JPS5929455A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS5929455A
JPS5929455A JP13937182A JP13937182A JPS5929455A JP S5929455 A JPS5929455 A JP S5929455A JP 13937182 A JP13937182 A JP 13937182A JP 13937182 A JP13937182 A JP 13937182A JP S5929455 A JPS5929455 A JP S5929455A
Authority
JP
Japan
Prior art keywords
resistance
contact
semiconductor
conductivity type
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13937182A
Other languages
Japanese (ja)
Inventor
Nobuyuki Morita
守田 伸幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP13937182A priority Critical patent/JPS5929455A/en
Publication of JPS5929455A publication Critical patent/JPS5929455A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched

Abstract

PURPOSE:To increase the electrostatic breakdown dielectric resistance of a bipolar IC by making at least one of two opening sections connected to a reverse conduction type semiconductor region wider than the area of the other opening in a metallic electrode. CONSTITUTION:The contact section 106b of the electrode is made wider than the area of 106a. Since the contact resistance of the contact sections is reduced by using such a resistance element, Joule heat generated in the contact sections is reduced while the concentration of an electric field can be prevented. Accordingly, electrostatic breakdown dielectric resistance due to charging charges is increased.

Description

【発明の詳細な説明】 本発明は集積回路装fi!i:(IC)に関する。[Detailed description of the invention] The present invention provides an integrated circuit device fi! i: Regarding (IC).

近年、1「子機器の信頼性に対する要求が高まるにつれ
て、IC自体の信頼性も高いことが必要となってきた。
In recent years, as the demand for reliability of child devices has increased, it has become necessary for the IC itself to be highly reliable.

その信頼性を低下させる要因の一つに、IC内部回路素
子の静電破壊が有り、これはIC機能の破壊才たは特性
不良等を引き起すことになり信頼性上問題となる。従来
のバイポーラ■Cにおいて、例えばIC内部の抵抗素子
の一端の電極がボンディング配線によって直接入出力端
子に導ひかれている場合、前述の抵抗素子の金属電極と
抵抗領域との接続部(コンタクト部)のそれぞれの面状
は通常、内部回路素子に用いられている標準的なコンタ
クト部の面積と等しいものを用いていた。
One of the factors that lowers the reliability is electrostatic damage to IC internal circuit elements, which causes damage to IC functions or poor characteristics, which poses a problem in terms of reliability. In a conventional bipolar ■C, for example, if the electrode at one end of the resistance element inside the IC is directly led to the input/output terminal by bonding wiring, the connection part (contact part) between the metal electrode of the resistance element and the resistance region mentioned above. The shape of each surface is usually equal to the area of standard contact portions used in internal circuit elements.

ここで、従来構造の抵抗素子の平面図を第1図に、また
第2図に第1図中のX−X による断面図をそれぞれ示
す。第1図及び第2図における半導体装置は以下の工程
を経て製造される。まず、p+型型半導体基板1ニ1 長層102を形成し、熱拡散により形成されるp++半
導体領域によって分離領域を形成する。前述分離領域中
にp型半導体抵抗領域104を熱拡散及び酸化すること
により形成し、同時に絶縁膜105を形成する。その後
、p型半導体抵抗領域104に電極を設けるため絶縁膜
105にエツチングを施してp型半導体抵抗領域104
との接続部(コンタクト部)106を形成し、前述コン
タクト部106を金属電極107によって包囲した半導
体装置が完成する。また108は内部素子間等を接続す
る金属配線であり、109は金属電極107を入出力端
子に接続するためのポンディングパッドであることを示
す。
Here, FIG. 1 shows a plan view of a resistive element having a conventional structure, and FIG. 2 shows a sectional view taken along line X--X in FIG. 1, respectively. The semiconductor devices shown in FIGS. 1 and 2 are manufactured through the following steps. First, a long layer 102 of a p+ type semiconductor substrate 1 is formed, and an isolation region is formed by a p++ semiconductor region formed by thermal diffusion. A p-type semiconductor resistance region 104 is formed in the aforementioned isolation region by thermal diffusion and oxidation, and at the same time an insulating film 105 is formed. After that, the insulating film 105 is etched to provide an electrode in the p-type semiconductor resistance region 104.
A semiconductor device is completed in which a connection portion (contact portion) 106 is formed and the contact portion 106 is surrounded by a metal electrode 107. Further, 108 is a metal wiring for connecting internal elements, etc., and 109 is a bonding pad for connecting the metal electrode 107 to an input/output terminal.

次に前述した従来構造の抵抗素子を用いた場合の欠点を
示ず。例えば、正の電荷(数百ピコファラッドのコンア
ン→)°−に数百ボルトの電圧を印加した場合の蓄積電
荷に相当)が帯電している人体が従来構造の抵抗素子を
内蔵したバイポーラICを電子機器に実装する段階で、
前述した入出力端子が人体と接触し、かつICの基板電
位にある端子が接地箱1位にあった場合、入出力端子か
ら抵抗素子のコンタクト部106及びp型半導体抵抗領
域104を通じてp型半導体101へ前述の帯電電荷が
過大電流となって流れる。この時、コンタクト部106
のコンタクト抵抗によるジュール熱のため抵抗素子のコ
ンタクト部106刊近の金属電極107が溶解し、さら
にはp型半導体抵抗領域104内部深く浸入してp型半
導体抵抗領域104とn型半導体の気相成長層102と
の接合部を破壊する。この結果、入出力の耐圧不良もし
くは短絡状態を生じ信頼性を低下させる。
Next, the disadvantages of using the conventionally structured resistor element described above will not be shown. For example, if a human body is charged with a positive charge (equivalent to the accumulated charge when a voltage of several hundred volts is applied to a conant of several hundred picofarads), a bipolar IC with a built-in resistive element of conventional structure is At the stage of implementation in electronic equipment,
When the input/output terminal mentioned above comes into contact with the human body and the terminal at the substrate potential of the IC is in the ground box 1 position, the p-type semiconductor is connected to the input/output terminal through the contact portion 106 of the resistor element and the p-type semiconductor resistance region 104. The above-mentioned electrical charge flows to 101 as an excessive current. At this time, the contact part 106
The metal electrode 107 near the contact portion 106 of the resistance element melts due to the Joule heat caused by the contact resistance, and further penetrates deeply into the p-type semiconductor resistance region 104, causing a vapor phase between the p-type semiconductor resistance region 104 and the n-type semiconductor. The joint with the growth layer 102 is destroyed. As a result, poor input/output voltage resistance or short circuits occur, reducing reliability.

本発明の目的はプロセス変更や、面状の過大な拡大を招
くことなく大幅にバイポーラICの静電破壊耐圧の向上
をはかることにある。
An object of the present invention is to significantly improve the electrostatic breakdown voltage of a bipolar IC without changing the process or excessively enlarging the surface.

本発明は一導電型の半導体基体と、該半導体基体の一側
面から内部に形成された反対導′区型の半導体領域と、
前記半導体基体及び反対導電型の半導体領域の表面上に
形成された絶縁層と、前記反対導電型の半導体領域表面
上の絶縁層が少なくとも二つの開口部を有し、該開口部
を介して前記反対導1に型の半導体領域に接続された金
属111極とを含む半導体装置において、前記開口部の
少なくとも一つが他の開口部の面積よりも広いことを特
徴とする。
The present invention includes a semiconductor substrate of one conductivity type, a semiconductor region of an opposite conductivity type formed inside from one side of the semiconductor substrate,
The insulating layer formed on the semiconductor substrate and the surface of the semiconductor region of opposite conductivity type, and the insulating layer on the surface of the semiconductor region of opposite conductivity type have at least two openings, and the A semiconductor device including a metal 111 pole connected to a semiconductor region of a type with an opposite conductor 1, characterized in that at least one of the openings is wider in area than the other openings.

次に、本発明を実施例により説明する。Next, the present invention will be explained by examples.

第1の実施例は、第3図の平面図で示されるような抵抗
素子であり、第4図は第3図中のx−x’による断面図
である。図中の連続番号は従来構造の第1図及び第2図
中に示すものと同じであって構造がほぼ同じであること
を示唆している。ただし、第3図及び第4図において電
極のコンタクト部106 (b)が106 (a)の面
接よりも広いことを/i?徴とする。第2の実施例を第
5図に示す。第5図において、コンタクト部の形状を円
形として用いることにより更に静電破壊に強い抵抗素子
を実現できる。
The first embodiment is a resistance element as shown in the plan view of FIG. 3, and FIG. 4 is a cross-sectional view taken along line xx' in FIG. 3. The serial numbers in the figures are the same as those shown in FIGS. 1 and 2 of the conventional structure, indicating that the structures are substantially the same. However, in FIGS. 3 and 4, the contact portion 106 (b) of the electrode is wider than the surface area 106 (a) /i? be a sign. A second embodiment is shown in FIG. In FIG. 5, by using a circular shape for the contact portion, a resistive element that is even more resistant to electrostatic damage can be realized.

このような抵抗素子を用いることによりコンタクト部の
コンタクト抵抗が従来のコンタクト抵抗よりも小さくな
るため、コンタクト部に発生ずるジュール熱が小さくな
るとともに箱5界の集中を防ぐことが出来る。この結果
、前述した帯電電荷による静電破壊耐圧の著しい向上が
図れた。以上のように本発明は抵抗素子にのみ限定され
るものではないことはいうまでもない。
By using such a resistance element, the contact resistance of the contact portion becomes smaller than the conventional contact resistance, so that the Joule heat generated in the contact portion is reduced and concentration of the box 5 field can be prevented. As a result, the electrostatic breakdown voltage caused by the above-mentioned electrical charge was significantly improved. As described above, it goes without saying that the present invention is not limited only to resistive elements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来構造による抵抗素子の平面図であり、第2
図は第1図中のx−x’による断面図である。第3図は
本発明による構造の抵抗素子の平面図であり、第4図は
第3図中のx−x’による断面図である。第5図はコン
タクト部の形状を円形にしたものである。 101・・・・・・p生型半導体基板、102・・・・
・・n型気相成長層、103・・・・・・p十型絶縁領
域、104・・・・・・p型半導体抵抗領域、105・
・・・・・絶縁層、106・・・・・・電極のコンタク
ト部、107・・・・・・金属1;L極、108・・・
・・・ボンティング配線、109・・・・・ポンディン
グパッド。
FIG. 1 is a plan view of a resistance element with a conventional structure.
The figure is a sectional view taken along line xx' in FIG. 1. FIG. 3 is a plan view of a resistance element having a structure according to the present invention, and FIG. 4 is a cross-sectional view taken along line xx' in FIG. In FIG. 5, the shape of the contact portion is circular. 101...P-type semiconductor substrate, 102...
. . . N-type vapor phase growth layer, 103 . . . P-type insulation region, 104 . . . P-type semiconductor resistance region, 105.
... Insulating layer, 106 ... Contact part of electrode, 107 ... Metal 1; L pole, 108 ...
...bonting wiring, 109...bonding pad.

Claims (1)

【特許請求の範囲】[Claims] 一導電型の半導体基体と、該半導体基体の一側面から内
部に形成された反対導電型の半導体領域と、前記半導体
基体及び反対導電型の半導体領域の表面上に形成された
絶縁層と、前記反対導vL型の半導体領域表面上の絶縁
層が少なくとも二つの開口部を有し、該開口部を介して
前記反対導電型の半導体領域に接続された金属電極とを
含む半導体装置において、前記開口部の少なくとも一つ
が他の開口部の面撰よりも広いことを特徴とするバイポ
ーラ集積回路を含む半導体装置。
a semiconductor substrate of one conductivity type; a semiconductor region of an opposite conductivity type formed inside from one side of the semiconductor substrate; an insulating layer formed on the surfaces of the semiconductor substrate and the semiconductor region of the opposite conductivity type; In a semiconductor device, an insulating layer on a surface of a semiconductor region of opposite conductivity type VL has at least two openings, and a metal electrode connected to the semiconductor region of opposite conductivity type through the openings. 1. A semiconductor device including a bipolar integrated circuit, wherein at least one of the openings is wider than other openings.
JP13937182A 1982-08-11 1982-08-11 Semiconductor device Pending JPS5929455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13937182A JPS5929455A (en) 1982-08-11 1982-08-11 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13937182A JPS5929455A (en) 1982-08-11 1982-08-11 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS5929455A true JPS5929455A (en) 1984-02-16

Family

ID=15243764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13937182A Pending JPS5929455A (en) 1982-08-11 1982-08-11 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5929455A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144457A (en) * 1984-08-09 1986-03-04 Nec Corp Static type semiconductor memory
JPH04107709U (en) * 1991-02-27 1992-09-17 松下電器産業株式会社 belt conveyor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54160186A (en) * 1978-06-09 1979-12-18 Toshiba Corp Semiconductor integrated circuit device
JPS56146277A (en) * 1980-04-15 1981-11-13 Toshiba Corp Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54160186A (en) * 1978-06-09 1979-12-18 Toshiba Corp Semiconductor integrated circuit device
JPS56146277A (en) * 1980-04-15 1981-11-13 Toshiba Corp Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144457A (en) * 1984-08-09 1986-03-04 Nec Corp Static type semiconductor memory
JPH04107709U (en) * 1991-02-27 1992-09-17 松下電器産業株式会社 belt conveyor device

Similar Documents

Publication Publication Date Title
US4609935A (en) Semiconductor device with an improved crossing structure at the intersection of a resistor region and a wiring conductor
CN107170732A (en) Semiconductor device
US20010040266A1 (en) Integrated circuit with highly efficient junction insulation
US4829344A (en) Electronic semiconductor device for protecting integrated circuits against electrostatic discharges
JPH06105783B2 (en) Power semiconductor device having a main current section and an emulation current section
US3518504A (en) Transistor with lead-in electrodes
JPS5929455A (en) Semiconductor device
US3414784A (en) Electrical structural element having closely neighboring terminal contacts and method of making it
JPS6348192B2 (en)
JPS5955051A (en) Integrated resistor
JP4150508B2 (en) Power semiconductor device
JPS63239972A (en) Input protective circuit of semiconductor device
JPS62155548A (en) Electrostatic protective circuit element for semiconductor integrated circuit
JPS6112691Y2 (en)
JPS58182861A (en) Semiconductor device
JPS63168051A (en) Complementary soi lateral insulated gate rectifier
JP3128958B2 (en) Semiconductor integrated circuit
JP2996346B2 (en) MOS integrated circuit
JP2522350B2 (en) Semiconductor integrated circuit protection device
JPH0122989B2 (en)
JPS647499B2 (en)
JPS59205760A (en) Insulated gate field-effect type semiconductor device
JPS6127677A (en) Manufacture of semiconductor device
JPS5927570A (en) Semiconductor device
JPS6313371A (en) Semiconductor device