JPS5927393B2 - Electrode and electrolysis method - Google Patents

Electrode and electrolysis method

Info

Publication number
JPS5927393B2
JPS5927393B2 JP3567179A JP3567179A JPS5927393B2 JP S5927393 B2 JPS5927393 B2 JP S5927393B2 JP 3567179 A JP3567179 A JP 3567179A JP 3567179 A JP3567179 A JP 3567179A JP S5927393 B2 JPS5927393 B2 JP S5927393B2
Authority
JP
Japan
Prior art keywords
electrode
cathode
diaphragm
anode
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3567179A
Other languages
Japanese (ja)
Other versions
JPS55128592A (en
Inventor
治 清水
道博 赤沢
章 山口
覚 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP3567179A priority Critical patent/JPS5927393B2/en
Publication of JPS55128592A publication Critical patent/JPS55128592A/en
Publication of JPS5927393B2 publication Critical patent/JPS5927393B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【発明の詳細な説明】 本発明は、被電解溶液の電解用の特定な態様の電極およ
びその電極を用いて被電解溶液を電解する方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a specific embodiment of an electrode for electrolyzing a solution to be electrolyzed and a method for electrolyzing a solution to be electrolyzed using the electrode.

従来、隔膜を陰陽極間に配置し、陽極室および陰極室に
分割した電解槽を用いて、被電解溶液例えばアルカリ金
属ハロゲン化物溶液を電解して、・・ロゲン化ガスおよ
びアルカリ金属水酸化物を製造することは公知の技術で
あろ。
Conventionally, a solution to be electrolyzed, such as an alkali metal halide solution, is electrolyzed using an electrolytic cell in which a diaphragm is placed between a cathode and an anode and is divided into an anode chamber and a cathode chamber, and... halogenated gas and alkali metal hydroxide are generated. It is a known technology to manufacture.

特に、塩化ナトリウム水溶液の電解は、得られる塩素お
よび苛性ソーダが工業的に非常に重要であるため、大規
模な工業設備で実施されていろ。これまで塩化アルカリ
水溶液の電解方法としては、隔膜法と水銀法とがあり、
現状では、水銀の毒性、公害規制の関係から、隔膜法な
かでもイオン交換膜を用いた隔膜法が開発採用されつつ
ある。
In particular, electrolysis of aqueous sodium chloride solutions should be carried out in large-scale industrial facilities, since the resulting chlorine and caustic soda are of great industrial importance. Until now, there have been two methods for electrolyzing aqueous alkali chloride solutions: the diaphragm method and the mercury method.
At present, due to the toxicity of mercury and pollution regulations, among the diaphragm methods, diaphragm methods using ion exchange membranes are being developed and adopted.

この方法においては、最長のものでも4.0り以上の高
電圧の電解電圧下で運転しなければならない状況にあろ
。このため、電解電力コストが占めろ割合は、大きく、
いかに電解電圧を低下し、電流効率を高く維持できるか
が、今後の問題として残されていろ。この方法における
電解電圧の上昇の原因は、種種考えられる。
In this method, even the longest one must be operated under a high electrolytic voltage of 4.0 or more. For this reason, the electrolytic power cost accounts for a large proportion;
How to lower the electrolytic voltage and maintain high current efficiency remains a question for the future. There are various possible causes for the increase in electrolytic voltage in this method.

1つは、隔膜の表面における付着物によるもの、膜自体
の劣化および電解条件等の影響に起因するものがあろ。
One is due to deposits on the surface of the diaphragm, and the other is due to deterioration of the membrane itself and the influence of electrolytic conditions.

この他に陰極および陽極でのガス気泡の発生に伴ない、
電極近傍、殊に電極と隔膜間のガス気泡の存在、滞溜に
よる電圧上昇が大きく、塩化ナトリウム水溶液等の電解
上の最大の障害となつている。このため、一般には電極
の形状として、ガス抜けおよび液の混合を良好とするた
めに、多孔性の電極例えばエキスパンドメタル、金網状
の電極が採用されている。
In addition, due to the generation of gas bubbles at the cathode and anode,
The presence of gas bubbles in the vicinity of the electrodes, especially between the electrodes and the diaphragm, causes a large voltage increase due to accumulation, which is the biggest obstacle in the electrolysis of sodium chloride aqueous solutions and the like. For this reason, porous electrodes, such as expanded metal or wire mesh electrodes, are generally used as electrode shapes to improve gas release and liquid mixing.

しかし、これらの電極においても問題解消の抜本的な解
決策とはなつていない。そこで特開昭52−11457
1.特開昭5316371および特開昭53−1028
74等に見られる如く、ガス気泡に起因する電圧上昇を
抑えるべく、エキスパンドメタル電極を特定の角度を持
たせて設置する、電極面に縦方向の溝を設ける、案内板
を設けるなどの手段を講じる等、種々工夫がなされてい
る。一方、イオン交換膜を用いて、例えば塩化ナトリウ
ム水溶液の電解を行う場合、イオン交換膜は通電時の温
度上昇、膜への透水量および膜の含水量の変化により、
使用前の原膜に対して通常縦方向に1.8〜2.501
)、横方向に2.0〜3.0%の寸法変化することが知
られている。
However, these electrodes have not yet provided a fundamental solution to the problem. Therefore, JP-A-52-11457
1. JP-A-5316371 and JP-A-53-1028
74, etc., in order to suppress the voltage increase caused by gas bubbles, measures such as installing the expanded metal electrode at a specific angle, providing vertical grooves on the electrode surface, and providing a guide plate are used. Various efforts have been made, including: On the other hand, when an ion exchange membrane is used to electrolyze an aqueous sodium chloride solution, for example, the ion exchange membrane undergoes a
Usually 1.8 to 2.501 in the longitudinal direction to the original film before use.
), it is known that there is a 2.0-3.0% dimensional change in the lateral direction.

また、従来のフイルタープレス型等の電解槽では、電解
液の漏洩を防止するためにイオン交換膜の外周を、クロ
ロプレンゴム、EPDMなどの適当な材質で造られたガ
スケツトで充分電槽の枠に固定されている。従つて、イ
オン交換膜の両方向の寸法変化は逃げ場を失ない縦横の
シワとして膜が吸収する状態となる。特に垂直方向に電
極および隔膜を設け、使用する縦型の電解槽を用いて電
解を行う場合においては水平方向(横方向)に発生し友
シワに滞溜するガス気泡は、その滞溜時間が長く、かつ
気泡が大であるため、電解電圧の上昇の大きな原因とな
つている。更に、これらのシワ発生によるガス気泡の滞
溜は、膜の電流密度を見掛けの電流密度より高くし、ま
た電流密度の上昇で発生ガス量が増加すると、益々見掛
けの電流密度は高くなり、電解電圧に対する影響が増加
することになる。
In addition, in conventional filter press type electrolytic cells, in order to prevent electrolyte leakage, the outer periphery of the ion exchange membrane is sufficiently surrounded by a gasket made of a suitable material such as chloroprene rubber or EPDM. Fixed. Therefore, dimensional changes in both directions of the ion exchange membrane become absorbed by the membrane as vertical and horizontal wrinkles with no escape. In particular, when performing electrolysis using a vertical electrolytic cell with electrodes and diaphragms installed in the vertical direction, gas bubbles generated in the horizontal direction (horizontal direction) and accumulated in the creases have a long retention time. Since it is long and the bubbles are large, it is a major cause of the increase in electrolytic voltage. Furthermore, the accumulation of gas bubbles due to the generation of these wrinkles makes the current density of the membrane higher than the apparent current density, and as the amount of gas generated increases due to the increase in current density, the apparent current density becomes higher and the electrolytic The effect on voltage will increase.

例えば電流密度が30K/DTrI以上高くなつ友場合
は、このガス気泡の存在による電圧上昇は、0.5〜0
.8vと大きく、経済性の面からしても無視しえないも
のとなる。この膜のシワ発生を抑制すべく、膜自体の改
質、改良によるシワ防止の研究および各極室液の循環な
どによるガス気泡に起因する電圧上昇を減少させる方法
が研究、開示されているが、いまだ満足するものは開発
されていない。
For example, if the current density is higher than 30K/DTrI, the voltage increase due to the presence of gas bubbles will be 0.5 to 0.
.. It is large at 8V and cannot be ignored from an economical point of view. In order to suppress the occurrence of wrinkles in this membrane, research has been conducted on ways to prevent wrinkles by modifying and improving the membrane itself, and methods for reducing the voltage rise caused by gas bubbles by circulating the liquid in each electrode chamber. However, nothing satisfactory has yet been developed.

本発明は、これらの問題を改善すべく研究の結果、完成
したものである。
The present invention was completed as a result of research to improve these problems.

即ち、本発明は、電解時における隔膜の伸び、寸法変化
による縦横のシワを一方向のシワとして吸収し、ひいて
は膜のシワに起因するガス気泡の滞溜時間の低減および
膜面、膜面と電極面でのガス気泡の上昇を効果的に行う
ことができ、更に、電極面でのガス抜き、および液の混
合を極めて良好となし得る特定な態様構造の電解用電極
およびその電極を用いて被電解溶液を電解する方法を提
供するものである。本発明により電位降下を減少し、陰
陽極間電圧の上昇ケ大幅に低減することができる。以下
、本発明を詳細に説明する。
That is, the present invention absorbs vertical and horizontal wrinkles due to elongation and dimensional changes of the diaphragm during electrolysis as unidirectional wrinkles, thereby reducing the residence time of gas bubbles caused by membrane wrinkles and improving the membrane surface and membrane surface. By using an electrolytic electrode having a specific structure, which can effectively raise gas bubbles on the electrode surface, and also achieve extremely good degassing and liquid mixing on the electrode surface, and the electrode. The present invention provides a method for electrolyzing a solution to be electrolyzed. According to the present invention, the potential drop can be reduced and the increase in the voltage between the cathode and the anode can be significantly reduced. The present invention will be explained in detail below.

本発明は、平面視および断面視したとき、共にw型連続
波形構造となつている、被電解溶液の電解用電極および
その電極を用いて被電解溶液を電解する方法更に詳しく
述べれば、電極面に凹凸を有する多孔板であつて、谷部
m1・・・Mn・・・、山部n1・・・NT,・・・の
波線が縦方向に互に平行なW型連続形状をとり、且つ厚
み方向の縦横断面の形状のいづれもがw型連続波型形状
をとる被電解溶液の電解用電極およびその電極を用いて
被電解溶液を電解する方法を提供する。
The present invention provides an electrode for electrolyzing a solution to be electrolyzed, which has a W-shaped continuous wave structure when viewed in plan and in cross section, and a method for electrolyzing a solution to be electrolyzed using the electrode. It is a perforated plate having unevenness on the surface, and has a W-shaped continuous shape in which the wavy lines of valleys m1...Mn... and peaks n1...NT,... are parallel to each other in the vertical direction, and Provided are electrodes for electrolyzing a solution to be electrolyzed, each of which has a W-shaped continuous wave shape in longitudinal and transverse cross-sections in the thickness direction, and a method for electrolyzing a solution to be electrolyzed using the electrode.

本発明の電極構造においで平面視および断面視したとき
、共にw型連続波形”とは、第1図に示すとおり電極の
電極面を平面的に見たとき第1図の〔A〕の如く、電極
の表裏共に山部m1・・−Nln・・・および谷部n1
・・・Nn・・・の波線M,nが互いに平行かつw型連
続形状となつている連続波形の集合体を平面視w型連続
波形といい、また、断面視w型連続波形とは、第1図の
〔B〕および第1図の〔C〕に示す如く、電極厚み方向
の縦横を断面視(x−xl視、y−y′視)したとき、
共にその断面がw型連続波形となつていることで、これ
が本発明の最大な特徴である。
In the electrode structure of the present invention, when viewed in plan and in cross section, "W-shaped continuous waveform" means that when the electrode surface of the electrode is viewed in plan, as shown in [A] in FIG. , peaks m1...-Nln... and valleys n1 on both the front and back sides of the electrode.
...Nn... A collection of continuous waveforms in which the wavy lines M and n are parallel to each other and have a W-shaped continuous shape is called a W-shaped continuous waveform in a plan view, and a W-shaped continuous waveform in a cross-sectional view is: As shown in [B] in FIG. 1 and [C] in FIG. 1, when viewed in cross-section (x-xl view, y-y' view) in the electrode thickness direction,
Both have a W-shaped continuous wave cross section, which is the most distinctive feature of the present invention.

本発明電極構造の電極板の形状としては種々のものが採
用できるが、金網状、メツシユ状、エキスパンドメタル
等のガス抜けの艮い多孔性のものが挙げられる。
Various shapes can be used for the electrode plate of the electrode structure of the present invention, including porous shapes that allow gas to escape, such as wire mesh, mesh, and expanded metal.

特に孔部の形状がひし形、長六角形状のエキスパンドメ
タルを用いるのが好ましい。また、材質は特に限定され
ないが、陰極として用いる場合は、鉄、軟鋼、ニツケル
等、陽極として用いる場合は、チタン、タングステン等
に白金、パラジウム等を被覆した通常用いられる金属性
の電極が使用される。本発明の電極は、隔膜を陰・陽極
間に配置し、陽極室および陰極室に分割した電解槽中で
、被電解溶液を電解する際の電極として用いた場合が効
果的である。
In particular, it is preferable to use expanded metal in which the holes have a rhombic or long hexagonal shape. The material is not particularly limited, but when used as a cathode, iron, mild steel, nickel, etc. are used, and when used as an anode, a commonly used metal electrode such as titanium, tungsten, etc. coated with platinum, palladium, etc. is used. Ru. The electrode of the present invention is effective when used as an electrode for electrolyzing a solution to be electrolyzed in an electrolytic cell divided into an anode chamber and a cathode chamber, with a diaphragm disposed between the cathode and anode.

更に隔膜として透水性を有する隔膜、中性の多孔膜、電
荷金有する多孔膜、陽イオン交換膜、なかでもスルホン
基、カルボキシル基、リン酸基などを有する陽イオン交
換膜、殊にフツ素系の陽イオン交換膜を用いて、被電解
溶液特に塩化ナトリウム、塩化カリウム水溶液の電解を
行う場合の電極として用いたとき、その効果は大である
。また、電解を行う態様は種々ある。
Furthermore, as a diaphragm, a diaphragm having water permeability, a neutral porous membrane, a porous membrane having a charge, a cation exchange membrane, especially a cation exchange membrane having a sulfone group, a carboxyl group, a phosphate group, etc., especially a fluorine-based membrane are used. When the cation exchange membrane is used as an electrode for electrolyzing a solution to be electrolyzed, especially an aqueous solution of sodium chloride or potassium chloride, the effect is great. Moreover, there are various modes of carrying out electrolysis.

一対の陰・陽極を有し、この間に電解電圧を印加して電
解を行う態様、陰・陽極が1体となつた複極式電極と陰
・陽極を仕切る隔壁で構成された陽極室、陰極室よりな
る単位のセルユニツトを複数個直列にフイルタープレス
型式に並べ、その両端には陽極室のみあるいは陰極室の
みよりなるものをおいて得られる電槽の両端の陰・陽極
に電解電圧をかけて電解を行う態様等がある。本発明は
これらのいずれの態様であつてもよいが、特に陰・陽極
を実質的に垂直に設置して用いる縦型電解槽の電極に用
いることが効果的である。
A mode in which electrolysis is performed by applying an electrolytic voltage between a pair of cathodes and anodes, an anode chamber consisting of a bipolar electrode in which the cathode and anode are integrated, a partition wall separating the cathode and anode, and a cathode. A plurality of cell units consisting of chambers are arranged in series in a filter press format, and each end is provided with only an anode chamber or only a cathode chamber, and an electrolytic voltage is applied to the cathode and anode at both ends of the resulting battery cell. There are various modes of performing electrolysis. Although the present invention may have any of these embodiments, it is particularly effective to use it as an electrode for a vertical electrolytic cell in which the cathode and anode are installed substantially vertically.

第2図は、本発明を適用した縦型電解槽の1例の部分断
面図を示したものである。第2図により、塩化ナトリウ
ム水溶液の電解を行う場合を例にして、本発明の電解方
法について説明する。第2図において、本発明のw型連
続波形構造の陰極1および陽極2を含有する電解槽は、
適当な手段により所定の場所に固着された隔膜3によつ
て分離され、陰極室4および陽極室5が形成され?)。
FIG. 2 shows a partial sectional view of an example of a vertical electrolytic cell to which the present invention is applied. The electrolysis method of the present invention will be described with reference to FIG. 2, taking as an example the case where an aqueous sodium chloride solution is electrolyzed. In FIG. 2, an electrolytic cell containing a cathode 1 and an anode 2 having a W-type continuous wave structure according to the present invention is
Separated by a diaphragm 3 fixed in place by suitable means, a cathode chamber 4 and an anode chamber 5 are formed. ).

電解槽には、陽極室5中に電解質即ち飽和ブライン溶液
の導入口6、ブライン溢流口7および陽極2の背面上に
形成される生成塩素ガス出口8を設け、ブラインは、連
続的に循環使用させる。
The electrolytic cell is provided with an electrolyte or saturated brine solution inlet 6 in the anode chamber 5, a brine overflow port 7, and a produced chlorine gas outlet 8 formed on the back side of the anode 2, and the brine is continuously circulated. Let them use it.

また陰極室4は、水または稀薄苛性ソーダの液を導入す
る友めの入口9、陰極室4から濃厚生成苛性ソーダを放
出するための出口10および陰極1面で形成される水素
ガス放出出口11を設けられる。陰極室14で形成され
る生成物即ち苛性ソーダは、所望生成物の濃縮のための
適当な回収装置に供せられる。本発明のw型連続波形構
造の電極を用いて被電解液を電解する場合、特に重要な
ことは、隔膜にいずれか又は両方の電極の電極面を接す
るように設置することで、殊に第2図に示すように陰極
1および陽極2の山部あるいは谷部のいずれかを隔膜3
に共に接して行うことが望ましい。
The cathode chamber 4 is also provided with a companion inlet 9 for introducing water or a dilute caustic soda solution, an outlet 10 for discharging the concentrated caustic soda produced from the cathode chamber 4, and a hydrogen gas discharge outlet 11 formed by one surface of the cathode. It will be done. The product, ie caustic soda, formed in the cathode compartment 14 is submitted to a suitable recovery device for concentration of the desired product. When electrolyzing a liquid to be electrolyzed using the electrode with the W-type continuous wave structure of the present invention, it is particularly important to install the electrode surface of one or both of the electrodes in contact with the diaphragm. As shown in Figure 2, either the peaks or valleys of the cathode 1 and anode 2 are connected to the diaphragm 3.
It is desirable to do this in close contact with the

これは隔膜3に発生する両方向のシワを各方向に均一の
シワとして吸収する上で重要であるためである。この隔
膜3を電極に接するための手段として、例えば陽極2に
接するには、隔膜を陽極に接する様な位置に隔膜を設置
する方法、隔膜に隣接する両室の内、陰極室の液面を高
くして液圧により陽極に接する方法、陰極室のガス圧を
陽極室のガス圧より大きくする方法あるいは、第2図に
示すように、固定された陽極支持体12と可変可能な陰
極支持体13を用いて強制的に接する方法などがあり、
これらの方法を単独あるいは組み合せて用いられる。隔
膜を陰極に接する場合も、上記の手段を同様に組み合せ
て採用すればよい。第2図の陰極支持体13は、陰極端
子部14を陰極1に密着し、バイメタル17を用いた陰
極可変機構を具備したものである。
This is because it is important to absorb wrinkles in both directions that occur in the diaphragm 3 as uniform wrinkles in each direction. As a means for bringing the diaphragm 3 into contact with the electrode, for example, in order to contact the anode 2, there is a method in which the diaphragm is installed at a position where the diaphragm is in contact with the anode, and a method in which the liquid level in the cathode chamber of both chambers adjacent to the diaphragm is A method in which the gas pressure in the cathode chamber is made higher than that in the anode chamber, or a method in which a fixed anode support 12 and a variable cathode support are used, as shown in FIG. There are methods such as forcing contact using 13.
These methods can be used alone or in combination. When the diaphragm is brought into contact with the cathode, a similar combination of the above means may be employed. The cathode support 13 shown in FIG. 2 has a cathode terminal portion 14 in close contact with the cathode 1, and is equipped with a cathode variable mechanism using a bimetal 17.

陰極を隔膜に接するためのこの方法による手段は、バイ
メタルを用いる方法の他にバネ等を用いる方法も適宜採
用される。要は、隔膜に本発明のw型連続波形構造の電
極を隔膜に接する手段を選べば本発明の効果は達成され
る。15は陰極1を陽極2に極端に接近させない友めの
極間最少幅を調整する電極ストツパ一で、16はそのス
トツパ一調整のための調節ボルトおよび18はゴムガス
ケツトを示す。
As the method for bringing the cathode into contact with the diaphragm, in addition to the method using a bimetal, a method using a spring or the like may be adopted as appropriate. In short, the effects of the present invention can be achieved by selecting a means for bringing the W-type continuous wave structure electrode of the present invention into contact with the diaphragm. Reference numeral 15 indicates an electrode stopper for adjusting the minimum width between the electrodes to prevent the cathode 1 from coming too close to the anode 2, 16 an adjustment bolt for adjusting the stopper, and 18 a rubber gasket.

本発明の電極を縦型電解槽に用いるときは、ガス気泡の
抜けやすさ、ガス気泡の滞溜時間および電圧上昇を抑え
る点より、第1図の〔A〕の平面図のように縦波状の態
様で電極を用いる必要がある。本発明を適用したとき、
通常の電極を用いて電解を行つた場合の電解電圧より0
.4〜1.2vの電圧低下が期待できる。更に、本発明
の電極の好ましい態様は、厚み方向のW型波形を断面視
したときのw型連続波形の水平方向あるいは垂直方向に
対する波形角度(以下断面視角度と称す)を10〜50
度好ましくは、20〜35度に維持することが望ましい
When using the electrode of the present invention in a vertical electrolytic cell, it is preferable to form a longitudinally wavy shape as shown in the plan view of [A] in Fig. 1, in order to facilitate the escape of gas bubbles, suppress the residence time of gas bubbles, and suppress the voltage rise. It is necessary to use the electrode in this manner. When the present invention is applied,
0 compared to the electrolysis voltage when electrolysis is performed using normal electrodes.
.. A voltage drop of 4 to 1.2v can be expected. Further, in a preferred embodiment of the electrode of the present invention, when the W-shaped waveform in the thickness direction is viewed in cross section, the waveform angle (hereinafter referred to as cross-sectional angle) of the W-shaped continuous waveform with respect to the horizontal or vertical direction is 10 to 50.
It is desirable to maintain the temperature preferably between 20 and 35 degrees.

断面視角度とは、第1図のB(x−x′断面視)のa−
d−cおよびc−a−dを結ぶ角度αおよび第1図のC
(y−y′断面図)のd−e−d/およびf−e−fl
を結ぶ角度βを総称するものである。
The cross-sectional view angle is the a-
Angle α connecting d-c and c-a-d and C in Figure 1
(y-y' sectional view) d-e-d/ and fe-fl
It is a general term for the angle β connecting the .

また、電極のw型波線を平面視したときのw型連続波形
の水平方向、あるいは垂直方向に対する波型角度(以下
平面視角度と称す)は、20〜60度好ましくは30〜
45度に維持するのが望ましい。平面視角度とは、第1
図のA(Dab−cおよびb−d−eを結ぶ角度γをい
う。これは、断面視角度および平面視角度をこの範囲内
に維持しないときは、一方向に隔膜のシワを吸収するこ
とが出来ず、本発明の効果を充分発揮することができな
いためである。なお、平面視したときのw型連続波形間
の間隔、即ち第1図のA(7)hは任意に選定すること
が出来るが、本発明の効果を充分満足させる必要性の点
で、10〜30[NOlの間隔内で構成させることおよ
び陰陽極は、2.0〜4.0m101に保持することが
望ましい。
Furthermore, when the w-shaped wavy line of the electrode is viewed from above, the waveform angle of the w-shaped continuous waveform with respect to the horizontal direction or the vertical direction (hereinafter referred to as the planar viewing angle) is 20 to 60 degrees, preferably 30 to
It is desirable to maintain the temperature at 45 degrees. The plane view angle is the first
A in the figure (refers to the angle γ connecting Dab-c and b-de. This means that if the cross-sectional and planar viewing angles are not maintained within this range, wrinkles in the diaphragm will be absorbed in one direction. This is because the effect of the present invention cannot be fully exhibited.The interval between the W-shaped continuous waveforms when viewed from above, that is, A(7)h in Fig. 1, may be arbitrarily selected. However, in view of the need to fully satisfy the effects of the present invention, it is desirable to configure the spacing within the range of 10 to 30 [NOl] and to maintain the anode to 2.0 to 4.0 m101.

本発明により例えばアルカリ金属・・ロゲン化物水溶液
の電解を実施する際の電解条件としては、既に公知とな
つているこの種の条件を適宜採用することができる。
As the electrolytic conditions for carrying out the electrolysis of, for example, an alkali metal/logenide aqueous solution according to the present invention, already known conditions of this type can be appropriately employed.

例えば、電解温度は、室温ないし90℃で行うことがで
きる。又、電流密度は、5〜50A/dイで操業するこ
とができるが、50A/dイ以上になると、浴電圧が著
しく高くなり必ずしも有利ではない。これらの条件は、
浴.電圧、電流効率など総合的にみて、経済的に有利に
なる条件を決めることが望ましい。以上のように、本発
明は特定態様の電極およびその電極を用いた電解方法に
関し、本発明を適用することにより、電解時における隔
膜の伸び、寸法変化による縦横のシワを各方向に均一の
シワとして吸収し、シワに起因するガス気泡の滞溜時間
の低減および電極面でのガス抜き、液の混合を極めて艮
好となし得ることができる。
For example, the electrolysis temperature can be from room temperature to 90°C. Further, although it is possible to operate at a current density of 5 to 50 A/d, a current density of 50 A/d or higher is not necessarily advantageous since the bath voltage becomes extremely high. These conditions are:
bath. It is desirable to decide on conditions that are economically advantageous by comprehensively considering voltage, current efficiency, etc. As described above, the present invention relates to a specific embodiment of an electrode and an electrolysis method using the electrode, and by applying the present invention, vertical and horizontal wrinkles due to elongation and dimensional changes of the diaphragm during electrolysis can be reduced to uniform wrinkles in all directions. As a result, the residence time of gas bubbles caused by wrinkles can be reduced, gas can be vented on the electrode surface, and the liquid can be mixed very efficiently.

ひいては、電圧上昇を有効に防止し、隔膜への付着物等
による膜の劣化を低減し得るものである。この様に本発
明の電極を使用するのみで、これまで問題となつていた
課題を解決しうる有効な手段を提供するものであり、当
該分野における実用上の意義は極めて大きいものである
。以下、本発明の実施例及び比較例により更に、具体的
に説明するが、本発明の範囲は、これら実施例のみに限
定されないのは言うまでもない。
As a result, it is possible to effectively prevent voltage rise and reduce membrane deterioration due to deposits on the diaphragm. In this way, the electrode of the present invention alone provides an effective means for solving problems that have hitherto been a problem, and has extremely great practical significance in this field. The present invention will be explained in more detail below using Examples and Comparative Examples, but it goes without saying that the scope of the present invention is not limited only to these Examples.

実施例 1隔膜としてパーフルオロスルホン酸型陽イオ
ン交換膜(デュポン社、商品名NaffiOnMemb
rane3l5)を、陰・陽極として共に平面視角度が
40度、断面視角度が45度の第1図に示すW型連続波
形構造(h幅10n101)の電極を用い、両極共に該
陽イオン交換膜紮接するように設置した縦型電解槽の陰
極室に純水を供給し、一方陽極室にキレートイオン交換
樹脂を通して得た不純物イオンが酸化カルシウムとして
0.1〜〆lの濃度の飽和塩水を1500m′Hrでフ
イードしながら下記に示す条件で、かつ各極室液の循環
そ行うことなく電解を行つた。
Example 1 A perfluorosulfonic acid type cation exchange membrane (DuPont, trade name NaffiOnMemb) was used as a diaphragm.
rane3l5), using electrodes with a W-shaped continuous wave structure (h width 10n101) as shown in FIG. Pure water is supplied to the cathode chamber of a vertical electrolytic cell installed so as to be connected to each other, while 1500 m of saturated salt water with a concentration of 0.1 to 〆l of impurity ions as calcium oxide, which has been passed through a chelate ion exchange resin, is supplied to the anode chamber. Electrolysis was carried out under the conditions shown below while feeding with 1000 hr. and without circulating the liquid in each electrode chamber.

通電開始直後の浴電圧は、4.00〜4.12vであり
、2000hrs後の浴電圧も3.90〜4.15vで
経時的な電圧上昇は全く認められなかつた。
The bath voltage immediately after the start of energization was 4.00 to 4.12 V, and the bath voltage after 2000 hrs was also 3.90 to 4.15 V, with no voltage increase over time being observed at all.

更に2000hrs経過後に電解槽を解体して、使用膜
のシワの観察をしたところ横方向のシワは、ほとんど発
生しておらず、縦方向のシワのみが発生していた。また
該膜への付着物および変色も全くなく、使用前の膜と同
等であつた。実施例 2〜7、比較例 1〜2 表1に示すような種々角度を有するw型連続波形構造の
電極を用いた以外は、実施例1と同様の条件にて飽和塩
水の電解を行つた。
Further, after 2000 hours had elapsed, the electrolytic cell was disassembled and the used membrane was observed for wrinkles, and it was found that almost no horizontal wrinkles had occurred, and only vertical wrinkles had occurred. Further, there was no deposit or discoloration on the membrane, and it was equivalent to the membrane before use. Examples 2 to 7, Comparative Examples 1 to 2 Saturated salt water was electrolyzed under the same conditions as in Example 1, except that electrodes with a W-type continuous wave structure having various angles as shown in Table 1 were used. .

通電開始から1000hrs経過したときの浴電圧およ
び使用膜の状況を観察した結果を表1に示す。比較例
3 w型連続波形構造の電極の代わりに通常使用されている
電極を用いたことおよび各極室液の循環をした以外は実
施例1と同様の条件にて飽和塩水の電解を行つ友。
Table 1 shows the results of observing the bath voltage and the condition of the membrane used 1000 hrs after the start of current application. Comparative example
3 Electrolysis of saturated salt water was carried out under the same conditions as in Example 1, except that a commonly used electrode was used instead of the W-type continuous wave structure electrode and the liquid in each electrode chamber was circulated.

通電開始直後の浴電圧3.99〜4.15vであり、1
000hrs後には4.24〜4.34と著しい浴電圧
の経時上昇が認められた。
The bath voltage immediately after the start of energization is 3.99 to 4.15 V, and 1
After 000 hrs, a significant increase in bath voltage over time was observed, ranging from 4.24 to 4.34.

1500hrs後に電槽より膜を取り出し観察したとこ
ろ、膜は白つぼく若干変色していることが認められた。
After 1500 hrs, the membrane was removed from the container and observed, and it was found that the membrane had white spots and was slightly discolored.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の1例を示す電極の平面図Aおよび断
面図B,Cである。 (但し、孔は省略)第2図は本発明の電極ケ適用し友縦
型電解槽の1例の部分断面図を示す。第2図において、
1・・・・・・陰極、2・・・・・・陽極、3・・・・
・・隔膜、4・・・・・・陰極室、5・・・・・・陽極
室、6・・・・・・ブラインの導入口、7・・・・・・
ブライン溢流口、8・・・・・・塩素ガス出口、9・・
・・・・水または希薄苛性ソーダの導入口、10・・・
・・・生成苛性ソーダの出口、11・・・・・・水素ガ
ス放出口、12・・・・・・陽極支持体、13・・・・
・・陰極支持体、14・・・・・・陰極端子部、15・
・・・・・電極ストツパ一、16・・・・・・調節ボル
ト、17・・・・・・バイメタル、18・・・・・・パ
ツキング。
FIG. 1 is a plan view A and cross-sectional views B and C of an electrode showing one example of the present invention. (However, holes are omitted.) FIG. 2 shows a partial sectional view of an example of a vertical electrolytic cell to which the electrode of the present invention is applied. In Figure 2,
1... cathode, 2... anode, 3...
...Diaphragm, 4...Cathode chamber, 5...Anode chamber, 6...Brine inlet, 7...
Brine overflow port, 8... Chlorine gas outlet, 9...
...Water or dilute caustic soda inlet, 10...
... Outlet of generated caustic soda, 11 ... Hydrogen gas discharge port, 12 ... Anode support, 13 ...
...Cathode support, 14...Cathode terminal, 15.
... Electrode stopper 1, 16 ... Adjustment bolt, 17 ... Bimetal, 18 ... Packing.

Claims (1)

【特許請求の範囲】 1 電極面に凹凸を有する多孔板であつて、谷部m_1
・・・m_n・・・、山部n_1・・・n_n・・・の
波線が縦方向に互に平行なW型連続形状をとり、且つ厚
み方向の縦横断面の形状のいづれもがW型連続波形形状
をとる被電解溶液の電解用電極。 2 電極面のW型波線の平面視角度γが20乃至60度
および厚み方向のW型波形の断面視角度α,βが10乃
至50度の範囲でなる特許請求の範囲第1項記載の電極
。 3 隔膜を陰陽極間に配置し、陽極室および陰極室に分
割した電極槽中で被電解溶液を電解するに際し、電極面
に凹凸を有する多孔板であつて、谷部m_1・・・m_
n・・・、山部n_1・・・n_n・・・の波線が縦方
向に互に平行なW型連続形状をとり、且つ厚み方向の縦
横断面の形状のいづれもがW型連続波形形状をとる電極
を陰陽極のいずれか又は両方の電極として用いることを
特徴とする電解方法。 4 隔膜にW型連続波形形状をとる電極の少なくとも一
つをその電極面の山部あるいは谷部が接するように設置
して用いる特許請求の範囲第3項記載の電解方法。 5 電極面のW型波線の平面視角度γが20乃至60度
および厚み方向のW型波形の断面視角度α,βが10乃
至50度の範囲となつている電極を用いる特許請求の範
囲第3項または第4項記載の電解方法。
[Scope of Claims] 1. A porous plate having unevenness on the electrode surface, which has valleys m_1.
...m_n..., the wavy lines of the peaks n_1...n_n... take a W-shaped continuous shape in which they are parallel to each other in the longitudinal direction, and the longitudinal and cross-sectional shapes in the thickness direction are all W-shaped continuous. An electrode for electrolysis of the electrolyte solution that takes a waveform shape. 2. The electrode according to claim 1, wherein the W-shaped wavy line on the electrode surface has a planar angle γ of 20 to 60 degrees, and the cross-sectional angles α and β of the W-shaped wave in the thickness direction are 10 to 50 degrees. . 3 A perforated plate having unevenness on the electrode surface when electrolyzing a solution to be electrolyzed in an electrode tank divided into an anode chamber and a cathode chamber with a diaphragm arranged between the cathode and anode, with valleys m_1...m_
n..., peaks n_1...n_n... have a W-shaped continuous wave shape in which the wavy lines are parallel to each other in the longitudinal direction, and the longitudinal and cross-sectional shapes in the thickness direction have a W-shaped continuous wave shape. An electrolytic method characterized in that the electrode is used as either or both cathode and anode electrodes. 4. The electrolysis method according to claim 3, in which at least one electrode having a W-shaped continuous waveform is installed on the diaphragm so that the peaks or valleys of the electrode surface are in contact with the diaphragm. 5. Claim No. 5 using an electrode in which the angle γ of the W-shaped wavy line on the electrode surface in plan view is in the range of 20 to 60 degrees, and the cross-sectional angles α and β of the W-shaped wave in the thickness direction are in the range of 10 to 50 degrees. The electrolysis method according to item 3 or 4.
JP3567179A 1979-03-28 1979-03-28 Electrode and electrolysis method Expired JPS5927393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3567179A JPS5927393B2 (en) 1979-03-28 1979-03-28 Electrode and electrolysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3567179A JPS5927393B2 (en) 1979-03-28 1979-03-28 Electrode and electrolysis method

Publications (2)

Publication Number Publication Date
JPS55128592A JPS55128592A (en) 1980-10-04
JPS5927393B2 true JPS5927393B2 (en) 1984-07-05

Family

ID=12448331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3567179A Expired JPS5927393B2 (en) 1979-03-28 1979-03-28 Electrode and electrolysis method

Country Status (1)

Country Link
JP (1) JPS5927393B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK501485A (en) * 1984-11-05 1986-05-06 Dow Chemical Co ELECTROLYTE CELL AND METHOD OF OPERATING THE SAME
NL8601906A (en) * 1985-07-29 1987-02-16 Permelec Electrode Ltd ELECTRODE FOR ELECTROLYSIS WHEN APPLYING A DIAPHRAGM.
WO2016133983A1 (en) * 2015-02-17 2016-08-25 Evoqua Water Technologies Llc Reduced volume electrochlorination cells and methods of manufacturing same

Also Published As

Publication number Publication date
JPS55128592A (en) 1980-10-04

Similar Documents

Publication Publication Date Title
US4013525A (en) Electrolytic cells
US4417960A (en) Novel electrolyzer and process
US4142950A (en) Apparatus and process for electrolysis using a cation-permselective membrane and turbulence inducing means
US4056458A (en) Monopolar membrane electrolytic cell
US4557816A (en) Electrolytic cell with ion exchange membrane
JPS607710B2 (en) Electrolysis method of alkali metal chloride using diaphragm electrolyzer
US4144146A (en) Continuous manufacture of sodium dithionite solutions by cathodic reduction
SU878202A3 (en) Method of electrolyzis of sodium chloride aqueous solution
JPS5927393B2 (en) Electrode and electrolysis method
CA1175780A (en) Internal downcomer for electrolytic recirculation
US4568433A (en) Electrolytic process of an aqueous alkali metal halide solution
JP7236568B2 (en) Electrodes for electrolysis and electrolysis equipment
RU2126462C1 (en) Electrode, electrolyzer, method of electrode manufacture and method of electrolysis
US4436599A (en) Method for making a cathode, and method for lowering hydrogen overvoltage in a chloralkali cell
US4488947A (en) Process of operation of catholyteless membrane electrolytic cell
JP3112265B1 (en) Alkali chloride electrolysis method
JP2001152379A (en) Electrolytic cell
JPS6082684A (en) Method for remodeling alkali chloride electrolytic cell
JPS599632B2 (en) electrolytic cell
JPH0216389B2 (en)
JPS5831089A (en) Unipolar electrolytic cell
JPS59193291A (en) Electrolysis and electrolytic cell
JPH09220573A (en) Electrolytic method using two-chamber type electrolytic cell
JPS63199888A (en) Single-electrode electrolytic cell plant
JPS5867879A (en) Electrolytic cell using ion-exchange membrane