45の常用圧力及び許容最
低圧力の特性を示す。FIG. 1 shows the characteristics of the shaft load, the normal pressure of the steam turbine steam 45, and the allowable minimum pressure of the single-shaft base compounding plant according to the present invention.
第3図において蒸気41より抽気される補助蒸気42に
より、蒸気タービン蒸気45の圧力が低下した場合、す
なわち補助蒸気42の抽気量が過大となった場合、蒸気
タービン蒸気45の圧力は著しい低下金来たす。この時
、蒸気タービン蒸気45の圧力は、圧力発信器39によ
り検出されておシ、演算器により、第1図に示す如く、
軸負荷と蒸気タービン蒸気45の圧力、及び蒸気タービ
ン蒸気許容最低圧力の特性と照し合わせる。その結果圧
力発信器39により検出される蒸気タービン蒸気圧力が
、第1図に示すその運転中の軸負荷における蒸気タービ
ン蒸気許容最低圧力以下であ 。In FIG. 3, when the pressure of the steam turbine steam 45 decreases due to the auxiliary steam 42 extracted from the steam 41, that is, when the amount of extracted air of the auxiliary steam 42 becomes excessive, the pressure of the steam turbine steam 45 decreases significantly. cause. At this time, the pressure of the steam turbine steam 45 is detected by the pressure transmitter 39, and as shown in FIG.
The characteristics of the shaft load, the pressure of the steam turbine steam 45, and the minimum allowable steam pressure of the steam turbine are compared. As a result, the steam turbine steam pressure detected by the pressure transmitter 39 is below the minimum allowable steam pressure of the steam turbine at the shaft load during operation as shown in FIG.
れば、蒸気41からの補助蒸気42の抽気量が過大であ
り、蒸気タービン蒸気4・5の圧力低下を来たし、蒸気
タービン31に対し悪影響を及ぼしている事となる。If so, the amount of auxiliary steam 42 extracted from the steam 41 is excessive, causing a pressure drop in the steam turbine steam 4 and 5, which has an adverse effect on the steam turbine 31.
その改善を図るべく、すなわち、蒸気タービン31が許
容する蒸気タービン蒸気許容最低圧力以上に蒸気タービ
ン蒸気45の圧力を回復させる為に、蒸気タービン蒸気
45の圧力低下の要因である補助蒸気42の抽気量を減
少させる必要がある。In order to improve this, that is, in order to restore the pressure of the steam turbine steam 45 to a level higher than the minimum allowable steam turbine steam pressure allowed by the steam turbine 31, the auxiliary steam 42, which is the cause of the pressure drop in the steam turbine steam 45, is extracted. It is necessary to reduce the amount.
この時、補助蒸気42の圧力を、圧力検出器38の信号
に二9一定に保つ後圧制御上行なっている圧力調整弁3
31!−1蒸気タービン蒸気45に設置される圧力発信
器39の圧力低信号の優先により圧力調整弁33の開度
を絞り込む、これにより、補助蒸気42の流量を減じ、
蒸気タービン蒸気45の圧力を回復させ、蒸気タービン
31が許容する最低圧力を確保する事が出来る。At this time, the pressure regulating valve 3 is performing after-pressure control to keep the pressure of the auxiliary steam 42 constant according to the signal from the pressure detector 38.
31! -1 The opening degree of the pressure regulating valve 33 is narrowed down by giving priority to the low pressure signal of the pressure transmitter 39 installed in the steam turbine steam 45, thereby reducing the flow rate of the auxiliary steam 42,
The pressure of the steam turbine steam 45 can be restored to ensure the lowest pressure allowed by the steam turbine 31.
第2図により、水元明金実現する為の制御方式の一例を
示す。FIG. 2 shows an example of a control system for realizing Mizumoto Meikin.
第2図にシいて圧力発信器3Bは、蒸気41より圧力調
整弁33を介し抽気される補助蒸気42の圧力上検出し
、設定値発信器61により補助蒸気42の圧力が一定と
なるよう演算器62により圧力調整弁33へ信号を与え
、補助蒸気42の圧力は約15気圧の一定圧力に制御さ
れる、演算器65に、圧力発信器39による蒸気タービ
ン蒸気45の圧力信号及び、軸負荷信号発信器64によ
る軸負荷信号により、第1図に示す如く、軸負荷と蒸気
タービン蒸気45の圧力及び、蒸気タービン許容最低圧
力との関係を演算、算出する。その結果、蒸気タービン
蒸気45の圧力が蒸気タービン許容最低圧力以下であっ
た場合、すなわち、蒸気41からの補助蒸気420過犬
抽気により蒸気タービン蒸気45の圧力低下を来友して
いる場合、設定値発信器66より蒸気タービン45の圧
力低信号が演算器62へ発信される。演算器62は、通
常、圧力発信器38及び設定値発信61の信号により、
信号変換器63を介し圧力調整弁33t−補助蒸気42
の圧力が約15気圧の一定となるよう制御しているが、
前述の蒸気タービン蒸気45の圧力低信号が設定値発信
器66より発信さまた Y場合、演算器62
は、設定値発信器66の信号を設定値発信器61の信号
より優先し信号変換器63へ制御信号を伝達し圧力調整
弁33f:制御する。すなわち、圧力調整弁33は、通
常、補助蒸気42の圧力が一定となる機制御されている
が、補助蒸気42が過大に蒸気41より抽気され、蒸気
タービン蒸気45の圧力が低下した場合においては、補
助蒸気42の抽気量を絞り込み蒸気41からの補助蒸気
42の抽気量を減じ、蒸気タービン蒸気45の圧力の回
復を図るものである。勿論、蒸気タービン蒸気45の圧
力が回復し設定値発信器66からの圧力低信号が除外さ
れるまで、演算器62は設定値発信器66の信号を優先
する。As shown in FIG. 2, the pressure transmitter 3B detects the pressure of the auxiliary steam 42 extracted from the steam 41 through the pressure regulating valve 33, and calculates the pressure of the auxiliary steam 42 to be constant using the set value transmitter 61. The pressure signal of the steam turbine steam 45 from the pressure transmitter 39 and the shaft load are sent to the computing unit 65. Using the shaft load signal from the signal transmitter 64, as shown in FIG. 1, the relationship between the shaft load, the pressure of the steam turbine steam 45, and the minimum allowable pressure of the steam turbine is calculated. As a result, if the pressure of the steam turbine steam 45 is below the steam turbine allowable minimum pressure, that is, if the pressure of the steam turbine steam 45 is reduced by the auxiliary steam 420 overflow bleed from the steam 41, the setting A low pressure signal of the steam turbine 45 is transmitted from the value transmitter 66 to the calculator 62 . The computing unit 62 normally receives signals from the pressure transmitter 38 and the set value transmitter 61.
Pressure regulating valve 33t - auxiliary steam 42 via signal converter 63
The pressure is controlled to be constant at approximately 15 atm.
If the aforementioned low pressure signal of the steam turbine steam 45 is transmitted from the set value transmitter 66, the arithmetic unit 62
gives priority to the signal from the set value transmitter 66 over the signal from the set value transmitter 61, transmits the control signal to the signal converter 63, and controls the pressure regulating valve 33f. That is, the pressure regulating valve 33 is normally controlled so that the pressure of the auxiliary steam 42 is constant, but when the auxiliary steam 42 is extracted from the steam 41 in an excessive amount and the pressure of the steam turbine steam 45 decreases, , the amount of extracted air of the auxiliary steam 42 is reduced to reduce the amount of extracted air of the auxiliary steam 42 from the steam 41, and the pressure of the steam turbine steam 45 is restored. Of course, the calculator 62 prioritizes the signal from the setpoint transmitter 66 until the pressure of the steam turbine steam 45 is restored and the low pressure signal from the setpoint transmitter 66 is eliminated.
これにより、蒸気41より抽気される補助蒸気42の過
大抽気による蒸気タービン蒸気45の圧力が、蒸気ター
ビン許容最低圧力以下となる事が解消され蒸気タービン
蒸気45の圧力低下を引きおこす補助蒸気42の過大抽
気を防止する事が可能となる。This prevents the pressure of the steam turbine steam 45 from falling below the allowable minimum pressure of the steam turbine due to excessive extraction of the auxiliary steam 42 extracted from the steam 41, and prevents the pressure of the auxiliary steam 42 from becoming lower than the allowable minimum pressure of the steam turbine. It is possible to prevent air bleed.
本発明では、蒸気タービン蒸気圧力を検出する事で蒸気
タービン蒸気圧力低下を検出しているが、補助蒸気42
、あるいは補助蒸気連絡管43に流量測定機を設置し、
蒸気41からの補助蒸気抽気量を直接監視する事により
、蒸気タービン蒸気45の圧力低下を把搗する方法でも
同様の効果は得られる。In the present invention, a decrease in steam pressure of the steam turbine is detected by detecting the steam pressure of the steam turbine, but the auxiliary steam 42
, or install a flow rate measuring device in the auxiliary steam communication pipe 43,
A similar effect can be obtained by a method in which the pressure drop in the steam turbine steam 45 is determined by directly monitoring the amount of auxiliary steam extracted from the steam 41.
本発明によれば、補助蒸気の過大抽気による蒸気タービ
ン入口蒸気圧力の低下が防止可能となる。According to the present invention, it is possible to prevent a decrease in the steam turbine inlet steam pressure due to excessive extraction of auxiliary steam.
ま九、−軸型コンパインドプラントが複数軸により構成
されている発電プラントにおいて、運転軸に悪影響を与
える事無く、他軸の起動、停止が行なえる。(9) In a power generation plant in which a -shaft type compound plant is constituted by a plurality of shafts, other shafts can be started and stopped without adversely affecting the operating shaft.
さらに、簡単な制御方式の改善により、大幅なコスト上
昇なく、上記目的が達成される。Furthermore, by simply improving the control method, the above objectives can be achieved without a significant increase in cost.
第1図は本発明の一実施例の軸負荷と蒸気タービン許容
最低圧力の特性図、第2図は同じく制御方式構成図、第
3図は従来の説明をするためのコンバインドプラント構
成図、第4図は従来の軸負荷と蒸気タービン蒸気圧力の
特性図、第5図は従来の軸負荷と供給可能補助蒸気量の
特性図である。
1・・・ガスタービン、3・・・排熱回収ボイラ、31
・・・蒸気タービン、41・・・蒸気、45・・・蒸気
タービンも 1 の
θ ―p何 7IQ糸第糸面
24図Fig. 1 is a characteristic diagram of shaft load and steam turbine allowable minimum pressure in an embodiment of the present invention, Fig. 2 is a control system configuration diagram, and Fig. 3 is a combined plant configuration diagram for explaining the conventional method. FIG. 4 is a characteristic diagram of conventional shaft load and steam turbine steam pressure, and FIG. 5 is a conventional characteristic diagram of shaft load and supplyable auxiliary steam amount. 1... Gas turbine, 3... Exhaust heat recovery boiler, 31
...Steam turbine, 41...Steam, 45...Steam turbine also 1's θ -p What 7IQ thread 2nd surface Fig. 24
Claims (1)
蒸気タービンと、前記蒸気発生装置と蒸気タービンを連
結する配管より一部の蒸気を系外に供給する配管を備え
た発電プラントに於いて、前記蒸気発生装置と蒸気ター
ビンを連結する配管の一部に圧力検出装置を備え、且つ
、前記蒸気を系外に供給する配管の一部にも圧力検出装
置を備え、両者の信号により蒸気を系外に供給する配管
の途中に設置された圧力制御装置を制御する事を特徴と
した蒸気タービンプラントの制御方法。1. In a power generation plant equipped with a steam turbine driven by steam generated by a steam generator, and a pipe connecting the steam generator and the steam turbine, a part of the steam is supplied to the outside of the system. A pressure detection device is provided in a part of the piping that connects the steam generator and the steam turbine, and a pressure detection device is also provided in a part of the piping that supplies the steam to the outside of the system, and the steam is removed from the system by signals from both. A method for controlling a steam turbine plant, which is characterized by controlling a pressure control device installed in the middle of a pipe that supplies water.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1241485A JPS61171810A (en) | 1985-01-28 | 1985-01-28 | Control of steam turbine plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1241485A JPS61171810A (en) | 1985-01-28 | 1985-01-28 | Control of steam turbine plant |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61171810A true JPS61171810A (en) | 1986-08-02 |
Family
ID=11804602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1241485A Pending JPS61171810A (en) | 1985-01-28 | 1985-01-28 | Control of steam turbine plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61171810A (en) |
-
1985
- 1985-01-28 JP JP1241485A patent/JPS61171810A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4738903A (en) | Pressurized fuel cell system | |
CA1068492A (en) | Combined gas turbine and steam turbine power plant | |
US6223520B1 (en) | Gas turbine combined plant, method of operating the same, and steam-cooling system for gas turbine hot section | |
US4145995A (en) | Method of operating a power plant and apparatus therefor | |
JPS61171810A (en) | Control of steam turbine plant | |
JPS6154927B2 (en) | ||
JPS61108814A (en) | Gas-steam turbine composite facility | |
JP3612153B2 (en) | City gas line energy recovery turbine controller | |
JPH06159603A (en) | Control device for waste heat steam generator | |
JPH0835435A (en) | Fuel heating gas turbine plant | |
JP2948365B2 (en) | Gas turbine blade cooling system | |
JP2575482B2 (en) | Deaerator pressure control system in steam turbine cycle | |
JPS61187503A (en) | Temperature decreasing controller of turbine gland sealing steam | |
JPS6239657B2 (en) | ||
JPS5929705A (en) | Steam turbine controller of combined plant | |
JPH0454204A (en) | Control device for gas-extraction and condensation type turbine | |
JPS5870007A (en) | Apparatus for controlling combined cycle power plant | |
JPS58107805A (en) | Control of turbine for combined cycle power generation | |
JPH0792203B2 (en) | Boiler water supply control method and device | |
JPH0440527B2 (en) | ||
JPH0223928Y2 (en) | ||
JP3010086B2 (en) | Cogeneration power plant | |
JPS61286592A (en) | Flow control method for pump delivery | |
JPH02149704A (en) | Control method of steam turbine | |
JPS61197703A (en) | Mixed pressure turbine |