JPS59193291A - Electrolysis and electrolytic cell - Google Patents

Electrolysis and electrolytic cell

Info

Publication number
JPS59193291A
JPS59193291A JP58067420A JP6742083A JPS59193291A JP S59193291 A JPS59193291 A JP S59193291A JP 58067420 A JP58067420 A JP 58067420A JP 6742083 A JP6742083 A JP 6742083A JP S59193291 A JPS59193291 A JP S59193291A
Authority
JP
Japan
Prior art keywords
chamber
anode
cathode
anolyte
exchange membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58067420A
Other languages
Japanese (ja)
Inventor
Yasushi Samejima
鮫島 靖志
Minoru Shiga
稔 志賀
Toshiji Kano
叶 敏次
Takashi Yamada
山田 傑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP58067420A priority Critical patent/JPS59193291A/en
Publication of JPS59193291A publication Critical patent/JPS59193291A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To enable the preparation of high-grade caustic alkali in a low-cost device while facilitating the exhaustion of anodic gas, in a horizontal electrolytic cell, by forming the stream of a liquid anolyte flowing through an anodic chamber below a horizontal cation-exchange membrane while damping the lower surface of said membrane. CONSTITUTION:In a horizontal electrolytic cell equipped with an upper cathodic chamber 1 and a lower anodic chamber 2 through a substantially horizontal cation-exchange membrane 3, salty water is supplied through an inlet 19 for introducing a liquid anolyte to the anodic chamber 2 to smoothly promote electrolytic reaction while damping the lower surface of the exchange membrane 3. Formed chlorine gas is immediately entangled in the liquid anolyte being circulated through the chamber 2 to form a mixed- phase stream, withdrawn through an opening 20 for discharging a mixed-phase stream and then introduced into a separator 21 to separate it into chlorine gas and a liquid anolyte. The liquid anolyte from which gas has been separated is cyclically introduced through the introducing opening 19 into the chamber 2 by a pump 22. Hereon, conc. salty water (a) of approximate saturation concentration is supplied to a part of the system for circulating salty water, and dilute salty water is partially withdrawn from the separator 21.

Description

【発明の詳細な説明】 関する。[Detailed description of the invention] related.

詳しくは、電解隔膜として陽イオン交換膜を用いた水平
型7E解+・hにおいて低い電解電圧で、主として高品
質の苛1生アルカリを効率良く得るユ范及か ため霜に関するものである。
More specifically, it relates to the use and hardening of a horizontal type 7E solution using a cation exchange membrane as an electrolytic diaphragm to efficiently obtain high-quality caustic alkali at a low electrolytic voltage.

水平型電解槽は、水平に張設された隔膜によって陽極室
と陰極室とに区画され、一般に目的とする電解生成物、
例えば苛性アルカリは陰極室で生成するため、隔膜を通
して陽極室へ移動することがな−という利点から、従来
工業的に可成り利用されて来た。
A horizontal electrolytic cell is divided into an anode chamber and a cathode chamber by a horizontally stretched diaphragm, and generally contains the desired electrolyzed products,
For example, since caustic alkali is generated in the cathode chamber, it has been widely used industrially because of the advantage that it does not migrate through the diaphragm to the anode chamber.

捷た、°水平型電解槽の最も典型的な例として、水銀性
電解槽があるが、陰極に用いる水銀が環境汚染物質であ
るため、近い将来休止すべき運命番こある。かかる水銀
陰極電解槽を、水銀を用いない隔膜法電解槽に、極力少
ない費用を以って転換せんとすれば必然的に水平型の隔
膜法電解槽に改造することとなり、力)ような水平型隔
膜法電解槽で、水銀法に劣らぬ品位の電解生成物を、高
い電流効率を以って生産する方法の開発は当業界の直面
する重要課題である。
The most typical example of a horizontal electrolyzer is a mercury-based electrolyzer, but because the mercury used in the cathode is an environmental pollutant, it is destined to be discontinued in the near future. If we want to convert such a mercury cathode electrolyzer to a mercury-free diaphragm electrolyzer at the lowest possible cost, we will inevitably have to convert it into a horizontal diaphragm electrolyzer. The development of a method for producing electrolyzed products of a quality equivalent to that of the mercury method with high current efficiency in a diaphragm electrolyzer is an important issue facing the industry.

上記水銀性電解槽を水平型隔膜法電解槽に転換する方法
が特公昭53−25557号公報に開示されているが、
これによって得られた電解槽は濾隔膜を用いたものであ
り、濾隔膜は透水率が大きく、従って陽極室液が隔膜を
水力学的に透過し、陰極室で生成する、例えば苛性アル
カリ中に陽極液が混入し純度を低下せしめる欠点がある
A method of converting the above-mentioned mercury electrolytic cell to a horizontal diaphragm electrolytic cell is disclosed in Japanese Patent Publication No. 53-25557.
The electrolytic cell obtained by this method uses a filter diaphragm, and the filtration diaphragm has a high water permeability. Therefore, the anode chamber liquid hydraulically permeates the diaphragm, and the liquid generated in the cathode chamber, for example, is mixed with caustic alkali. There is a drawback that the anolyte gets mixed in and reduces the purity.

一方、密隔膜と呼ばれる陽イオン交換膜は水力学的に電
解液を透過することなく、電気的に移動するアルカリ金
属イオンと共に配位した水分子が透過するのみであるか
ら高純度の苛性アルカリを得ることができる反面、透】
のした僅かな水分は蒸発し、陽イオン交換膜と陰極との
間に導電不良を来たし、遂には電解反応が停止してしま
う。
On the other hand, a cation exchange membrane called a dense diaphragm does not allow the electrolyte to permeate hydraulically, but only allows water molecules coordinated with electrically moving alkali metal ions to pass through. On the other hand, Toru】
The small amount of water that is left evaporates, causing poor conductivity between the cation exchange membrane and the cathode, and eventually stopping the electrolytic reaction.

かかる問題を解決する為、特開昭49−126596号
公報及び同50−55600号公報には陽イオン交換膜
と陰極との間に水分保持体を存在させる方法、及び陰極
に苛性アルカリ浴液を噴霧状又は噴水状で供給しながら
電解する方法が、それぞれ提案されている。
In order to solve this problem, JP-A-49-126596 and JP-A-50-55600 disclose a method in which a water retainer is present between the cation exchange membrane and the cathode, and a method in which a caustic alkaline bath solution is applied to the cathode. Methods of electrolyzing while supplying in the form of a spray or a fountain have been proposed.

しかしながら、特開昭49−126596号公報によっ
て提案された方法は、水分保持体を介在させる手数及び
水分保持体の耐久性の問題があるのみならず、陽イオン
交換膜と陰極との間に水分保持体を介在させ定場合、極
間距離が拡大すると共に水分保持体による抵抗増は電解
電圧を増大し、性能的に有利な方法とは云えない。また
特開昭50−55600号公報にて提案された方法は、
商業用電解槽のような大型の場合、水分の噴射・供給を
均一に行なうことは困難であり、実用化の面で難がある
However, the method proposed in JP-A No. 49-126596 not only has problems with the number of steps involved in intervening a water retaining body and the durability of the water retaining body, but also has the problem of moisture retention between the cation exchange membrane and the cathode. If a holder is used, the distance between the electrodes increases, and the increase in resistance due to the water holder increases the electrolytic voltage, which cannot be said to be an advantageous method in terms of performance. In addition, the method proposed in Japanese Patent Application Laid-Open No. 50-55600 is
In the case of large-scale electrolyzers such as commercial electrolyzers, it is difficult to uniformly inject and supply water, which poses a problem in terms of practical use.

かかる見地から本出願人は鋭意研究を進め、上記問題点
を解消した技術を開発し、先に特許出願を行なった(特
願昭57−131377等〕。
From this point of view, the present applicant has conducted intensive research, developed a technology that solves the above-mentioned problems, and has filed a patent application (Japanese Patent Application No. 131377/1984, etc.).

しかし乍ら、引き続いて研究を進める中で、陰極室を上
部に陽極室を下部に設けることにより、上部の陽極室と
下部の陰極室とからなる電解槽では得られない利点が得
られることを見出した。即ち、第1Gこ陽極室は塩素及
び塩素を含む塩水による腐食性が強いため、高価な耐食
性材料を必要とする。従って、か〃・る陽極室は容積が
小さく、材料が少なくてすむ方が望ましい。
However, as we continued our research, we found that by providing the cathode chamber at the top and the anode chamber at the bottom, we could obtain advantages that could not be obtained with an electrolytic cell consisting of an upper anode chamber and a lower cathode chamber. I found it. That is, the first G anode chamber is highly corrosive due to chlorine and salt water containing chlorine, and therefore requires an expensive corrosion-resistant material. Therefore, it is desirable that such an anode chamber has a small volume and requires less material.

第2に、濃厚陰極液(例えば苛性ソーダ)中の陰極ガス
(例えば水素ガス)はMB71−<分散し気液分離し難
いのに対し、陽極液(例えば塩水)中の陽極ガス(例え
ば塩素ガス)は容易に気液分離するので液循環工程が簡
略化できる。
Second, the cathode gas (e.g., hydrogen gas) in the concentrated catholyte (e.g., caustic soda) is MB71-< dispersed and difficult to separate into gas and liquid, whereas the anode gas (e.g., chlorine gas) in the anolyte (e.g., salt water) Since gas and liquid are easily separated, the liquid circulation process can be simplified.

本発明は叙上の如き従前の当業界の常識を超越した知見
に基づいて為されたものであり、本発明は水銀性電解槽
から比較的容易に水平型陽イオン交換膜電解槽への転換
を可能とし、高い電流効率を以って高品質の苛性アルカ
リの生産を可能とするものである。また、かかる本発明
!こなる電解4漕は新材料を用いて新た番こ建造するこ
とができることは云う迄もない。
The present invention has been made based on knowledge that goes beyond the conventional common sense in the industry as described above, and the present invention enables relatively easy conversion from a mercury electrolytic cell to a horizontal cation exchange membrane electrolytic cell. This makes it possible to produce high quality caustic alkali with high current efficiency. Also, this invention! It goes without saying that these four electrolysis tanks can be constructed using new materials.

すなわち、本発明の目的は、水平型隔膜法電解槽を用い
て高品質の苛性アルカリを低廉な装置で以って取得する
にある。他の目的は、新規な構造の陽極を用い且つ高い
性能を備えた改良された型式の水平型隔膜法電解槽を提
供するにある。さらに他の目的は、水平型電解槽刀1ら
転換された高性能の水平型隔膜法電解槽、特に水平型陽
イオン交換膜電解槽を提供するにある。
That is, an object of the present invention is to obtain high quality caustic alkali using a horizontal diaphragm electrolytic cell with an inexpensive device. Another object is to provide an improved type of horizontal diaphragm electrolyzer using a novel anode construction and with increased performance. Still another object is to provide a high-performance horizontal diaphragm electrolytic cell, particularly a horizontal cation exchange membrane electrolytic cell, which is an alternative to the horizontal electrolytic cell 1.

その他の目的は以下の記述により順次明らかとなろう。Other purposes will become clear in the following description.

」二記目的を達成するために、本発明は実質的に水平に
張設された陽イオン交換膜の上部に陰極室を、下部に陽
極室をそれぞ、1″′L備えてなる水゛坏型電解糟を用
い、陽イオン交換膜の下面を潤しつつ前記陽極室内を貫
流する陽極液の流れを形成し、該陽極室内に生成した陽
極ガスを直ちに前記流れに巻き込んで陽極室外へ排出す
ることを特徴とする電解方法を要旨とするものでちる。
In order to achieve the second object, the present invention provides a water tank comprising a cathode chamber in the upper part and an anode chamber in the lower part of a cation exchange membrane stretched substantially horizontally. Using a crucible-type electrolytic chamber, a flow of anolyte is formed that flows through the anode chamber while moistening the lower surface of the cation exchange membrane, and the anode gas generated in the anode chamber is immediately drawn into the flow and discharged to the outside of the anode chamber. This article summarizes an electrolytic method characterized by the following.

また、上記本発明方法を遂行するため(こ、実質的に水
平に張設された陽イオン交換膜により−1一部の陰極室
と下部の陽極室とに区画され、前記陰極室は実質的に水
平な陰極板を有してなり、蓋体と、該陰極板を囲むよう
に周設された陰極室惧11壁と、該陽イオン交換膜の」
二面とにより囲繞され、且つ陰極液の導入口および排出
日並に陰極ガス排出口]とを具備してなり、前記陽極室
うに周設さhた陽極室側壁と、該陽イオン交換膜の下面
とにより囲繞され、且つ陽極液の2!良人口および陽極
ガスと陽極i夜との混イ゛目流のわに出1−]を具fi
iii L、て構成されることを特徴とする新規な電解
槽を提供するものである。
In addition, in order to carry out the method of the present invention described above (this is divided into a part of the cathode chamber and a lower anode chamber by a cation exchange membrane stretched substantially horizontally, the cathode chamber is substantially a horizontal cathode plate, a lid body, a wall of the cathode chamber surrounding the cathode plate, and the cation exchange membrane.
a side wall of the anode chamber surrounding the anode chamber; and a side wall of the anode chamber surrounding the anode chamber; 2 of the anolyte and surrounded by the lower surface of the anolyte. A good population and a mixed flow of anode gas and anode i night 1-] are included.
The present invention provides a novel electrolytic cell characterized by comprising:

次(こ本発明の態様を添イ」図面について2;T−述す
る。以下の説明において、アルカリ金属ハロゲン化物の
代表例として現任産業界で最も一般的に使われている塩
化すl−IJウムを、−iた、その電解生成物は苛性ソ
ーダをそれぞれ使冗上用いるか、これ番こよって本発明
をそれらに限定する意図を表わしたものでlく、他の無
機塩水m液や水′膣1眸等にも適用できることは云う迄
もない。
The following description will be made with reference to the drawings in which the embodiments of the present invention are shown. In the following description, we will use l-IJ chloride, which is the most commonly used in the current industry, as a representative example of alkali metal halides. In addition, the electrolytic product is caustic soda, or this number expresses the intention to limit the present invention to them, and other inorganic salt solutions and water are used. Needless to say, it can also be applied to the vagina.

第1図乃至第2図は、本発明1こ力)たる電解槽のそれ
ぞれ一物切欠き正面(図、同側面断1m(図である。
Figures 1 and 2 are a cutaway front view (figure) and a 1 m side cross section (figure) of an electrolytic cell which is one embodiment of the present invention.

第1図及び第2図において、本発明装置は幅に対し長さ
の大なる、好ましくは数倍の長さを有する長方型の陰極
室(1)とその直下に位置する陽極室(2)とよりなり
、陰極室(1)と陽極室(2)とは、実質的に水平に側
壁間に張設された陽イオン交換膜(3)によって区画さ
れる。本山中[実質的に水平Jとは、必要に応じて若干
傾斜させた場合(2/10程度迄の勾配を付与した場合
)をも包含するものとする。
1 and 2, the device of the present invention has a rectangular cathode chamber (1) whose length is larger than its width, preferably several times the length, and an anode chamber (2) located directly below the rectangular cathode chamber (1). ), and the cathode chamber (1) and anode chamber (2) are partitioned by a cation exchange membrane (3) stretched substantially horizontally between the side walls. Motoyama Middle [Substantially horizontal J shall also include the case where it is slightly inclined as necessary (the case where a slope of about 2/10 is given).

本発明に好適な陽イオン交換膜としては、例えば、陽イ
オン交換基を有するパーフルオロカーボン重合体からな
る膜を挙げることができる。
Examples of cation exchange membranes suitable for the present invention include membranes made of perfluorocarbon polymers having cation exchange groups.

スルホン酸基を交換基とするパーフルオロカーボン重合
体よりなる膜は、米国のイー・アイデュポン デ・ニモ
アス・アンド・カンパニー(Tjシ、 T、 Du l
’onl; de Nem0u、ITS &; C0m
1B)、n、y)より商品名[−ナフィオン」として市
販されており、その化学構造は次式に示す通りである。
A membrane made of a perfluorocarbon polymer having a sulfonic acid group as an exchange group was manufactured by E.I.D.
'onl; de Nem0u, ITS &; C0m
1B), n, y) under the trade name [-Nafion], and its chemical structure is as shown in the following formula.

−(−CF’−CF’2→r−−(−〇F2cF2−)
−r−f−LO−CF2− CF−)、O−CF2− 
CF’2−8O3H0丁(13 か力)る陽イオン交換膜の好適な当量重量は1.000
乃’+’j、 2.000 、好丑シ<は1.、 l 
00乃至1゜500であり、ここ番こ当量重量とは、交
換基当量当りの乾燥膜の重量(g)である。また、上記
交換膜のスルホン酸基の一部又は全部を力Iレボン酸基
に置換した陽イオン交換膜その他慣用されている陽イオ
ン交換膜も本発明に適用することができる。これらの陽
イオン交換膜は透水率が著しく小さく、水力学的流れを
通さすに水分子3〜4個を有するナトリウムイオンを通
すのみである。
-(-CF'-CF'2→r--(-〇F2cF2-)
-r-f-LO-CF2- CF-), O-CF2-
The preferred equivalent weight of a cation exchange membrane of CF'2-8O3H0 is 1.000
乃'+'j, 2.000, 小丑shi<is 1. , l
The equivalent weight here is the weight (g) of the dry membrane per equivalent of exchange group. Further, cation exchange membranes in which part or all of the sulfonic acid groups of the above-mentioned exchange membranes are replaced with levonic acid groups and other commonly used cation exchange membranes can also be applied to the present invention. These cation exchange membranes have extremely low water permeability and only allow sodium ions with 3 to 4 water molecules to pass through the hydraulic flow.

陰極室(1)は蓋体(4)と、陰極4奄俸(6)、陰極
板02)等より(14成される陰極を囲むように延設さ
れた陰極室側壁(5)と、陽イオン交換)換(3)の上
表[mとにより画成されており、陰極導電棒(6)は蓋
体(4)に立設された陰極懸垂装置(7)で懸垂さえし
、各陰極導電棒(6)は陰極ブスバー(8)で互いに連
結されている。蓋体(4)は陰極導電棒(6)を挿通ず
る孔(10)を有し、核化(10)はシー) Ql) 
iこより気密にシールされている。陰極導″屯俸(6)
の下端には陰極板αりが取01けられており、力・くし
て陰極板0りは陰極懸垂装ft(7)iこ連結されてい
るため、陰極懸垂装置(7)を操作することにより上下
に昇降調節可能で、陽イオン交換膜(3)に接触するよ
う配置することができる。もつとも陰極は蓋体に立役さ
hた陰極懸垂装置刀・ら懸垂される場合に限られず、他
の方法により懸垂あるいは支持されていても差し支えな
い。さらに陰極室は少なくとも1個の陰極液導入口0■
を有しており、これらは該蓋体(4)または陰極室側壁
(5)に設けることができる。陰極液は適宜循環するこ
とが出来るし、循環しなくても良い。循環しない場合は
陰極液導入口より水を注加し濃度をコン1−ロールする
ことが出来る。一方、陰極液排出口(14)は少なくと
も1側設けられ、これらは該側壁(5)に設けることが
できる。また、該器体(4)ま几は該側壁(5)の適宜
箇処に陰極ガス(水素ガス)排出口0■を備えている。
The cathode chamber (1) has a lid body (4), a cathode chamber side wall (5) extending so as to surround the cathode formed from the cathode plate 02 (14), etc., and an anode. The cathode conductive rod (6) is suspended by a cathode suspension device (7) erected on the lid (4), and each cathode is The conductive rods (6) are connected to each other by cathode busbars (8). The lid body (4) has a hole (10) through which the cathode conductive rod (6) is inserted, and the nucleus (10) has a hole (10) through which the cathode conductive rod (6) is inserted.
It is more airtightly sealed. Cathode conductor (6)
A cathode plate (7) is attached to the lower end of the frame, and the cathode plate (7) is connected to the cathode suspension device (7), so that the cathode suspension device (7) cannot be operated. It can be raised and lowered vertically and can be placed in contact with the cation exchange membrane (3). Of course, the cathode is not limited to being suspended from a cathode suspension device erected on the lid, and may be suspended or supported by other methods. In addition, the cathode chamber has at least one catholyte inlet
These can be provided on the lid (4) or the cathode chamber side wall (5). The catholyte can or may not be circulated as appropriate. If the catholyte does not circulate, water can be added from the catholyte inlet to control the concentration. On the other hand, a catholyte outlet (14) is provided on at least one side, and these can be provided on the side wall (5). Further, the container body (4) is provided with a cathode gas (hydrogen gas) outlet 0 at an appropriate location on the side wall (5).

又、陰極ガスは陰極液と共に電解槽から排出された後、
気液分離を行なうことも可能である。
Also, after the cathode gas is discharged from the electrolytic cell together with the catholyte,
It is also possible to carry out gas-liquid separation.

上記の陰極室(1)を構成する蓋体(4)及び陰極室側
壁(5)として(J、水銀性電解槽を構成する蓋体及び
陽極室側壁を転用することもできるし、苛性ソーダ等の
苛性アルカリに耐える材料であれハ特に制限はなく、鉄
、ステンレススチール、ニッケル、ニッケル合金等を使
用できる。また、鉄基材上に耐アルカIJ tel材料
をライニングした材料も好適に使用できる。さらにまた
ゴム、プラスチック等の材料も使用することがテキる。
As the lid body (4) and cathode chamber side wall (5) constituting the cathode chamber (1) described above (J, the lid body and anode chamber side wall constituting the mercury electrolytic cell can be reused, or caustic soda etc. There is no particular restriction on the material that can withstand caustic alkali, and iron, stainless steel, nickel, nickel alloy, etc. can be used.Also, a material in which an iron base material is lined with an alkali-resistant IJ tel material can also be suitably used. It is also possible to use materials such as rubber and plastic.

かかる材料としては、たとえば天然ゴム、ブチルゴム、
エチレンプロピレンゴム(EPR)などのゴム系]シ和
1、四フッ化エチレン重合体、四フッ化エチレンー六フ
ッ化プロピレン共重合体、エチレン−四フッ化エチレン
共重合体すどのフッ素系ポリマー材料、ポリ塩化ビニル
、強化フ。
Such materials include, for example, natural rubber, butyl rubber,
Rubber-based materials such as ethylene propylene rubber (EPR)] Fluorine-based polymer materials such as Siwa 1, tetrafluoroethylene polymer, tetrafluoroethylene-hexafluoropropylene copolymer, and ethylene-tetrafluoroethylene copolymer, PVC, reinforced plastic.

ラスチック(FRP )7zどが例示される。An example is plastic (FRP) 7z.

本発明に使用される陰極板02としては、エキスパンデ
ッドメタル、パンチトメタル、メタルネット等の多孔性
陰極板が好適である。陰極板02は鉄、ニッケル、ステ
ンレススチール等の導電性材料により製造することがで
き、また、該陰極板の表面に水素過電圧を低下せしめる
几めにニッケル、銀の溶射、ニッケル合金メッキ等を施
すことは好適な一態様である。
As the cathode plate 02 used in the present invention, porous cathode plates such as expanded metal, punched metal, and metal net are suitable. The cathode plate 02 can be manufactured from a conductive material such as iron, nickel, or stainless steel, and the surface of the cathode plate is coated with nickel, silver spraying, nickel alloy plating, etc. to reduce hydrogen overvoltage. This is a preferred aspect.

次いで陽極室(2)は陽イオン交換膜(3)の下表面と
陽極板OQと、該陽極板の縁に沿って該陽極板を囲むよ
うに立設された陽極室側壁θ力と4こより画成される。
Next, the anode chamber (2) is connected to the lower surface of the cation exchange membrane (3), the anode plate OQ, and the anode chamber side wall θ which is erected along the edge of the anode plate so as to surround the anode plate. defined.

陽極板(16)は陽極底板(24)と1.11気的に接
続さ、+1.たチタンあるいはタンタルのような金属の
薄板よりなり、その表面に白金族金属あるいは酸化白金
族金属又はそれらの混合物をコーチインクされたものよ
りなる。更に、陽極底板上にライニングされたチタンあ
るいはタンタル1番こ上記貴金属をコーチインクしたチ
タンまたはタンクルよりなるエクスパンプツト゛メタル
、スパゲツティ、ネットを溶接した陽極も好適な態様で
ある。前者の非多孔性陽極板の場合、実質的に平面でも
よいし、液流に並行な凹凸、波状凹凸、その他の非平面
を有していてもよい。
The anode plate (16) is electrically connected to the anode bottom plate (24), +1. It consists of a thin plate of metal such as titanium or tantalum, the surface of which is coated with a platinum group metal, a platinum group metal oxide, or a mixture thereof. Furthermore, an anode in which a titanium or tantalum lining on the anode bottom plate is welded to an expanded metal made of titanium or tankle coated with the above noble metal, spaghetti, or a net is also suitable. In the case of the former non-porous anode plate, it may be substantially flat, or may have irregularities parallel to the liquid flow, wavy irregularities, or other non-flat surfaces.

陽極室側壁071は剛性を有する枠縁のごときもので構
成することができるし、弾性を有するゴム、プラスチッ
ク等のバッキング状のもので構成することも可能である
。さらに第3図に示すように陽極底板の周縁部を残して
、陽イオン交換膜を介して該陰極と向い合う部分を削り
取り、陽極底板の一部を側壁として構成することも可能
である。水銀性電解槽を改造する場合には陰極室側壁の
下部フランジ部に対峙する陽極底板周縁部を上記の如く
残して側壁の基材とし、その表面に上記陽極板を構成す
るのが好ましめ態様の1つである。さらに又、第4図に
示す描造にオイテも好適な側壁を提供することができる
The anode chamber side wall 071 can be made of something like a rigid frame edge, or can be made of a backing-like material made of elastic rubber, plastic, or the like. Furthermore, as shown in FIG. 3, it is also possible to leave a peripheral portion of the anode bottom plate and scrape away the portion facing the cathode with the cation exchange membrane interposed therebetween, thereby configuring a part of the anode bottom plate as a side wall. When modifying a mercury electrolytic cell, it is preferable to leave the peripheral edge of the anode bottom plate facing the lower flange of the side wall of the cathode chamber as described above and use it as a base material for the side wall, and to construct the anode plate on the surface of this. This is one of the aspects. Furthermore, Oite may also provide a suitable sidewall for the depiction shown in FIG.

すなわち、陽極板αQの周縁に薄層のバッキング(23
)を設置し、該陰極板αのを該陰極室を構成する側壁下
部のフランン面より上方に固定し、該陽イオン交換膜(
3)の可撓性(フレキシビリティ〕を利用して該陽イオ
ン交換膜を陰極室側壁内面に沿わせて張装して陽極室を
形成させる。
That is, a thin layer of backing (23
), the cathode plate α is fixed above the flan surface at the bottom of the side wall constituting the cathode chamber, and the cation exchange membrane (
Using the flexibility of 3), the cation exchange membrane is stretched along the inner surface of the side wall of the cathode chamber to form an anode chamber.

上記の陽極室(2)を構成する陽極室側壁θカとしては
、塩素に耐える材質であれば特に制限はなく好適に使用
することができる。例えばチタン及びチタン合金等の耐
塩素金属あるいは、弗素糸ポリマー、硬質ゴム等を使用
することができる。さらに−)−記金属、弗素系ポリマ
ーまたは硬質コ゛J−lをライニングした鉄を用いるこ
ともできる。
The anode chamber side wall θ which constitutes the anode chamber (2) is not particularly limited and can be suitably used as long as it is made of a material that is resistant to chlorine. For example, chlorine-resistant metals such as titanium and titanium alloys, fluorine thread polymers, hard rubber, etc. can be used. Furthermore, it is also possible to use iron lined with a metal mentioned above, a fluorine-based polymer, or a hard core J-1.

次に陽極液導入口お」:び陽極ガスと陽極液の混和液の
排出口であるか、[)IJ記陽極室(2)、ずlわち該
陽・イオン交換膜(3)、陽極室側壁Q71および陽極
板06)により囲繞された陽極室(2)lこ陽極Yイに
と陽極カスとの混和液の流れを生ぜしめることができれ
ばよい。従って陽極板06)または陽極室側壁07)の
適宜箇処に設けることができる。陽極液導入1−11の
断面構造は、前記のり[1〈陽極液の流itをq、せし
めることができれば十分で、特に制[沢はないが、陽極
液が均一に流れることか好捷しく、この目的のためにス
リット状の導入「1は好ましい、帖様である。混和液流
の方向は電解槽の長手方向あるいはこれに直角な方向等
のいずれでもよいが、後者の方か導入[1排出口間の液
の流ハ、の差圧(△P)を減少させ、G/Tj(単位陽
極液中に含イ〕される陽極ガスの比率)を小さぐするこ
とができるので好適である。
Next, there is the anolyte inlet and the outlet for the anode gas and anolyte mixture. It is only necessary to cause a flow of a liquid mixture of the anode sludge and the anode chamber (2) surrounded by the chamber side wall Q71 and the anode plate 06). Therefore, it can be provided at an appropriate location on the anode plate 06) or the anode chamber side wall 07). The cross-sectional structure of the anolyte introduction 1-11 is sufficient as long as it can make the flow of the anolyte equal to q, and there is no particular restriction, but it is preferable that the anolyte flows uniformly. For this purpose, slit-shaped introduction "1" is preferable, and the direction of the mixed liquid flow may be either the longitudinal direction of the electrolytic cell or the direction perpendicular to this, but the latter is preferable. This method is preferable because it can reduce the differential pressure (△P) of the liquid flow between one outlet and reduce G/Tj (ratio of anode gas contained in a unit anolyte). be.

第5図は陽極液導入口および抽出[−1を陽極室側壁に
設けた実施態様を示すもので、陽極室側壁07)の1万
(こノリツl−状の陽極液導入1−1111 (+9)
を設け、−・方、該導入L1(1[有]と対向する他の
側壁にスリブ1−状の混4″目腋1シ1出[1(20)
を設け、該導入口(19)より陽極室内に陽極液を均一
に分散フP↓人させ、混相液を該排出[−1呟)(こ集
めて排出する。
Figure 5 shows an embodiment in which the anolyte inlet and the extraction [-1 are provided on the side wall of the anode chamber. )
, and on the other side opposite to the introduction L1 (1 [existence]
The anolyte is uniformly dispersed in the anode chamber through the inlet (19), and the mixed phase liquid is collected and discharged.

第6図および第7図は、それそハ+ 11i1記導入[
]を陽極板に設けた実施態様を示す。第6図は複数の孔
よりなる導入トI Q、9)を陽極板06)の1端部番
こ設け、υr出口翰を導入口(]Q9と対向する該陽極
板の他の端部に設けたものである。第7図は導入D (
10を陽極板q0の中はどに設は一排出「1@)を該陽
極板の両端部(こ設けた例である。更に、第7図に示し
た導入し]と排出10とを逆に使用(−1陽極板Q6)
の両端部分から陽極液を導入し、該陽極板の中はどから
排出することも可能である。尚、陽極液導入口および排
出「」の位置関係は特に制限はないが、陽極板あるいは
陽極室側壁のそh、ぞれ対向する位置に設けるのが好ま
しい。
Figures 6 and 7 are based on the introduction of Section 11i1 [
] is provided on the anode plate. In Fig. 6, an inlet IQ,9) consisting of a plurality of holes is provided at one end of the anode plate 06), and a υr outlet is provided at the other end of the anode plate opposite to the inlet (Q9). Figure 7 shows introduction D (
10 is placed in the inside of the anode plate q0, and one discharge ``1@'' is placed at both ends of the anode plate (this is an example of installing the same.Furthermore, the introduction shown in FIG. 7) and the discharge 10 are reversed. Used for (-1 anode plate Q6)
It is also possible to introduce the anolyte from both ends of the anode plate and drain it from within the anode plate. Although there is no particular restriction on the positional relationship between the anolyte inlet and the outlet, it is preferable that they be provided at opposite positions on the anode plate or the side wall of the anode chamber.

第8図は、第1図及び第2図に示した水平型陽イオン交
換膜電解槽の陽極液循環系統を示す概略図である。
FIG. 8 is a schematic diagram showing the anolyte circulation system of the horizontal cation exchange membrane electrolytic cell shown in FIGS. 1 and 2. FIG.

同図において、陰極室(1)は蓋体と、複数の陰極板q
カを包囲するように立設さf′1−た陰極室側壁(5)
と、陰極室側壁(5)の丁部フランジと陽極室側壁α力
との間に挾持張設された陽イオン交換膜(3)の−L表
ii’+iとにより画成されている。陰極液αつは蓋体
(4)に立設された陰極懸垂装置(7)で懸垂され、各
陰極は陰極ブスバー(8)で411互に連結されている
。−1:た陰極室(1)は陰極液導入口(1■、陰極液
排出口04)および陰極ガス排出口00が設けられてい
る。尚、陰極室(1)において、陰極液濃度を均一にす
るために、陰極液導入[Iα[相]、陰極液排出「」(
]4)を多数説は分11り供給又はわ1出することも可
能である。
In the figure, the cathode chamber (1) has a lid and a plurality of cathode plates q.
Cathode chamber side wall (5) erected so as to surround the
and -L surface ii'+i of the cation exchange membrane (3) which is clamped and stretched between the flange of the cathode chamber side wall (5) and the anode chamber side wall α force. The catholyte α is suspended by a cathode suspension device (7) installed upright on the lid (4), and each cathode is connected to each other by a cathode bus bar (8). -1: The cathode chamber (1) is provided with a catholyte inlet (1), catholyte outlet 04 and a catholyte gas outlet 00. In addition, in the cathode chamber (1), in order to make the catholyte concentration uniform, catholyte introduction [Iα [phase], catholyte discharge "" (
] 4) The majority theory is that it is also possible to supply 11 parts or 1 part.

一方、陽極室(2)は実質的に水平な陽極板θ6)と、
該陽極板の周縁上に設置された陽極室側壁(17)と、
前記陽イオン交換IIA (3)の下表面とにより画成
さ凡ている。陽極板00は陽極ブスバー(18)と連結
されている。陽極室(2)は陽極液導入[」的および陽
極液と陽極ガスとの混木目液排出口(イ)か設けられて
いる。
On the other hand, the anode chamber (2) has a substantially horizontal anode plate θ6),
an anode chamber side wall (17) installed on the periphery of the anode plate;
and the lower surface of the cation exchange IIA (3). The anode plate 00 is connected to an anode bus bar (18). The anode chamber (2) is provided with an anolyte introduction port and an anolyte and anode gas mixed grain solution outlet (a).

塩水は、陽極液導入D Q9)より陽極室(2)に供給
され、電気分解を受けて光土した塩素ガスは直ちに陽極
室内を貫流する陽極液(こ巻き込1れ、l昆イ“目流と
なって混相液お1出「1(4)より取り出され、分間1
器(21)に導かれ、そこで塩素ガスと陽極液とか分離
される。
The salt water is supplied to the anode chamber (2) through the anolyte introduction DQ9), and the chlorine gas that has undergone electrolysis is immediately introduced into the anolyte chamber (2), which flows through the anode chamber. The multiphase liquid is taken out from 1 (4) in a stream, and the multiphase liquid is taken out from 1 (4) for 1 minute.
The gas is introduced into a vessel (21) where the chlorine gas and anolyte are separated.

ガスを分+1f した実質的(こガスを含1;/j:い
陽極液はポンプ(22)により該陽極液導入[」(+9
)から陽極室(2)へ循環導入される。尚、濃塩水は略
飽和の濃度で塩水11市環系の一部に供給さf−+、る
と共に、分離器(21)からは淡塩水と+7て一部排出
される。
The anolyte containing the gas +1f is introduced by the pump (22) (+9
) is circulated into the anode chamber (2). The concentrated salt water is supplied to a part of the salt water 11 ring system at a substantially saturated concentration, and a portion of the salt water is discharged from the separator (21) as fresh salt water.

分離器(21)及びポンプ(22)は複数の電解J)j
liに対して1個でもよいし各電解槽毎に設けても良い
The separator (21) and the pump (22) have multiple electrolysis
It may be provided one per li or may be provided for each electrolytic cell.

一方、陰極液は陰極液導入D (1■より導入され、排
出D (14)より取り出され、陰極液濃度は注加村(
量によって調整される。発生した水素ガスは1ゆ極ガス
排出ロ00エリ排出される。
On the other hand, the catholyte is introduced from catholyte introduction D (1) and taken out from discharge D (14), and the catholyte concentration is
Adjusted by quantity. The generated hydrogen gas is discharged through the 1-electrode gas exhaust route.

電流は陽極ブスバー(至)より供給され、陽極室(2)
の陽極板00を通り、陰極ブスバー(8)より取り出さ
れる。
Current is supplied from the anode busbar (to) and the anode chamber (2)
passes through the anode plate 00 and is taken out from the cathode busbar (8).

陽極室(2)では式、 CI−一−→1/2Ch なる反応が起こり、陽極室(2)のすトリウムイオンは
陽イオン交換膜(3)を通って陰極室(1)に達する。
In the anode chamber (2), a reaction of the formula CI-1-→1/2Ch occurs, and the thorium ions in the anode chamber (2) pass through the cation exchange membrane (3) and reach the cathode chamber (1).

一方、陰極室(1)では式、 H20−1/2 H2+○H なる反応が生起し、水素ガスを発生すると共しこ、陽極
室(2)より陽イオン交換膜(3)を通過して移動して
来たナトリウムイオンを受けて苛性ソークを生成する。
On the other hand, in the cathode chamber (1), a reaction according to the formula H20-1/2 H2+○H occurs to generate hydrogen gas, which is then passed through the cation exchange membrane (3) from the anode chamber (2). It receives the moving sodium ions and generates a caustic soak.

本発明方法の最大の特色は、陽イオン交換膜(3)を介
して上部に陰極室(1)を、下部に陽極室(2)を配し
た構成からなり、陽イオン交換膜(3)の下面と、実質
的に水平な陽極板00表面とを接近して配置して構成さ
れる陽極室内に陽極液を供給し、陽極室内を満たして貫
流する陽極液と陽極オン交換膜(3)の下面を電流れで
充分に潤し電解反応を円滑に進行せしめると共に、陽イ
オン交換膜(3)と陽極板α6)とのm]に生成した塩
素ガスを生成後直ちにこの流れに巻き込んで陽極室(2
)の外へ排出することにある。
The most distinctive feature of the method of the present invention is that it consists of a cathode chamber (1) in the upper part and an anode chamber (2) in the lower part through the cation exchange membrane (3). An anolyte is supplied into an anode chamber configured by arranging a lower surface and a substantially horizontal anode plate 00 surface close to each other, and the anolyte and anode on-exchange membrane (3) that fills the anode chamber and flows through it. The lower surface is sufficiently moistened with a current flow to allow the electrolytic reaction to proceed smoothly, and the chlorine gas generated between the cation exchange membrane (3) and the anode plate α6) is immediately drawn into this flow and transferred to the anode chamber ( 2
) is to be discharged to the outside.

尚陽極室内へ供給され、その中を貫流する陽極液は塩素
カスを伴なって陽極室外へ運ばれ、分離器(21)によ
って塩素ガスを分離した後、再び陽極液導入口09)へ
少なくとも一部を還流せしめる循環液とすれば、陽極液
の濃度分布を小さくてき陽極液濃度を任意番こ調整する
ことができ有利である。
The anolyte that is supplied into the anode chamber and flows through it is carried outside the anode chamber together with chlorine gas, and after the chlorine gas is separated by the separator (21), at least one portion is returned to the anolyte inlet 09). If the circulating fluid is used to reflux the anolyte, it is advantageous because the concentration distribution of the anolyte can be made small and the concentration of the anolyte can be arbitrarily adjusted.

叙上の通り、本発明によれば、水平型隔膜法電解槽にお
いて陽イオン交換膜を介して上部に陰極室を、下部に陽
極室を配することによって高品質の苛性アルカリを低い
装置コストでしかも効率よく製造することができる。更
に本発明の電解槽は水銀性電解槽を転換して容易に製造
することができ、電解槽のみならず、ブスバー、整流器
、淡塩水処理設備、塩水系設備等、殆どすべての現存設
備をスクラ゛ンプすることすく転用することができる為
、水銀性電解槽の転換・2経済的に頗る有利に行なうこ
とができる。
As described above, according to the present invention, high-quality caustic alkali can be produced at low equipment cost by arranging a cathode chamber in the upper part and an anode chamber in the lower part through a cation exchange membrane in a horizontal diaphragm electrolyzer. Moreover, it can be manufactured efficiently. Furthermore, the electrolytic cell of the present invention can be easily manufactured by converting a mercury electrolytic cell, and can be used to scrub not only electrolytic cells but also almost all existing equipment such as busbars, rectifiers, fresh salt water treatment equipment, salt water system equipment, etc. Since it can be easily converted to other uses without being pumped, conversion of mercury-based electrolytic cells can be carried out with great economical advantage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は、それぞれ本発明電解槽θ)一部切欠
き正面図、同倶1面断面図、第3図および第4図はそれ
ぞれ陽極室の他の笑7A態様を示す側面断面図、第5図
、第6図および第7図(まそれぞれ陽極液導入口および
排出口の失施態様を示す斜視図、第8図は第1図および
第2図ζこ示された電解槽の陽極液循環系統を示すnu
各図である。 l・・・陰極室     2・・・陽極室3・・・陽イ
オン交換膜  4・・・蓋体5・・・陰極室側壁   
6・・・陰極心電棒7・・・陰極懸垂装置  8−・陰
極ゲス/<−lO・・・孔       11・・・シ
ート12・ ・陰極板     13・・・陰極液導入
口14・・・陰極液排出口  15・・・陰極ガス排8
.!1口16 ・・陽極板     17・・・陽極室
側壁18・・・陽極ブスバー  19・・・陽極液導入
口20・・・陽極混相液排出口21・・・分離器22・
・・ポンプ     23・・・パラキンク24 ・・
陽極底板 特許出願人 鐘淵化学工業株式会社 20 第6 図 第7図 493− 第8図
Figures 1 and 2 are a partially cutaway front view and a cross-sectional view of the electrolytic cell according to the present invention, respectively, and Figures 3 and 4 are side views showing other embodiments of the anode chamber, respectively. 5, 6 and 7 (respectively, a perspective view showing the failure of the anolyte inlet and outlet, and FIG. nu showing the tank anolyte circulation system
Each figure. l... Cathode chamber 2... Anode chamber 3... Cation exchange membrane 4... Lid 5... Cathode chamber side wall
6... Cathode electrocardiogram rod 7... Cathode suspension device 8-- Cathode gas/<-lO... Hole 11... Sheet 12... Cathode plate 13... Cathode fluid inlet 14... Cathode Liquid discharge port 15...Cathode gas discharge 8
.. ! 1 port 16...Anode plate 17...Anode chamber side wall 18...Anode busbar 19...Anolyte inlet 20...Anode mixed phase liquid outlet 21...Separator 22...
... Pump 23 ... Parakink 24 ...
Anode bottom plate patent applicant Kanebuchi Chemical Industry Co., Ltd. 20 Figure 6 Figure 7 493- Figure 8

Claims (1)

【特許請求の範囲】 1、 大質的に水平に張設された陽イオン交換膜の上部
に陰極室を、下部に陽極室をそれぞれ備えてなる水平型
電解槽を用い、陽イオン交換膜の下面を潤しつつ前記陽
極室内を貫流する陽極液の流れを形成し、該陽極室内に
生成した陽極ガスを直ちに前記流れに巻き込んで陽極室
外へ排出することを特徴とする電解方法。 2、陽極室から排出された陽極液の少なくとも一部が、
陽極ガスを分離した後、陽極室内に循環さ瓦る特r1−
請求の範囲第1項記載のi[解方法。 3、 実質曲番こ水平に張設さhだ陽イオン交換膜によ
り上部の陰極室とT一部の陽極室と番こ区画され、r3
iJ記陰極室は実質的に水平な陰極板を有してなり、蓋
体と、該陰極板を囲むように周設された陰極室側壁と、
該陽イオン交換膜の上面とにより囲繞され、且つ陰極液
の導入口および排出日並に陰極ガス排出[−1とを具備
してなり、1iiJ記陽極家は実質的に水平な陽極板と
、該陽極板を囲むようGこ周設さハ、た陽極室側壁と、
該陽イオン交換膜の下面とにより囲繞され、且つ陽極液
の導入口および陽極ガスと陽極液との混イ゛目液の排出
口を具(1f7i して構成されることを特徴とする電
解1.’+!!i04 前記電解穏か水銀法電解イ西よ
り転換されたことを特徴とする特許請求の範囲第3項記
載の電解槽。
[Claims] 1. Using a horizontal electrolytic cell consisting of a cathode chamber in the upper part and an anode chamber in the lower part of the cation exchange membrane stretched horizontally, An electrolysis method characterized by forming a flow of anolyte flowing through the anode chamber while moistening the lower surface, and immediately involving the anode gas generated in the anode chamber in the flow and discharging it to the outside of the anode chamber. 2. At least a portion of the anolyte discharged from the anode chamber is
After separating the anode gas, it is circulated inside the anode chamber.
i [solution method] according to claim 1. 3. The upper cathode chamber and the upper part of the anode chamber are divided by the horizontally stretched cation exchange membrane, r3.
The cathode chamber has a substantially horizontal cathode plate, a lid, a side wall of the cathode chamber surrounding the cathode plate,
The anode house is surrounded by the upper surface of the cation exchange membrane and includes a catholyte inlet and outlet as well as a cathode gas outlet [-1; an anode chamber side wall provided around the anode plate;
The electrolysis device 1 is surrounded by the lower surface of the cation exchange membrane and has an anolyte inlet and a mixed solution outlet of an anode gas and an anolyte (1f7i). .'+!!i04 The electrolytic cell according to claim 3, characterized in that the electrolytic method is converted from the mercury method electrolytic method.
JP58067420A 1983-04-16 1983-04-16 Electrolysis and electrolytic cell Pending JPS59193291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58067420A JPS59193291A (en) 1983-04-16 1983-04-16 Electrolysis and electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58067420A JPS59193291A (en) 1983-04-16 1983-04-16 Electrolysis and electrolytic cell

Publications (1)

Publication Number Publication Date
JPS59193291A true JPS59193291A (en) 1984-11-01

Family

ID=13344391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58067420A Pending JPS59193291A (en) 1983-04-16 1983-04-16 Electrolysis and electrolytic cell

Country Status (1)

Country Link
JP (1) JPS59193291A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008228722A (en) * 2007-03-16 2008-10-02 Ind Technol Res Inst Food molding device, and food production system having the same
US8297292B2 (en) 2008-07-28 2012-10-30 Tokyo Electron Limited Cleaning device and cleaning method of semiconductor manufacturing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008228722A (en) * 2007-03-16 2008-10-02 Ind Technol Res Inst Food molding device, and food production system having the same
US8297292B2 (en) 2008-07-28 2012-10-30 Tokyo Electron Limited Cleaning device and cleaning method of semiconductor manufacturing apparatus

Similar Documents

Publication Publication Date Title
US4108742A (en) Electrolysis
JPH0561356B2 (en)
CN101260530A (en) Device and technique for indirectly electric oxidation synthesis of organic substance electrolytic regeneration medium
HRP920972A2 (en) FEATURES FOR THE TYPE FILTER FILTER PRESS AND ONE-POLE FILTER TYPE FILTER PRESS
US4059495A (en) Method of electrolyte feeding and recirculation in an electrolysis cell
US5045162A (en) Process for electrochemically regenerating chromosulfuric acid
JPS59179793A (en) Filter press type electrolytic cell
CA1175780A (en) Internal downcomer for electrolytic recirculation
JPS6342710B2 (en)
JPS59193290A (en) Electrolytic cell
JPS59193291A (en) Electrolysis and electrolytic cell
US5593553A (en) Electrolytic cell and electrode therefor
US4161438A (en) Electrolysis cell
US4586994A (en) Electrolytic process of an aqueous alkali metal halide solution and electrolytic cell used therefor
JPS624469B2 (en)
JPS6145160Y2 (en)
JPS6239089Y2 (en)
JPS6239094Y2 (en)
JPS59197578A (en) Electrolytic method and apparatus using said method
JPS59197583A (en) Horizontal type electrolytic cell and electrolytic method using the same
JPS6239091Y2 (en)
JPH0216389B2 (en)
JPS599632B2 (en) electrolytic cell
JPS6239093Y2 (en)
WO1992015725A1 (en) Electrolytic vessel for producing hypochlorite