JPS6239093Y2 - - Google Patents
Info
- Publication number
- JPS6239093Y2 JPS6239093Y2 JP1983063342U JP6334283U JPS6239093Y2 JP S6239093 Y2 JPS6239093 Y2 JP S6239093Y2 JP 1983063342 U JP1983063342 U JP 1983063342U JP 6334283 U JP6334283 U JP 6334283U JP S6239093 Y2 JPS6239093 Y2 JP S6239093Y2
- Authority
- JP
- Japan
- Prior art keywords
- cathode
- electrolytic cell
- anode
- plate
- uneven structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000012528 membrane Substances 0.000 claims description 26
- 239000007788 liquid Substances 0.000 claims description 21
- 238000005341 cation exchange Methods 0.000 claims description 18
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 12
- 229910052753 mercury Inorganic materials 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 11
- 238000005553 drilling Methods 0.000 claims 1
- 238000010030 laminating Methods 0.000 claims 1
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 21
- 239000007789 gas Substances 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 235000011121 sodium hydroxide Nutrition 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- 238000005868 electrolysis reaction Methods 0.000 description 5
- 239000003513 alkali Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- 229920001875 Ebonite Polymers 0.000 description 2
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910001508 alkali metal halide Inorganic materials 0.000 description 2
- 150000008045 alkali metal halides Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000003518 caustics Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 229920005601 base polymer Polymers 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000010285 flame spraying Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- -1 platinum group metals Chemical class 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 239000002990 reinforced plastic Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Description
【考案の詳細な説明】
本考案は主としてアルカリ金属ハロゲン化物水
溶液、特に塩化アルカリ塩水溶液の電解槽に関
し、更に詳しくは、電解隔膜として陽イオン交換
膜を装着した水平型電解槽において、長期安定的
に高品質の苛性アルカリを効率良く得るための装
置に関するものである。[Detailed description of the invention] The present invention mainly relates to an electrolytic cell for an aqueous alkali metal halide solution, especially an alkali chloride salt aqueous solution. The present invention relates to an apparatus for efficiently obtaining high quality caustic alkali.
水平型電解槽は、水平に張設された隔膜によつ
て上部の陽極室と下部の陰極室とに区画されてい
る。水平型電解槽の最も典型的な水銀法電解槽
は、比較的高濃度の水酸化ナトリウム溶液が得ら
れるのでこれまで広く利用されてきた。しかし乍
ら、陰極に用いる水銀が環境汚染物質であるた
め、近い将来休止されるべき運命にある。ところ
で従来広く活用されてきた水銀法電解槽及び附帯
装置を悉くスクラツプ化することは経済的、産業
政策的にも決して好ましいことではなく、一方、
当業界にとつても極めて深刻な問題である。かか
る状況下において、水銀法電解槽及び附帯設備を
スクラツプ化することなく、他の安全な電解槽に
転換することは極めて望ましいことである。 A horizontal electrolytic cell is divided into an upper anode chamber and a lower cathode chamber by a horizontally stretched diaphragm. The mercury method electrolyzer, which is the most typical horizontal electrolyzer, has been widely used since it can produce a relatively highly concentrated sodium hydroxide solution. However, because the mercury used in the cathode is an environmental pollutant, it is destined to be discontinued in the near future. However, it is not at all desirable from an economic or industrial policy standpoint to scrap all the mercury electrolyzers and ancillary equipment that have been widely used in the past.
This is an extremely serious problem for this industry as well. Under such circumstances, it is extremely desirable to convert to other safer electrolytic cells without scrapping the mercury method electrolytic cell and its ancillary equipment.
かかる見地から、本出願人は鋭意研究を進め水
銀法電解槽を有利に陽イオン交換膜法電解槽に転
換し得る技術を開発し、先に特許出願を行なつた
(特願昭57−131377等)。 From this perspective, the applicant has conducted extensive research and developed a technology that can advantageously convert a mercury method electrolyzer into a cation exchange membrane method electrolyzer, and has previously filed a patent application (Japanese Patent Application No. 131377-1982). etc).
ところで、水銀法電解槽は一般に長辺が短辺の
数倍乃至数十倍の矩形状からなるものであり、こ
れを転用して水平型陽イオン交換膜電解槽とした
場合、陰極及び陽イオン交換膜への陰極ガス付着
の防止のため長辺に並行して陰極液を循環させる
と出口付近のガス/液比が増大し、ガス気泡同志
の会合が起こり気液が分離してしまう。このため
陰極室を中心として振動が起こり、膜を破損する
ばかりでなく、陰極液の電気抵抗を大きくし、流
れ方向に電流密度分布が生じる。また出口付近の
ガス/液比を減少させるために循環液量を増加さ
せると、陰極室内部での圧力損失が増大し膜の破
損の恐れや循環のための所要動力費のコストアツ
プが生じる。一方、表面が平坦な陰極板を用い短
辺に並行に陰極液を循環すると、ガス/液比を低
くするために膜−陰極板の距離を2〜5mmに設定
する必要があり、電解電圧を上昇させる。 By the way, mercury method electrolyzers generally have a rectangular shape with the long sides several to several tens of times larger than the short sides, and when this is repurposed into a horizontal cation exchange membrane electrolyzer, the cathode and cation If the catholyte is circulated in parallel to the long sides to prevent cathode gas from adhering to the exchange membrane, the gas/liquid ratio near the outlet will increase, gas bubbles will come together, and the gas and liquid will separate. As a result, vibrations occur around the cathode chamber, which not only damages the membrane but also increases the electrical resistance of the catholyte and causes a current density distribution in the flow direction. Furthermore, if the amount of circulating liquid is increased in order to reduce the gas/liquid ratio near the outlet, the pressure loss inside the cathode chamber will increase, leading to the risk of membrane damage and an increase in the cost of power required for circulation. On the other hand, if a catholyte plate with a flat surface is used and the catholyte is circulated parallel to the short side, the distance between the membrane and the cathode plate must be set to 2 to 5 mm in order to lower the gas/liquid ratio, and the electrolysis voltage must be reduced. raise.
本考案者らはかかる実情に鑑み鋭意研究の結
果、上記問題点を一挙に解消し得る本考案を完成
したものである。 In view of these circumstances, the inventors of the present invention have conducted intensive research and have completed the present invention, which can solve the above-mentioned problems at once.
即ち、本考案は実質的に水平に張設された陽イ
オン交換膜により区画された上部の陽極室と下部
の陰極室とから構成され、前記陰極室がガス・液
非透過性の略矩形状の陰極板を備え、該陰極板の
表面が短辺と並行して凸凹構造であることを特徴
とする水平型電解槽を内容とする。 That is, the present invention consists of an upper anode chamber and a lower cathode chamber partitioned by a cation exchange membrane stretched substantially horizontally, and the cathode chamber has a substantially rectangular shape that is impermeable to gas and liquid. The horizontal electrolytic cell is equipped with a cathode plate, and the surface of the cathode plate has an uneven structure parallel to the short side.
以下、本考案の実施態様を示す図面に基づいて
本考案を説明する。以下の説明において、アルカ
リ金属ハロゲン化物の代表例として最も一般的で
ある塩化ナトリウムを、またその電解生成物とし
て苛性ソーダをそれぞれ便宜上用いるが、これら
によつて本考案を限定する意図を表わしたもので
はなく、その他塩化カリウム等の無機塩水溶液や
水電解等にも直ちに適用できることは勿論であ
る。 Hereinafter, the present invention will be described based on drawings showing embodiments of the present invention. In the following explanation, sodium chloride, which is the most common representative example of an alkali metal halide, and caustic soda as its electrolytic product are used for convenience, but these are not intended to limit the present invention. Of course, it can also be immediately applied to other inorganic salt aqueous solutions such as potassium chloride, water electrolysis, etc.
第1図は本考案の電解槽の一部切欠き正面図、
第2図は同側面断面図及び陰極液循環系統の一例
を示す概要図である。 Figure 1 is a partially cutaway front view of the electrolytic cell of the present invention.
FIG. 2 is a side sectional view and a schematic diagram showing an example of the catholyte circulation system.
第1図及び第2図において、本考案電解槽は幅
に対し長さの大なる、好ましくは数倍の長さを有
する長方形の陽極室1とその直下に位置する陰極
室2とより構成され、陽極室1と陰極室2とは実
質的に水平に張設された陽イオン交換膜3によつ
て区画されている。ここで「実質的に水平」とは
必要に応じて若干傾斜(例えば2/10程度までの勾
配を付与した場合)させた場合をも包含する。 In FIGS. 1 and 2, the electrolytic cell of the present invention is composed of a rectangular anode chamber 1 whose length is larger than its width, preferably several times the length, and a cathode chamber 2 located directly below the rectangular anode chamber 1. The anode chamber 1 and the cathode chamber 2 are partitioned by a cation exchange membrane 3 stretched substantially horizontally. Here, "substantially horizontal" also includes a case where the surface is slightly inclined (for example, a slope of about 2/10 is applied) as necessary.
陽極室1は蓋体4と、陽極導電棒6、陽極導電
棒カバー9、陽極板12等より成る陽極を囲むよ
うに延設された陽極室側壁5と、陽イオン交換膜
3の上表面とにより画成されており、陽極導電棒
6は蓋体4に立設された陽極懸垂装置7で懸垂さ
れ、各陽極導電棒6は陽極ブスバー8で互いに電
気的に連結されている。蓋体4は陽極導電棒カバ
ー9を挿通する孔10を有し、該孔10はシート
11により気密にシールされている。陽極導電棒
6の下端には陽極板12が取付けられており、か
くして陽極板12は陽極懸垂装置7に連結されて
いるため、陽極懸垂装置7を操作することにより
上下に昇降調節可能で、陽イオン交換膜3に接触
するよう配置することができる。もつとも陽極は
蓋体に立設された陽極懸垂装置から懸垂される場
合に限られず、他の方法により懸垂あるいは支持
されていても差し支えない。さらに陽極室は少な
くとも1個の陽極液導入口13を有しており、こ
れらは該蓋体4または陽極室側壁5に設けること
ができる。一方、陽極液排出口14は少なくとも
1個設けられ、これらは該側壁5に設けることが
できる。また、該蓋体4または該側壁5の適宜箇
処に陽極ガス(塩素ガス)排出口15を備えてい
る。もつとも陽極ガスと陽極液を共に混相液とし
て抜き出し、陽極室の外部で気液分離し、必要に
応じ陽極液のみを循環しても良い。この場合には
陽極ガス排出口13は不要である。 The anode chamber 1 includes a lid 4, an anode chamber side wall 5 extending to surround the anode, which is composed of an anode conductive rod 6, an anode conductive rod cover 9, an anode plate 12, etc., and an upper surface of the cation exchange membrane 3. The anode conductive rods 6 are suspended by an anode suspension device 7 erected on the lid 4, and the anode conductive rods 6 are electrically connected to each other by an anode bus bar 8. The lid body 4 has a hole 10 through which the anode conductive rod cover 9 is inserted, and the hole 10 is hermetically sealed by a sheet 11. An anode plate 12 is attached to the lower end of the anode conductive rod 6, and since the anode plate 12 is connected to the anode suspension device 7, it can be adjusted up and down by operating the anode suspension device 7, and the anode can be adjusted up and down by operating the anode suspension device 7. It can be placed in contact with the ion exchange membrane 3. Of course, the anode is not limited to being suspended from an anode suspension device provided upright on the lid, and may be suspended or supported by other methods. Furthermore, the anode chamber has at least one anolyte inlet 13, which can be provided on the lid 4 or on the side wall 5 of the anode chamber. On the other hand, at least one anolyte outlet 14 is provided, and these can be provided on the side wall 5. Further, an anode gas (chlorine gas) outlet 15 is provided at an appropriate location on the lid 4 or the side wall 5. Of course, both the anode gas and the anolyte may be extracted as a mixed phase liquid, the gas and liquid may be separated outside the anode chamber, and only the anolyte may be circulated as necessary. In this case, the anode gas outlet 13 is not necessary.
上記の陽極室1を構成する蓋体4、陽極室側壁
5、陽極導電棒カバー9およびシート11として
は、水銀法電解槽を構成する蓋体及び陽極室側壁
等を転用すれば良いが、このほか塩素に耐える材
質であれば特に制限はなく好適に使用することが
できる。例えばチタン及びチタン合金等の耐塩素
金属あるいは、弗素系ポリマー、硬質ゴム等を使
用することができる。さらに上記金属、弗素系ポ
リマーまたは硬質ゴム等をライニングした鉄を用
いることもできる。 As the lid body 4, anode chamber side wall 5, anode conductive rod cover 9, and sheet 11 constituting the above-mentioned anode chamber 1, the lid body, anode chamber side wall, etc. constituting the mercury method electrolytic cell may be used. In addition, any material that can withstand chlorine can be suitably used without any particular restrictions. For example, chlorine-resistant metals such as titanium and titanium alloys, fluorine-based polymers, hard rubber, etc. can be used. Furthermore, iron lined with the above-mentioned metals, fluorine-based polymers, hard rubber, etc. can also be used.
陽極反応を行なう陽極板12はグラフアイト陽
極を用いることもできるが、チタンあるいはタン
タルのような金属に、例えば白金族金属あるいは
酸化白金族金属又はそれらの混合物を有する被覆
を施した不溶性陽極が好ましい。もちろん水銀法
電解槽に用いられている陽極板を同じ寸法、同じ
形状のまゝで使用すると経済的である。 Although a graphite anode can be used as the anode plate 12 for carrying out the anode reaction, an insoluble anode made of a metal such as titanium or tantalum coated with, for example, a platinum group metal, an oxidized platinum group metal, or a mixture thereof is preferable. . Of course, it is economical to use the same size and shape of the anode plate used in the mercury electrolyzer.
次いで陰極室2は陽イオン交換膜3の下表面と
ガス・液非透過性で、表面が凸凹構造の陰極板1
6と、該陰極板の縁に沿つて該陰極板を囲むよう
に立設された陰極室側壁17とにより画成され
る。陰極室側壁17は剛性を有する枠縁のごとき
もので構成することができるし、弾性を有するゴ
ム、プラスチツク等のパツキング状弾性体の如き
もので構成することも可能である。 Next, the cathode chamber 2 is formed between the lower surface of the cation exchange membrane 3 and the cathode plate 1 which is impermeable to gas and liquid and has an uneven surface structure.
6, and a cathode chamber side wall 17 standing upright along the edge of the cathode plate so as to surround the cathode plate. The cathode chamber side wall 17 can be made of something like a rigid frame edge, or it can be made of something like a packing-like elastic material such as elastic rubber or plastic.
陰極室側壁17の構成材料としては、上記した
材料の他に苛性ソーダ等の苛性アルカリに耐える
材料であれば特に制限はなく、鉄、ステンレスス
チール、ニツケル、ニツケル合金等を使用でき
る。また、鉄基材上に耐アルカリ性材料をライニ
ングした材料も好適に使用できる。さらにまたゴ
ム、プラスチツク等の材料も使用することができ
る。かかる材料としては、たとえば天然ゴム、ブ
チルゴム、エチレンプロピレンゴム(EPR)な
どのゴム系材料、ポリ四フツ化エチレン、四フツ
化エチレン−六フツ化プロピレンコポリマー、エ
チレン−四フツ化エチレンコポリマーなどのフツ
素系ポリマー材料、ポリ塩化ビニル、強化プラス
チツク(FRP)などが例示される。 In addition to the above-mentioned materials, the material for forming the cathode chamber side wall 17 is not particularly limited as long as it can withstand caustic alkali such as caustic soda, and iron, stainless steel, nickel, nickel alloy, etc. can be used. Furthermore, a material obtained by lining an alkali-resistant material on an iron base material can also be suitably used. Furthermore, materials such as rubber, plastic, etc. can also be used. Examples of such materials include rubber-based materials such as natural rubber, butyl rubber, and ethylene propylene rubber (EPR); Examples include base polymer materials, polyvinyl chloride, and reinforced plastics (FRP).
本考案に使用される陰極板16は鉄、ニツケル
等の導電性材料から作られる。勿論これらの表面
に水素過電圧低下処理を施すことは望ましい態様
である。水素過電圧低下処理は例えばニツケル、
コバルト、クロム、モリブデン、タングステン、
白金族金属、銀、これらの合金及びこれらの混合
物をフレームもしくはプラズマ溶射、又はメツキ
することにより為される。 The cathode plate 16 used in the present invention is made of a conductive material such as iron or nickel. Of course, it is a desirable embodiment to subject these surfaces to hydrogen overvoltage reduction treatment. For example, the hydrogen overvoltage reduction process is performed by Nickel,
cobalt, chromium, molybdenum, tungsten,
This is done by flame or plasma spraying or plating of platinum group metals, silver, alloys thereof, and mixtures thereof.
本考案の陰極板16はその表面が短辺と並行し
た凸凹構造からなる。凸凹構造は、例えば平板に
並行なみぞをけずり出す、平板に丸棒、角棒等よ
りなる細い棒状体を溶接により取り付け、又は一
体的に突設して凸凹構造とすることが出来る。更
にまた、陰極板そのものを波板を使用して作るこ
とが出来る。凸凹構造の形状は特に制限はなく、
矩形波状、梯形波状、正弦波状、円形状、サイク
ロイド状等が単独又は組合せて使用することが出
来る。また凸凹は陰極液の貫流方向に向つて必ず
しも連続である必要はなく、途中で切れていても
良い。更に波形状、凸凹構造の別の金属板を底板
の上に積層することもできる。凸凹構造は特別制
限はないが、高さ約0.5mm〜約10mm、幅約3mm〜
約3cmの帯状体の凸部を約3mm〜約20cmの間隔で
配して構成される凸凹構造が好適である。 The cathode plate 16 of the present invention has a surface having an uneven structure parallel to the short side. The uneven structure can be obtained by, for example, cutting out parallel grooves in a flat plate, attaching a thin rod-shaped body such as a round bar or a square bar to the flat plate by welding, or by integrally protruding it. Furthermore, the cathode plate itself can be made using a corrugated plate. There is no particular restriction on the shape of the uneven structure;
Rectangular waveforms, trapezoidal waveforms, sinusoidal waveforms, circular shapes, cycloidal shapes, etc. can be used alone or in combination. Furthermore, the unevenness does not necessarily have to be continuous in the direction of flow of the catholyte, and may be cut in the middle. Furthermore, another metal plate having a corrugated or uneven structure can be laminated on the bottom plate. There are no special restrictions on the uneven structure, but the height is about 0.5 mm to about 10 mm, and the width is about 3 mm.
A convex-concave structure having convex portions of about 3 cm strips arranged at intervals of about 3 mm to about 20 cm is suitable.
第3図は平板状の陰極板16上に、波形状の金
属板24を熔接した例を示し、第4図は平板状の
陰極板16上に丸棒25を並行に列設した例であ
る。 FIG. 3 shows an example in which a corrugated metal plate 24 is welded onto the flat cathode plate 16, and FIG. 4 shows an example in which round bars 25 are arranged in parallel on the flat cathode plate 16. .
本考案の陰極板は水銀法電解槽の底板を転用す
れば極めて経済的である。この場合も上記と同様
の加工により凸凹構造とすることができる。第5
図は水銀法電解槽の底板27の表面に、予め凸凹
構造を有する金属板26を重設した溝成である。
かかる構造とすることにより、前もつて加工、低
水素過電圧処理等を施し、現場で底板上にセツト
するだけで良いから至便である。第3図、第4図
においても、陰極板16として水銀法電解槽の底
板27を使用することができるのは勿論である。 The cathode plate of the present invention is extremely economical if the bottom plate of a mercury electrolyzer is used. In this case as well, the uneven structure can be obtained by processing similar to the above. Fifth
The figure shows a groove structure in which a metal plate 26 having an uneven structure is previously superimposed on the surface of a bottom plate 27 of a mercury method electrolyzer.
With such a structure, it is convenient because it is only necessary to perform pre-warping, low hydrogen overvoltage treatment, etc., and set it on the bottom plate at the site. It goes without saying that the bottom plate 27 of the mercury method electrolyzer can be used as the cathode plate 16 in FIGS. 3 and 4 as well.
本考案電解槽により電解を行なう場合、凸凹構
造の凸部の先端と陽イオン交換膜とが隣接又は接
触した構造とすることは好ましい態様である。か
くの如き構成とすることにより、膜の振動が抑え
られるのみならず、極間距離を均一にすることが
できる。 When performing electrolysis using the electrolytic cell of the present invention, it is a preferred embodiment that the tip of the convex part of the convex-concave structure is adjacent to or in contact with the cation exchange membrane. With such a configuration, not only can vibration of the membrane be suppressed, but also the distance between the poles can be made uniform.
第6図は、第4図に示した陰極構造を具え、陰
極液導入口19及び混相液排出口20を陰極板の
水平面に対し略垂直方向に導入され、又は排出さ
れるように配した例を示す。 FIG. 6 shows an example in which the cathode structure shown in FIG. 4 is provided, and the catholyte inlet 19 and multiphase liquid outlet 20 are arranged so as to be introduced or discharged in a direction substantially perpendicular to the horizontal plane of the cathode plate. shows.
本考案に好適な陽イオン交換膜としては、例え
ば、陽イオン交換膜を有するパーフルオロカーボ
ン重合体からなる膜を挙げることができる。スル
ホン酸基を交換基とするパーフルオロカーボン重
合体よりなる膜は、米国のイー・アイ・デユポ
ン・デ・ニモアス・アンド・カンパニー(E.I.Du
Pont de Nemours & Company)より商品名
「ナフイオン」として市販されている。また、陽
イオン交換膜は、膜強度を高めるため補強を目的
としたバツキング材を使用することは知られてお
り、該陽イオン交換膜は平滑面と凹凸面を有す
る。このような場合、少なくとも陰極面が平滑で
ある陽イオン交換膜を用いると低い線速度で低い
電圧が得られるので好都合である。 Examples of cation exchange membranes suitable for the present invention include membranes made of perfluorocarbon polymers having cation exchange membranes. Membranes made of perfluorocarbon polymers with sulfonic acid groups as exchange groups are manufactured by E.I.
It is commercially available under the trade name "Nafion" from Pont de Nemours & Company. Furthermore, it is known that cation exchange membranes use a reinforcing backing material to increase membrane strength, and the cation exchange membranes have a smooth surface and an uneven surface. In such a case, it is advantageous to use a cation exchange membrane having at least a smooth cathode surface, since a low voltage can be obtained at a low linear velocity.
第7図は本考案の電解槽の電解液循環系統の一
例を示す概略図である。第7図に基づいて説明す
ると、塩水は、陽極液導入口13より陽極室1に
供給され、電気分解を受けて発生した塩素ガスは
淡塩水と共に陽極混相液排出口28より取り出さ
れる。淡塩水は淡塩水受槽29で気液分離された
後、一部循環して電解槽内での塩水濃度やPHの均
一化を図る。また淡塩水と塩素ガスの気液分離は
該混相液排出口及び該淡塩水受槽までの導管中で
行なうことも可能である。また、図には示してい
ないが、陽極液導入口13に接続して陽極室内の
ほぼ全長に亘つて伸びる陽極液分散管を設け、該
分散管に適宜穿設した孔より陽極液を陽極室内に
分散供給することにより、陽極室内の陽極液を均
一にすることもできる。 FIG. 7 is a schematic diagram showing an example of the electrolyte circulation system of the electrolytic cell of the present invention. Explaining based on FIG. 7, salt water is supplied to the anode chamber 1 through the anolyte inlet 13, and chlorine gas generated by electrolysis is taken out along with the fresh salt water through the anode mixed phase liquid outlet 28. After the fresh salt water is separated into gas and liquid in the fresh salt water receiving tank 29, part of the fresh salt water is circulated to equalize the salt water concentration and pH within the electrolytic cell. Further, gas-liquid separation of fresh salt water and chlorine gas can also be performed in a conduit between the mixed phase liquid outlet and the fresh salt water receiving tank. Although not shown in the figure, an anolyte dispersion tube connected to the anolyte inlet 13 and extending over almost the entire length inside the anode chamber is provided, and the anolyte is introduced into the anode chamber through holes made in the dispersion tube as appropriate. The anolyte in the anode chamber can also be made uniform by supplying the anolyte in a distributed manner.
陰極液は陰極液導入口19より供給され、陰極
室2で発生する水素ガスとの混相流となつて混相
液排出口20より取り出され、水素ガスと陰極液
とは分離器21で分離される。ガスを分離した実
質的にガスを含まない陰極液はポンプ22により
該陰極液導入口19から陰極室2へ循環導入され
る。分離器21及びポンプ22は複数の電解槽に
対して1個でもよいし各電解槽毎に設けても良
い。 The catholyte is supplied from the catholyte inlet 19, becomes a multiphase flow with hydrogen gas generated in the cathode chamber 2, and is taken out from the multiphase liquid outlet 20, and the hydrogen gas and catholyte are separated by the separator 21. . The substantially gas-free catholyte from which the gas has been separated is circulated into the cathode chamber 2 through the catholyte inlet 19 by a pump 22 . The separator 21 and the pump 22 may be provided one for a plurality of electrolytic cells, or may be provided for each electrolytic cell.
電流は陽極ブスバー8より供給され、陰極室2
の陰極板16を通り、陰極ブスバー18より取り
出される。 Current is supplied from the anode busbar 8 and the cathode chamber 2
passes through the cathode plate 16 and is taken out from the cathode busbar 18.
陽極室1では式、
なる反応が起こり、陽極室1のナトリウムイオン
は陽イオン交換膜3を通つて陰極室2に達する。
一方、陰極室2では式、
なる反応が生起し、水素ガスを発生すると共に、
陽極室1より陽イオン交換膜3を通過して移動し
て来たナトリウムイオンを受けて苛性ソーダを生
成する。 In the anode chamber 1, the formula A reaction occurs, and the sodium ions in the anode chamber 1 pass through the cation exchange membrane 3 and reach the cathode chamber 2.
On the other hand, in cathode chamber 2, the formula is A reaction occurs, producing hydrogen gas, and
Caustic soda is generated by receiving sodium ions that have migrated from the anode chamber 1 through the cation exchange membrane 3.
尚陰極室内へ供給され、その中を貫流する陰極
液は水素ガスと生成した苛性ソーダを伴なつて陰
極室外へ運ばれ、分離器21によつて水素ガスを
分離した後、再び陰極液導入口19へ少なくとも
一部を還流せしめる循環液とすれば、苛性ソーダ
の濃度を適宜に増大することも、また途中で水を
以つて稀釈し濃度を調整することもでき有利であ
る。 The catholyte that is supplied into the cathode chamber and flows through it is carried to the outside of the cathode chamber together with hydrogen gas and generated caustic soda. After the hydrogen gas is separated by the separator 21, the catholyte is returned to the catholyte inlet 19. It is advantageous to use a circulating fluid in which at least a portion of the sodium hydroxide is refluxed, since the concentration of caustic soda can be increased as appropriate, and the concentration can also be adjusted by diluting it with water midway through.
以上、陰極液、陽極液の両液を循環する電解法
の一例を説明したが、陰極液のみを循環する場合
は第2図に示した如き循環系統で電解することが
できる。 An example of the electrolytic method in which both the catholyte and the anolyte are circulated has been described above, but when only the catholyte is circulated, electrolysis can be carried out using a circulation system as shown in FIG. 2.
叙上の通り、本考案によれば陰極室出口のガ
ス/液比を小さくできるためガス気泡の会合が起
こらず、スムースな液流を得ることができる。ま
た凸凹構造の凸部先端に膜を密接せしめ得るた
め、極間距離のコントロールが容易且つ均一に保
持でき、極間距離を実質的に膜厚と同一にするこ
とができる。更には凸凹構造金属板等を用いる場
合は、該凸凹構造金属板を取り外し、機械的加工
や水素過電圧低下処理を施すことができるから、
取り扱いに便利であり作業能率が高められる。 As mentioned above, according to the present invention, the gas/liquid ratio at the cathode chamber outlet can be made small, so that gas bubbles do not meet and a smooth liquid flow can be obtained. Furthermore, since the film can be brought into close contact with the tip of the convex part of the uneven structure, the distance between the poles can be easily and uniformly controlled, and the distance between the poles can be made substantially the same as the film thickness. Furthermore, when using a metal plate with an uneven structure, the metal plate with an uneven structure can be removed and subjected to mechanical processing or hydrogen overvoltage reduction treatment.
It is convenient to handle and increases work efficiency.
第1図は本考案電解槽の実施態様を示す一部切
欠正面図、第2図は同側面断面図及び陰極液循環
系統の一例を示す概要図、第3図乃至第5図はそ
れぞれ本考案に用いられる陰極構造の実施態様を
示す断面図、第6図は第4図に示した陰極構造を
具えた本考案電解槽の他の実施態様を示す側面断
面図、第7図は陰・陽両電解液の循環系統の一例
を示す概要図である。
1……陽極室、2……陰極室、3……陽イオン
交換膜、4……蓋体、5……陽極室側壁、6……
陽極導電棒、7……陽極懸垂装置、8……陽極ブ
スバー、9……陽極導電棒カバー、10……孔、
11……シート、12……陽極板、13……陽極
液導入口、14……陽極液排出口、15……陽極
ガス排出口、16……陰極板、17……陰極室側
壁、18……陰極ブスバー、19……陰極液導入
口、20……陰極混相液排出口、21……分離
器、22……ポンプ、23……パツキング、24
……波形状金属板、25……丸棒、26……凸凹
構造の金属板、27……底板、28……陽極混相
液排出口、29……淡塩水受槽。
Fig. 1 is a partially cutaway front view showing an embodiment of the electrolytic cell of the present invention, Fig. 2 is a side sectional view of the same and a schematic diagram showing an example of a catholyte circulation system, and Figs. 3 to 5 are respectively the electrolytic cell of the present invention. 6 is a side sectional view showing another embodiment of the electrolytic cell of the present invention equipped with the cathode structure shown in FIG. 4, and FIG. 7 is a sectional view showing an embodiment of the cathode structure used in FIG. 2 is a schematic diagram showing an example of a circulation system for both electrolytes. 1... Anode chamber, 2... Cathode chamber, 3... Cation exchange membrane, 4... Lid, 5... Anode chamber side wall, 6...
Anode conductive rod, 7... Anode suspension device, 8... Anode bus bar, 9... Anode conductive rod cover, 10... Hole,
11... sheet, 12... anode plate, 13... anolyte inlet, 14... anolyte outlet, 15... anode gas outlet, 16... cathode plate, 17... cathode chamber side wall, 18... ... Cathode bus bar, 19 ... Cathode liquid inlet, 20 ... Cathode mixed phase liquid outlet, 21 ... Separator, 22 ... Pump, 23 ... Packing, 24
... Corrugated metal plate, 25 ... Round bar, 26 ... Metal plate with uneven structure, 27 ... Bottom plate, 28 ... Anode mixed phase liquid outlet, 29 ... Fresh salt water receiving tank.
Claims (1)
より区画された上部の陽極室と下部の陰極室と
から構成され、前記陰極室がガス・液非透過性
の略矩形状の陰極板を備え、該陰極板の表面が
短辺と並行して凸凹構造であることを特徴とす
る水平型電解槽。 2 陰極板の凸凹構造が平板表面を堀削加工して
なる実用新案登録請求の範囲第1項記載の電解
槽。 3 陰極板の凸凹構造が平板上に棒状体を並列に
固定してなる実用新案登録請求の範囲第1項記
載の電解槽。 4 陰極板の凸凹構造が平板上に凸凹構造の金属
板を積層してなる実用新案登録請求の範囲第1
項記載の電解槽。 5 凸凹構造の凸部の先端が陽イオン交換膜と接
触している実用新案登録請求の範囲第1項乃至
第4項に記載のいずれかの各項に記載の電解
槽。 6 陽イオン交換膜の陰極室側が平滑面である実
用新案登録請求の範囲第1項記載の電解槽。 7 電解槽が水銀法電解槽から転換されたもので
ある実用新案登録請求の範囲第1項記載の電解
槽。[Claims for Utility Model Registration] 1. Consisting of an upper anode chamber and a lower cathode chamber separated by a cation exchange membrane stretched substantially horizontally, the cathode chamber being impermeable to gas and liquid. 1. A horizontal electrolytic cell comprising a substantially rectangular cathode plate, the surface of the cathode plate having an uneven structure parallel to its short sides. 2. The electrolytic cell according to claim 1, wherein the uneven structure of the cathode plate is obtained by drilling the surface of a flat plate. 3. The electrolytic cell according to claim 1, wherein the cathode plate has a convex-concave structure in which rod-shaped bodies are fixed in parallel on a flat plate. 4 Utility model registration claim No. 1 in which the uneven structure of the cathode plate is obtained by laminating metal plates with an uneven structure on a flat plate
Electrolytic cell described in section. 5. The electrolytic cell according to any one of claims 1 to 4, wherein the tips of the convex portions of the uneven structure are in contact with the cation exchange membrane. 6. The electrolytic cell according to claim 1, wherein the cathode chamber side of the cation exchange membrane has a smooth surface. 7. The electrolytic cell according to claim 1, which is converted from a mercury method electrolytic cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1983063342U JPS59169361U (en) | 1983-04-26 | 1983-04-26 | horizontal electrolyzer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1983063342U JPS59169361U (en) | 1983-04-26 | 1983-04-26 | horizontal electrolyzer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59169361U JPS59169361U (en) | 1984-11-13 |
JPS6239093Y2 true JPS6239093Y2 (en) | 1987-10-05 |
Family
ID=30193534
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1983063342U Granted JPS59169361U (en) | 1983-04-26 | 1983-04-26 | horizontal electrolyzer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59169361U (en) |
-
1983
- 1983-04-26 JP JP1983063342U patent/JPS59169361U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59169361U (en) | 1984-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0111149A1 (en) | Method for electrically connecting valve metal anode ribs and cathodically resistant metal cathode ribs through a bipolar plate, and a bipolar element | |
JPS59190379A (en) | Vertical type electrolytic cell and electrolyzing method using said cell | |
US5130008A (en) | Frame unit for an electrolyser of the filter-press type and monopolar electrolyser of the filter-press type | |
US5045162A (en) | Process for electrochemically regenerating chromosulfuric acid | |
KR20230039712A (en) | Combined current carrier circulation chamber and frame for use in unipolar electrochemical devices | |
CA1175780A (en) | Internal downcomer for electrolytic recirculation | |
JPS6239093Y2 (en) | ||
US4568433A (en) | Electrolytic process of an aqueous alkali metal halide solution | |
US4596639A (en) | Electrolysis process and electrolytic cell | |
US4556470A (en) | Electrolytic cell with membrane and solid, horizontal cathode plate | |
US5593553A (en) | Electrolytic cell and electrode therefor | |
JPH0324287A (en) | Frame unit for filter press- type electrolytic device and filter press-type electrolytic device | |
JPS6239091Y2 (en) | ||
JPS6239089Y2 (en) | ||
US4586994A (en) | Electrolytic process of an aqueous alkali metal halide solution and electrolytic cell used therefor | |
JPS6239094Y2 (en) | ||
JPS6145160Y2 (en) | ||
JPS624469B2 (en) | ||
JPS59197581A (en) | Horizontal type electrolytic cell and method for mounting cation exchange membrane to the same | |
JPH0216389B2 (en) | ||
JPS6239092Y2 (en) | ||
JPS6239090Y2 (en) | ||
JPS59197578A (en) | Electrolytic method and apparatus using said method | |
JPS59153888A (en) | Process and cell for electrolysis | |
JPS59193291A (en) | Electrolysis and electrolytic cell |