JPS5929478A - Semiconductor light-emitting element - Google Patents

Semiconductor light-emitting element

Info

Publication number
JPS5929478A
JPS5929478A JP57139364A JP13936482A JPS5929478A JP S5929478 A JPS5929478 A JP S5929478A JP 57139364 A JP57139364 A JP 57139364A JP 13936482 A JP13936482 A JP 13936482A JP S5929478 A JPS5929478 A JP S5929478A
Authority
JP
Japan
Prior art keywords
semiconductor
semiconductor layer
approximately
layer
type inp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57139364A
Other languages
Japanese (ja)
Inventor
Kenichi Kasahara
健一 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57139364A priority Critical patent/JPS5929478A/en
Publication of JPS5929478A publication Critical patent/JPS5929478A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain the light-emitting element provided with the semiconductor laser of construction wherein a high specific resistance layer is not included, and a driving electron element using an InGaAsP mixed crystal on which a high specific resistance layer can hardly be formed. CONSTITUTION:The light-emitting element consists of a semiconductor substrate 21 consisting of P type InP, the first semiconductor layer 22 of approximately 2mum in thickness consisting of P type InP, the second semiconductor layer 23 of approximately 1,000Angstrom in thickness consisting of In1-xGaxAsyP1-y, the third semiconductor layer 24 of approximately 1mum in thickness consisting of N type InP, the fourth semiconductor layers 251 and 252 of approximately 0.5mum in thickness consisting of P type InP, the fifth semiconductor layers 261 and 262 of approximately 0.5mum in thickness consisting of N type InP, an insulating film 27 consisting of SiO2, a control electrode 28 formed by Al, an AuGeNi/Au electrode 29, and an AuZn/Au electrode 30. After the first to the fifth semiconductor layers have been formed by crystallization using a liquid-phase growing method, a groove of approximately 3mum in width is formed in the depth reaching the inner part of the third semiconductor layer 24. An insulating film 27 of approximately 1,000Angstrom in thickness consisting of SiO2 is formed inside the goove 31, and a control electrode 28 is formed on the part which constitutes the side wall of the groove 31. A high speed laser oscillation switching can be performed by merely applying a very small positive voltage to the control electrode 28.

Description

【発明の詳細な説明】 本発明はレーザ発振せしめる半導体債層領域とその半導
体レーザを駆動するための電子素子を設けた半導体発光
素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor light emitting device provided with a semiconductor bond layer region for laser oscillation and an electronic element for driving the semiconductor laser.

半導体レーザは光情報伝送用の光源として、性能や信頼
性の点で既に実用レベルのものがI!l!造されている
が、より高速に大量に情報を送るために、電気的駆動回
路と半導体レーザとを集積化することが望ましい。配線
による浮遊容駅が小さくなって高速変調か可能となるだ
けでなく、駆rlrlJ回路半導体し−ナ゛を回−半導
体基板上に一体化すれば装置全体を小型化させることが
可能となり、経済111:も向上させることが出来る。
Semiconductor lasers are already at a practical level in terms of performance and reliability as light sources for optical information transmission. l! However, in order to transmit large amounts of information at higher speeds, it is desirable to integrate electrical drive circuits and semiconductor lasers. Not only does it become possible to perform high-speed modulation by reducing the amount of stray capacitance caused by wiring, but it also makes it possible to downsize the entire device by integrating the driver rlrlJ circuit semiconductor on the circuit semiconductor substrate, making it possible to reduce the size of the entire device. 111: can also be improved.

この様な半導体発光素子としては従来例えば第1図の様
なものが知られている。半導体レーク°にその駆動回路
として電界効果トランジスクーを集積化したもの゛C等
価回路図は第2図の様になる。
As such a semiconductor light emitting device, for example, the one shown in FIG. 1 is known. The equivalent circuit diagram of a device in which a field effect transistor is integrated as a driving circuit in a semiconductor layer is shown in FIG.

第1図に於いて、11はn型半導体基板、j2は11型
クラッド層、13は活性半導体層、14はI)型クラッ
ド層、15は高比抵抗層、16は1】型半導体層、17
はp型拡散領域、18はn側電極、19はソース電極、
20はゲート電極、21はドレイン電極である。ゲート
1([1極20に印加する1L、圧によってゲート電極
2oとrI話9.半導体層1Gの接合面に生じる空乏層
の厚さを変化させソース、ドレイン間を流れる電流を制
御する。′r毘界効果トランジスターによって制御され
た電流は1)型拡散領域17を通じてレーザ部に流れz
l。13が1/−→ノ一部の活性層となり、発振は第1
図で紙面に垂直な方向に起こる。電界効果l・ランシス
ダーとレーザ部は電気的に分離する心安があり、高比抵
抗層J5かその役目を果す。具対的な実施例としては半
導体としてA、6UaAs系を用いたものが知られてい
る。
In FIG. 1, 11 is an n-type semiconductor substrate, j2 is an 11-type cladding layer, 13 is an active semiconductor layer, 14 is an I)-type cladding layer, 15 is a high resistivity layer, 16 is a 1]-type semiconductor layer, 17
is a p-type diffusion region, 18 is an n-side electrode, 19 is a source electrode,
20 is a gate electrode, and 21 is a drain electrode. The thickness of the depletion layer formed at the junction between the gate electrode 2o and the semiconductor layer 1G is changed by the pressure of 1L applied to the gate electrode 20, and the current flowing between the source and drain is controlled.' The current controlled by the field effect transistor flows into the laser section through the 1) type diffusion region 17.
l. 13 becomes a part of the active layer of 1/-→, and the oscillation is caused by the first
Occurs in the direction perpendicular to the plane of the paper in the figure. There is peace of mind that the field effect lanced and laser parts are electrically separated, and the high resistivity layer J5 plays this role. As a specific example, one using A, 6UaAs type semiconductor is known.

しかし、第1図の様な構造は高比抵抗層15が容易に作
製出来る場合に限定される。し11えは、ファイバが低
損失・低分子tkなる特性を示す1μI11帯で光通信
用の光源としてはI n G aA、s L’半導体レ
ーデの開発が進められているがI n 0aAs I’
 系混晶では高比抵抗層を作製することはAlGaA、
s系に比べ難かしい。従って第1図の様な構造をIn(
JaAsP 系混晶に適用することは困難である。
However, the structure shown in FIG. 1 is limited to cases where the high resistivity layer 15 can be easily manufactured. However, as a light source for optical communications in the 1μI11 band, where the fiber exhibits low loss and low molecular weight TK characteristics, the development of I n GaA,s L' semiconductor radar is progressing, but I n 0aAs I'
In the mixed crystal system, it is possible to create a high resistivity layer using AlGaA,
It is more difficult than the S series. Therefore, the structure shown in Figure 1 can be changed to In(
It is difficult to apply this method to JaAsP-based mixed crystals.

本発明は上記欠点を除去し、高比抵抗層が介入しない構
造の半導体レーリ5及びその、駆動1旧シ1;子74;
子を集積化した半導体発光素子に関するもの−C1層が
順次私層され、少なくx前記η■l及びIn3の半導体
層は前記第2の半導体層よりも禁制(i)幅が大きく、
且つ屈折率が小さく、前記第1及びFiT、:3半導体
層は互いに反対の導電型を有しレーデ発j、iせしめる
レーザ部と、前記第3の半導体層の」二に第4の半導体
)f4と第5の半導体J〜が積層され、前記第4の半導
体層は前記第1の半導体1チ・ν吉同−なる導電型を有
し、又前記第5の半導体層は前記第3の半導体層と同一
なる導電型を有し、i’+il記2(35の半導体層の
表7fi1より前記第3の半導体層の内部に達する深さ
の溝が直線状に形成され、その溝の側壁には絶縁j漠を
介して制御電極か形成されたl/−ザ駆動部とからなる
こ吉を特徴きする。
The present invention eliminates the above-mentioned drawbacks and includes a semiconductor relay 5 having a structure in which a high resistivity layer does not intervene, and a drive 1 old 1; child 74;
Regarding a semiconductor light emitting device with integrated semiconductors - C1 layers are sequentially layered, and the semiconductor layers of at least
and has a small refractive index, the first and FiT semiconductor layers have conductivity types opposite to each other, and a laser section that produces Radical emission, and a fourth semiconductor layer of the third semiconductor layer. f4 and a fifth semiconductor J~ are laminated, the fourth semiconductor layer has a conductivity type of the first semiconductor 1, ν, and the fifth semiconductor layer has the same conductivity type as the third semiconductor. A groove having the same conductivity type as the semiconductor layer and having a depth reaching the inside of the third semiconductor layer according to Table 7fi1 of the semiconductor layer of i'+il 2 (35) is formed in a straight line, and the sidewall of the groove is The structure is characterized in that it consists of a control electrode and a driver formed through an insulating layer.

以下本発明を図面に基づき詳細に説明する。。The present invention will be explained in detail below based on the drawings. .

第3図は本発明に係わる半導体発光素子の一実施例の断
面図でIn0aAsI’ 混晶で製作したものである。
FIG. 3 is a sectional view of one embodiment of a semiconductor light emitting device according to the present invention, which is made of In0aAsI' mixed crystal.

同図に於いて、21はpWInPからなる半導体基板、
22はp型InPからなる厚さ約2μInの第1の半導
体It任、23はIn+−xOaxA−syP+−yが
らf、にル厚さ約100OAの第2の半導体層、24は
+1型1n、Pからなる厚さ約2μI11のへ13の半
導体層、251及び252はp型I n Pからなる厚
さ約0.5 It Illの第4の半導体層、261及
び262はn型I n l’からなる厚さ約0.5μr
nの第5の半導体層、27はSr 02からなる絶縁膜
、28はAdで形成された制御電極、29はAu0eN
i/A、uのylt、 Gig、30はAu Zn /
AuのijL 4’? s Jlは、l、pである。液
相成長法で第1の半導体層22から第5の半導体IN 
2G2までを結晶成長させた後、幅約3/1l11で第
3の半2.rI体層24の内部にまで達する深さの溝。
In the figure, 21 is a semiconductor substrate made of pWInP;
22 is a first semiconductor layer made of p-type InP and has a thickness of about 2 μIn; 23 is a second semiconductor layer made of In+-xOaxA-syP+-y and has a thickness of about 100 OA; 24 is a +1 type 1n; 251 and 252 are p-type I n P fourth semiconductor layers with a thickness of about 0.5 It Ill, and 261 and 262 are n-type I n l'. Approximately 0.5 μr thick
27 is an insulating film made of Sr02, 28 is a control electrode made of Ad, and 29 is Au0eN.
i/A, u's ylt, Gig, 30 is Au Zn/
Au's ijL 4'? s Jl is l, p. From the first semiconductor layer 22 to the fifth semiconductor IN using a liquid phase growth method
After growing the crystal up to 2G2, the third half 2. A groove deep enough to reach the inside of the rI body layer 24.

3) 刀fを作製し、その内側にCV、l、1  法によって
厚さ約1000 AOJ) S io2からなる絶縁膜
27を形成しである。
3) A sword f is produced, and an insulating film 27 made of SiO2 with a thickness of about 1000 AOJ is formed on the inside thereof by the CV, l,1 method.

、?/ 絶縁膜27の上には溝材の側壁に当る部分に制御′it
?。
,? / On the insulating film 27, there is a control layer on the part that corresponds to the side wall of the groove material.
? .

極28が形成しである。紙面垂直方向の素子の長さは約
400 /Zlllで端面は結晶の臂開面になっている
Pole 28 is formed. The length of the element in the direction perpendicular to the plane of the paper is about 400/Zlll, and the end face is an open face of the crystal.

使用に際しては電極3oの電位は11L極29の電位よ
りも高電位となる様にバイアスVl/、圧を印加し、例
えば電極30は接地し、又電極29には負のバイアス知
In use, a bias Vl/pressure is applied so that the potential of the electrode 3o is higher than the potential of the 11L pole 29; for example, the electrode 30 is grounded, and the electrode 29 is provided with a negative bias voltage.

圧を印加しておく。その様にすると第3の半シ!;一体
層24と第4の半導体層251の接合及び第5の半7A
1体層261と第4の半導体層252の接合にζ4逆バ
イアス状態になる様に電圧が印加されていることになる
ので電流はそれらの接合を(め−切って流れることは出
来ない。第4の半導体層及O・第5の半導体層は本実施
例ではそれぞれ251及び252と26[及び262と
二層ずつからなるが交互に複数個積層するのは接合を4
黄切って流れるブレーク・ダウンを抑えるためである。
Apply pressure. If you do that, the third half-shi! ; Junction between integral layer 24 and fourth semiconductor layer 251 and fifth half 7A
Since a voltage is applied to the junction between the monolithic layer 261 and the fourth semiconductor layer 252 so as to create a ζ4 reverse bias state, current cannot flow through the junction. In this embodiment, the semiconductor layer 4 and the fifth semiconductor layer are composed of two layers 251, 252, 26 [and 262], respectively.
This is to suppress the break down that flows into yellow.

jlj1廁II Ilf、(鑞28に正′lσ、川を印
〕11「・ノーると第4の半導体層251及び252で
絶縁1M27吉接する部分に電子が誘起され、電極29
の方から絶縁膜27と半導体層の界面に沿って電子iE
i、 31i:がfif、れ第2の半導体層23に電子
が注入される。又正孔’K l′IiUは電極30から
第2の半Nf体層23に向かって流れ込む。第2の半導
体層23が活性層となり発1旧まill 3図の紙面1
(j−直方向に起こる。制御電極28には微小な正電圧
をかけるだけで速い速度てレーリ゛発振碇・ス・イツチ
ングすることがoJ能である。本爽施例では開側l電極
28に1■の71L圧をかけ約8001人の甫、流を流
すことが出来、発振をスイッヂング出来る。
jjlj1廁II Ilf, (positive 'lσ, river marked on the wire 28) 11 "・When the fourth semiconductor layers 251 and 252 are in contact with the insulation 1M27, electrons are induced in the part where the insulation 1M27 contacts, and the electrode 29
Electrons iE are emitted from the direction along the interface between the insulating film 27 and the semiconductor layer.
i, 31i: is fif, and electrons are injected into the second semiconductor layer 23. In addition, the holes 'K l'IiU flow from the electrode 30 toward the second half Nf layer 23 . The second semiconductor layer 23 becomes an active layer and the second semiconductor layer 23 becomes an active layer.
(This occurs in the j-direction. It is possible to switch the ray oscillation at a high speed by simply applying a small positive voltage to the control electrode 28. In this embodiment, the open side l electrode 28 It is possible to apply 71L pressure of 1cm to flow about 8001 people of water and to switch the oscillation.

第4図は本発明に係わる他の実施例の断Ini図で制御
電極を281及び282と二つにしたもので、一方の制
i’il+l電イモ、例えば281?ζr〔y圧をかけ
てバイアス1’17.流をiAr、しておき、2)32
に変調′11を圧をかりられる様にしたものである。
FIG. 4 is a cut-away diagram of another embodiment of the present invention, in which the control electrodes are divided into two, 281 and 282, and one control electrode, for example, 281? ζr [Apply y pressure and bias 1'17. Keep the flow iAr, 2) 32
The modulation '11 can be applied with pressure.

以上、実施例と共に具体的に説明した隊に本発明によれ
ば半導体基板上に高比抵抗層を成長させることが難かし
い材料で半導体レーザとその駆動1子を集積化すること
が出来、高速度AI′JT能な半導体発光素子を実現出
来る。又871造も17i1単であるので、小型化され
るだけでなく、安価に製造リーることか可能である。
As described above in detail with the embodiments, according to the present invention, it is possible to integrate a semiconductor laser and its driver element using a material for which it is difficult to grow a high resistivity layer on a semiconductor substrate, and A semiconductor light emitting device capable of high speed AI'JT can be realized. Furthermore, since the 871 model is also made of 17i1, it is not only smaller in size, but also can be manufactured at a lower cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の断面図、第2図はそのfイ更1的等価
回路図、第3図は本発明に係わる一実施例の断面図、第
4図は他の実施例の断面図である。 11はn型半導体基板、12はn型りラッドls’i、
13は活性半導体層、14はp型クラッド層、15(J
高1七抵抗層、16はn型半導体層、17はp型拡11
州:酊A。 18は11型′IE極、19はソース電極、7.(IL
Iゲート箪(イji−。 21はドレイン電極、2[は半2.1■体基板、?2は
i“151の半導体層、2S(は第2の半導体層、2/
I f:j第3の半、Ed体層、251及び252は第
4の半導体層、261及び262は第5の小シキ体層、
27は絶縁膜、28 、281及び282は制例′電極
、29及び30は電イ;ロ芝、31は?・界である。 第1図 第2図 9 第3図 R
Fig. 1 is a sectional view of a conventional example, Fig. 2 is a further equivalent circuit diagram thereof, Fig. 3 is a sectional view of one embodiment according to the present invention, and Fig. 4 is a sectional view of another embodiment. It is. 11 is an n-type semiconductor substrate, 12 is an n-type rad ls'i,
13 is an active semiconductor layer, 14 is a p-type cladding layer, 15 (J
High 17 resistance layer, 16 is n-type semiconductor layer, 17 is p-type expansion layer 11
State: Drunkenness A. 18 is an 11-type IE electrode, 19 is a source electrode, and 7. (IL
21 is the drain electrode, 2[ is the semi-2.1-inch substrate, ?2 is the semiconductor layer of i"151, 2S( is the second semiconductor layer, 2/
If:j third half, Ed body layer, 251 and 252 are fourth semiconductor layers, 261 and 262 are fifth small body layers,
27 is an insulating film, 28, 281, and 282 are standard electrodes, 29 and 30 are electric currents, and 31 is ?・It is the world. Figure 1 Figure 2 Figure 9 Figure 3 R

Claims (1)

【特許請求の範囲】[Claims] 半導体基板の上部に、第1.第2及び第3の半導体層が
積層され、少なくとも前記第1及び第3の半導体層は前
記第2の半導体層よりも禁制帯幅が大きく、且つ屈折率
が小さく、前記第1及び第3の半導体層は互いtこ反対
の導電型を有しレーザ発振せしめるレーザ部と前記第3
の半導体層の上に第4の半導体層と第5の半導体層が積
層され、前記第4の半導体層は前記第1の半4体層と同
一なる導電型を有し、又前記第5の半導体層は一前記第
・3の半導体層と同一なる導電型を有し、前記第5の半
導体層の表面より前記第3の半導体層の内部に達する深
さの溝が直線状に形成され、その溝の側壁ζこは絶縁膜
を介して制御成極が形成されたレーザ5駆動部とからな
ることを特徴とする半導体発光素子。
On the top of the semiconductor substrate, the first. second and third semiconductor layers are stacked, at least the first and third semiconductor layers have a larger forbidden band width and a smaller refractive index than the second semiconductor layer; The semiconductor layer has a conductivity type opposite to each other and is connected to a laser section for laser oscillation and the third semiconductor layer.
A fourth semiconductor layer and a fifth semiconductor layer are laminated on the semiconductor layer, and the fourth semiconductor layer has the same conductivity type as the first half-layer, and the fifth The semiconductor layer has the same conductivity type as the first and third semiconductor layers, and a groove having a depth reaching from the surface of the fifth semiconductor layer to the inside of the third semiconductor layer is formed in a straight line, A semiconductor light emitting device characterized in that the side wall ζ of the groove is comprised of a laser 5 driving section in which controlled polarization is formed via an insulating film.
JP57139364A 1982-08-11 1982-08-11 Semiconductor light-emitting element Pending JPS5929478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57139364A JPS5929478A (en) 1982-08-11 1982-08-11 Semiconductor light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57139364A JPS5929478A (en) 1982-08-11 1982-08-11 Semiconductor light-emitting element

Publications (1)

Publication Number Publication Date
JPS5929478A true JPS5929478A (en) 1984-02-16

Family

ID=15243605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57139364A Pending JPS5929478A (en) 1982-08-11 1982-08-11 Semiconductor light-emitting element

Country Status (1)

Country Link
JP (1) JPS5929478A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5601260A (en) * 1994-05-27 1997-02-11 Nifco, Inc Engaging structure of retainer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5601260A (en) * 1994-05-27 1997-02-11 Nifco, Inc Engaging structure of retainer

Similar Documents

Publication Publication Date Title
CA1138561A (en) Semiconductor light emitting element and method for producing the same
EP0033137B1 (en) Semiconductor laser device
JPS6359277B2 (en)
JPS62174728A (en) Optical switch
JPH0738457B2 (en) Opto-electronic bistable element
JPS5929478A (en) Semiconductor light-emitting element
JPS6237906B2 (en)
JPS58200584A (en) Semiconductor light emitting device
JP2555984B2 (en) Semiconductor laser and manufacturing method thereof
JPH08222801A (en) Semiconductor laser
JPH05160506A (en) Semiconductor laser and its manufacture
JPS62214687A (en) Structure of semiconductor laser
JPH023314B2 (en)
JP2517042B2 (en) Optical integrated circuit
JPS6490578A (en) Manufacture of semiconductor laser device
JPS61271886A (en) Semiconductor laser device
JPH067630B2 (en) Three-terminal semiconductor laser device
JPS6346790A (en) Buried semiconductor laser and manufacture thereof
JPS62189784A (en) Buried type semiconductor laser and manufacture of same
JPH0337875B2 (en)
JPH0195583A (en) Buried-type semiconductor laser device
JPS59127885A (en) Semiconductor light-emitting element
JPS6191989A (en) Light functional device
JPS61271887A (en) Semiconductor laser
JPS5763884A (en) Semiconductor light-emitting device