JPS5831089A - Unipolar electrolytic cell - Google Patents

Unipolar electrolytic cell

Info

Publication number
JPS5831089A
JPS5831089A JP56127746A JP12774681A JPS5831089A JP S5831089 A JPS5831089 A JP S5831089A JP 56127746 A JP56127746 A JP 56127746A JP 12774681 A JP12774681 A JP 12774681A JP S5831089 A JPS5831089 A JP S5831089A
Authority
JP
Japan
Prior art keywords
electrolytic cell
gasket
anode
electrode
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56127746A
Other languages
Japanese (ja)
Other versions
JPS63512B2 (en
Inventor
Toshikatsu Sada
佐田 俊勝
Katsutoshi Yoshimoto
吉本 勝利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP56127746A priority Critical patent/JPS5831089A/en
Publication of JPS5831089A publication Critical patent/JPS5831089A/en
Publication of JPS63512B2 publication Critical patent/JPS63512B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To provide a unipolar electrolytic cell which performs electrolysis on low electrolytic voltage with good electric current efficiency by laminating a gasket contg. a porous anode, a fluorine-contg. cation exchange membrane and a gasket contg. a porous cathode successively. CONSTITUTION:In an electrolytic cell suited particularly for electrolysis of an aq. alkali metallic salt, electric feeding bodies produced by forming porous electrodes 2 and gaskets 1 to one body, providing communicating ports 3 and communicating grooves 4 to the top and bottom and mounting a bus bar 5 are mounted on the right and left. The electrolytic cell is preferably longer in the height direction than in the width direction, and the thicknesses of the gaskets are made generally the same as the thickness of the electrode or thinner by <20%, more preferably 5% than the thickness of the electrodes. The velocity of flow of circulating liquid is extremely important; the liquid is generally used in an about 1-300cm/sec rate. Thus in the case of electrolyzing an alkali metallic salt, the current density up to about 5-200A/dm<2> is possible.

Description

【発明の詳細な説明】 本発明はイオン交換膜を用いた新規な構造の電解槽、特
にアルカリ金属塩水溶液を伝い電解電圧で電流効率よく
電解するに適したイオン交換膜を隔膜とする単極製電解
槽に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrolytic cell with a novel structure using an ion-exchange membrane, particularly a monopolar electrolytic cell using an ion-exchange membrane as a diaphragm, which is suitable for efficiently electrolyzing an alkali metal salt aqueous solution at an electrolytic voltage. Regarding electrolytic cells.

近年、イオン交換膜を隔膜とした所謂イオン交換膜性電
解はエネルギー消費量の少ないことから、省エネルギー
プロセスとして注目されている。jlc力性ソーダ、塩
素および水素を製造する食塩電解においては、よりエネ
ルギー消費量の少ないイオン交換膜性電解技術の活発な
研究・開発が進められている。
In recent years, so-called ion-exchange membrane electrolysis using an ion-exchange membrane as a diaphragm has attracted attention as an energy-saving process because of its low energy consumption. In the field of salt electrolysis for producing sodium chloride, chlorine, and hydrogen, active research and development is underway on ion-exchange membrane electrolysis technology that consumes less energy.

本発明者らは、上記の如き411にフルカリ金属塩水溶
液のイオン交換農法電解に関して、省エネルギーの観点
から電力原単位を低減すべく鋭意研究を重ねた結果、そ
れに好適な電解槽を完成し、本発明を提供するに至った
ものである。即ち、アルカリ金属塩水溶液などの電解に
おいて電解電圧を下げるためKは、理論分解電圧、電極
過電圧は別にして、膜の電気抵抗、溶液抵抗および気泡
抵抗による電圧降下、また電極界直における濃度分極、
層界面の濃度分極に基づく濃淡電位および膜電位を抑制
することが要求される。本発明はかかる要求を容易に達
成するに適した電解槽である。
The inventors of the present invention have conducted extensive research in order to reduce the power consumption rate from the viewpoint of energy saving regarding the ion exchange farming electrolysis of the aqueous solution of fulkali metal salts as described above. This has led to the invention. That is, in order to lower the electrolytic voltage in the electrolysis of aqueous alkali metal salt solutions, K is used to reduce the electrolytic voltage by the theoretical decomposition voltage, the electrode overvoltage, the voltage drop due to the electrical resistance of the membrane, the solution resistance, the bubble resistance, and the concentration polarization directly at the electrode field. ,
It is required to suppress the concentration potential and membrane potential based on concentration polarization at the layer interface. The present invention is an electrolytic cell suitable for easily achieving such requirements.

本発明によれば、多孔性陽極を内蔵したガスケット、含
ふっ素系陽イオン交換膜および多孔性陰極を内蔵したガ
スケットを順次に積層した構成単位を繰り返してなる単
極型電解槽が提供される。即ち、本発明はガスケットに
内蔵された多孔性陽極、含ふっ素系陽イオン交換膜およ
び多孔性陰極とが積層され、該陽イオン交換膜によって
区画される陽極室および陰極室が繰り返して構成される
単極型電解槽である。
According to the present invention, a monopolar electrolytic cell is provided in which a structural unit is repeated in which a gasket containing a porous anode, a fluorine-containing cation exchange membrane, and a gasket containing a porous cathode are sequentially laminated. That is, in the present invention, a porous anode built into a gasket, a fluorine-containing cation exchange membrane, and a porous cathode are stacked, and an anode chamber and a cathode chamber divided by the cation exchange membrane are repeatedly configured. It is a monopolar electrolytic cell.

本発明の電解槽においては、陽極室および陰極室にそれ
ぞれ所定の溶液を供給、排出するだめの連通口および連
通溝を設ける。即ち各溶液の流入口および流出口はそれ
ぞれ連通し、それらは陽極室および陰極室の溶液流入通
路および溶液流出通路としての連通溝にそれぞれ接続さ
れる。したがって、本発明の多゛孔性陽極または多孔性
陰極を内蔵したガスケットは、第1図に例示するように
、ガスケット(1)の内周部に多孔性陽極(2)または
多孔性陰極(2)を内蔵したもので、該ガスクツ) (
1)には溶液を供給、排出するために1ヶ以上の連通口
(3)および連通溝(4)を有する。
In the electrolytic cell of the present invention, the anode chamber and the cathode chamber are provided with a communication port and a communication groove for supplying and discharging a predetermined solution, respectively. That is, the inlet and outlet of each solution communicate with each other, and are connected to the communication grooves serving as the solution inlet passage and the solution outlet passage of the anode chamber and the cathode chamber, respectively. Therefore, the gasket incorporating a porous anode or a porous cathode of the present invention has a porous anode (2) or a porous cathode (2) on the inner circumference of the gasket (1), as illustrated in FIG. ) with built-in gaskets) (
1) has one or more communication ports (3) and communication grooves (4) for supplying and discharging solutions.

本発明に用いる陽極および陰極の形状は、液体、気体を
透過する多孔体であればよく、例えばラス材、スパゲテ
ィ状の網、エキスバンドメツシュ、金属クロス体、海綿
状体などで、できるだけ表面積が大きく、溶液の流線を
乱し、かつ核電極で発生するガスを速やかに離脱するに
適した均一な多孔平板の形状およびある程度の可撓性表
面物性を有することが好ましい。陽極の材質としては従
来公知の陽極として使用し5るもので、災素、フェライ
ト、白金などの貴金属、チタン基体に白金をコーティン
グしたもの、ニオブ、チタンの上に酸化ルテニウム、I
I化チタンをコーティングしたもの、或いは他のロジウ
ム、パラジウムνオスミウム、イリジウム、白金などの
醸化物を一種以上コーティングしたものなどである。ま
た、陰極材質としては、軟鉄、ニッケル、陽極に用いた
と同様の貴金属、即ち白金、I:lジウム、パラジウム
tルテニウム!イリジウム、オスZウム、炭素など、還
元雰囲気において経時的な変化がなく、陰極1iKよっ
て倹素されることなく且つ陰極過電圧が可及的に低いこ
とが望ましい。例えばアルカリ金属塩水溶液電解の場合
、陰極過電圧が1001LV以下、somv以下であル
コトが望ましい。
The shape of the anode and cathode used in the present invention may be any porous material that is permeable to liquids and gases, such as lath material, spaghetti-like mesh, expanded mesh, metal cloth, and spongy material, so that the surface area is as large as possible. It is preferable to have a uniform porous flat plate shape and a certain degree of flexible surface properties suitable for disturbing the flow lines of the solution and quickly releasing the gas generated at the nuclear electrode. The materials for the anode include those conventionally used as anodes, such as ferrite, noble metals such as platinum, platinum coated on a titanium substrate, niobium, ruthenium oxide on titanium, I
These include those coated with titanium chloride, or those coated with one or more other compounds such as rhodium, palladium v-osmium, iridium, and platinum. In addition, the cathode materials include soft iron, nickel, and the same noble metals used for the anode, such as platinum, I:Idium, palladium, and ruthenium! It is desirable that materials such as iridium, male Zium, and carbon do not change over time in a reducing atmosphere, are not ablated by the cathode 1iK, and have a cathode overvoltage as low as possible. For example, in the case of alkali metal salt aqueous solution electrolysis, cathode overvoltage is preferably 1001 LV or less and somv or less.

電極の厚みは特に限定的でないが、103以下さらには
1鵡以下であってもよく、経済的な観点から博いはと望
ましいが、一般に0.05〜10fiである。なお、電
極には給電のためにリプ或いは針金状の給電体或いは補
強材を溶接してもよい。これの材質は耐食性があり、電
気伝導性が高いことが必要であるが、耐食性については
ポリテトラフルオロエチレン、FgP 、PFA等の含
ふっ素ポリマー等によってコーティングをして耐食性を
賦与してもよい。
The thickness of the electrode is not particularly limited, but may be 103 or less, or even 1 or less, and is generally from 0.05 to 10 fi, although it is highly desirable from an economical point of view. Note that a lip or wire-like power supply body or reinforcing material may be welded to the electrode for power supply. The material needs to have corrosion resistance and high electrical conductivity, but it may be coated with a fluorine-containing polymer such as polytetrafluoroethylene, FgP, PFA, etc. to impart corrosion resistance.

ガスケットの材質としては、チタン板、軟鉄にチタンの
薄板を爆着したクラツド板を各種耐酸化性、耐熱性高分
子、例えばポリテトラフルオロエチレン、FEP 、P
FA tエチレンとテトラフルオシエチレンの共重合体
勢が好適に用いられる。また、通常のゴム類。
Gasket materials include titanium plates, clad plates made of soft iron with titanium thin plates bonded to them, and various oxidation-resistant and heat-resistant polymers such as polytetrafluoroethylene, FEP, and P.
A copolymer of FA tethylene and tetrafluoroethylene is preferably used. Also, regular rubber.

ポリオレフィン、ポリ/%Rゲン化ビニル等の級化水素
系高分子を用いる場合は、この表層部、lI#に極液に
接触する部分を耐食性のある物質でコーティングするこ
とも行われる。或いは表層部のみふっ素化等の処理を施
してもよい。ガスケットに共通して言えることは、ある
程度の弾性を有すること、従って、金属を用いた場合は
ポリテトラフルオルエチレン等のパツキンな片藺或いは
両mK用いたがよい。ガスケットの厚みは一般K O,
02〜20罵の閏のものが好適に用いられ、ll#に0
.05〜10簡のものが好適である。また、ガスケット
の厚みは一般に電極の最も厚い部分の厚みに対して同一
か或いは若干薄いことが望ましい。
When using a graded hydrogen polymer such as polyolefin or poly/%R vinylide, the surface layer portion, the portion of lI# that comes into contact with the polar liquid, may be coated with a corrosion-resistant material. Alternatively, only the surface layer may be subjected to a treatment such as fluorination. What gaskets have in common is that they must have a certain degree of elasticity, so if metal is used, it is best to use a tight one or both materials such as polytetrafluoroethylene. The thickness of the gasket is general KO,
02 to 20 curse words are preferably used, and 0 to ll# is used.
.. 05-10 is suitable. Further, it is generally desirable that the thickness of the gasket be the same as or slightly thinner than the thickness of the thickest part of the electrode.

ガスケットの形状は前記、第1図のよ5にシ一トフa−
Ifの長方形の額縁状が一般であるが、また第2図に示
すようなドータスフ0−臘の種々の態様も採用できる。
The shape of the gasket is as shown in Figure 1 above.
Although a rectangular frame shape of If is generally used, various forms of a dot-shaped frame as shown in FIG. 2 can also be adopted.

またガスヶ・マドの上下あるいは左右には1ヶ以上の連
通口(3)を設置すて、電極室へ溶液の流入および電極
室から溶液の流出を行う。さらに、電極室内Ks液の分
散を均一に行うために、ガスケットには連通溝(蜀を設
は且つ分流板を設けることが好ましい。連通溝の構造お
よび分流板の形状は、電気透析に′おいて用いられる締
付臘電気透析槽で用いられる構造のものが何ら制限なく
採用される。分流板の材質としては陽極あるいは険II
K用いられる材質と同一の金属、例えばチタン、ニオブ
などの網、斜文体。
In addition, one or more communication ports (3) are installed on the top and bottom or left and right sides of the gas chamber/mud to allow the solution to flow into the electrode chamber and the solution to flow out from the electrode chamber. Furthermore, in order to uniformly disperse the Ks liquid in the electrode chamber, it is preferable that the gasket is provided with a communication groove and a flow divider plate.The structure of the communication groove and the shape of the flow divider plate are suitable for electrodialysis. The structure used in the tightening electrodialysis tank used in the
K Net of the same metal as the material used, such as titanium, niobium, etc., diagonal font.

突起を有するもの、スポンジ体など用いられるが、耐食
性のある含ふっ嵩高分子体が望ましい、さらに陽イオン
交換膜の連通溝への落ち込みを防ぐため、耐食性と同時
に、長時間使用にあたっては変形を生じないものが望ま
しい。また連通口によって極液を供給するため、各極室
に均一に液が供給される必要がある。即ち等流量分配を
行うため、この部分における圧填がある程度存在するも
のが望ましい。
A material with protrusions or a sponge material can be used, but a fluorine-containing bulky polymer with corrosion resistance is preferable.Furthermore, in order to prevent the cation exchange membrane from falling into the communication groove, it is not only corrosion resistant but also deforms during long-term use. It is preferable to have none. Furthermore, since the polar liquid is supplied through the communication port, it is necessary to uniformly supply the liquid to each polar chamber. That is, in order to distribute the flow rate equally, it is desirable that there is some degree of pressure filling in this part.

また多孔性電極とガスケットは一体化されて内蔵されて
いることが望ましく、耐食性のある接着剤による接着、
ガスケットに高分子化金物を用いるときは融着、ガスケ
ットが金属である場合は熔**によって一体化される。
In addition, it is desirable that the porous electrode and gasket be integrated and built-in.
When a polymerized metal material is used for the gasket, it is integrated by fusion, and when the gasket is made of metal, it is integrated by melting**.

叉にガスケツ)には連通口が上下にあるときは左右K、
また連通口が左右にあるときは上下に供電用のブスバー
を取り出しておく必要がある。単極式電解槽であるため
、ガスグツトの上下に連通口があるときは、第1図に示
すよう、陽極用のブスバー(5)が散りつけられる給電
体を例えば左側に設げ、陰極用のブスバーを取りつける
給電体を右側Kmりつけるといった形状となる。電極は
従来の電解槽に比較して薄く、且つ大電流を流す゛ため
導体電気抵抗のできるだけ少ない状態でブスバー。
(or gasket), if the communication ports are on the top and bottom, press left and right K,
Also, when the communication ports are on the left and right sides, it is necessary to take out busbars for power supply at the top and bottom. Since this is a monopolar electrolytic cell, if there are communication ports at the top and bottom of the gas gut, as shown in Figure 1, the power supply body on which busbars (5) for the anode are scattered should be installed on the left side, and the bus bar (5) for the cathode The shape is such that the power supply body to which the bus bar is attached is mounted on the right side Km. The electrodes are thinner than conventional electrolytic cells, and because they allow a large current to flow through them, the busbar is constructed with as little conductor electrical resistance as possible.

給電体及び電極舎部位への電流の供給をする必要がある
。そのためチタンのよ5な電気伝導性のあまり良くない
ものを用いた電極では流線の偏りを生じない範囲で適宜
給電体を電極に爆接することが望ましい、導体電気抵抗
による電圧降下は低いはと望ましく、30ム/drの電
流書度で運転するときsomv以下であることが必要で
ある。更に、単極式電解槽であるため1本質的K11m
洩電流は少ないが、使用される極液の種類に応じて連通
溝の長さ、形状を選定しなげればならない、漏洩電流は
通常1%以下に保つように配慮する必要がある。
It is necessary to supply current to the power supply and electrode housing parts. Therefore, when using an electrode made of a material such as titanium that has poor electrical conductivity, it is desirable to bring the power supply into explosive contact with the electrode within a range that does not cause deviation of the streamlines, and the voltage drop due to the electrical resistance of the conductor is likely to be low. Desirably, when operating at a current rating of 30 m/dr, it is necessary that the somv or less. Furthermore, since it is a monopolar electrolytic cell, 1 essential K11m
Although the leakage current is small, the length and shape of the communication groove must be selected depending on the type of polar liquid used, and care must be taken to keep the leakage current normally below 1%.

本発明の含ふっ素系陽イオン交換膜としては、特にパー
フルオロカーボン系陽イオン交換膜が好ましく、従来公
知のものが用いられる。具体的にはバーフルオμ(3,
6−シオキサー4−メチル−7−オクテンスルホニルフ
ルオライド)とテトラフルオロエチレンの共重金物を膜
状に成層加水分解したもの、この高分子の交換容量の違
う膜状愉を接着、融着したもの、ブレンドしたもの、あ
るいは膜の一方の面に解離し5る水素原子を有するスル
ホン駿アミド基、カルボン酸基、リン酸基、    ′
フェノール性水蒙s、バーフルオpの第三級のアルコニ
ル基などの弱酸性の陽イオン交換基の薄層な有する所謂
多層膜が好適に用いら・れる。またパーフル第2スルホ
ン蒙基の一部を膜の片面のみ一部分解除去したもの、化
学反応によって一部不活性化したものなども好適に用い
られる。勿論、膜全体の陽イオン交換基がパーフルオル
カルボン酸基である公知の陽イオン交換膜は全て有効で
ある。また、痰のlli極何のMwi及び膜の大部分は
交換容量が大きく、陰極側1[した一部のみが交換容量
の低いカルボン酸基の膜、スルホン駿基の膜も有効であ
る。特に有効な陽イオン交換膜は、膜の厚みの大部分が
パーフルオルスルホン酸基を有し、交換容量は0.6〜
2.OJ!7当量/グヲムー乾燥H(、Hm’)であり
、陰極に面する側のみ少なくとも20QA’の厚みでカ
ルボン酸基が0.6〜2.02す嶋量/グラムー乾燥膜
(Hm)存在する二層膜である。交換容量を高く保ち且
つ機械的強度を保つため、一部架橋構造が形成されてい
る膜が望ましい。
As the fluorine-containing cation exchange membrane of the present invention, perfluorocarbon cation exchange membranes are particularly preferred, and conventionally known membranes can be used. Specifically, barfluo μ (3,
6-Shioxer (4-methyl-7-octensulfonyl fluoride) and tetrafluoroethylene co-heavy metals are layered and hydrolyzed into a membrane, and these membranes with different exchange capacities are adhered and fused. , a blend, or a sulfonamide group, a carboxylic acid group, a phosphoric acid group, which has a dissociated hydrogen atom on one side of the membrane,
A so-called multilayer film having a thin layer of weakly acidic cation exchange groups such as tertiary alkonyl groups such as phenolic hydrochloride and barfluoropolymer is suitably used. Furthermore, those obtained by partially decomposing and removing a part of the peruffle secondary sulfone monomer from one side of the membrane, or those partially inactivated by a chemical reaction are also suitably used. Of course, all known cation exchange membranes in which the cation exchange groups throughout the membrane are perfluorocarboxylic acid groups are effective. In addition, most of the sputum LLI and MWI of the membrane have a large exchange capacity, and only a portion of the cathode side has a low exchange capacity, such as carboxylic acid group membranes and sulfone group membranes, which are also effective. A particularly effective cation exchange membrane has perfluorosulfonic acid groups in most of its thickness, and has an exchange capacity of 0.6 to
2. OJ! 7 equivalents/g dry film H (, Hm'), and carboxylic acid groups are present at a thickness of at least 20 QA' only on the side facing the cathode in an amount of 0.6 to 2.02 g/g dry film (Hm). It is a layered film. In order to maintain high exchange capacity and mechanical strength, a membrane having a partially crosslinked structure is desirable.

また膜には不活性な布、網、m物等の補強材が存在して
いてもよいが、陽極を内蔵するガスケット、陰極を内蔵
するガスケットによって膜の両面から密着されるため、
必ずしも補強材は必要でない。補強材を用いるときは、
ポリテトラフルオルエチレン、FEP、PFA、テトラ
フルオルエチレンとヘキサフルオpプ呼ピレンの共重合
体等が耐薬品性、耐熱性の観点から好適に用いられる。
In addition, the membrane may contain reinforcing materials such as inert cloth, netting, m-material, etc., but since the membrane is in close contact with both sides of the membrane by the gasket containing the anode and the gasket containing the cathode,
Reinforcements are not necessarily required. When using reinforcement materials,
Polytetrafluoroethylene, FEP, PFA, a copolymer of tetrafluoroethylene and hexafluoropyrene, and the like are preferably used from the viewpoint of chemical resistance and heat resistance.

最も望ましいのは補強材の存在しない、厚みが0.03
〜2.0鰭の陽イオン交換膜である。陽イオン交換膜を
電解槽内に組み込む場合、膜構造が均一なものは別とし
て、膜断面に関してイオン交換基の種類1分布が異方性
である膜は、該層の交換容量を含水量で除した所nF&
定イオン濃度の高い面を陰極を内蔵するガスケットに向
けておくことが必要である。例えば、カルボン駿層とス
ルホン醗層からなる二層膜では、カルボン酸基を有する
層を陰極側に向けて組み込むことが必要である。
The most desirable is no reinforcing material and a thickness of 0.03
~2.0 fin cation exchange membrane. When a cation exchange membrane is incorporated into an electrolytic cell, apart from those with a uniform membrane structure, membranes with an anisotropic distribution of ion exchange group types with respect to the membrane cross section will have an exchange capacity of the layer determined by the water content. Where nF &
It is necessary to keep the side with high constant ion concentration facing the gasket containing the cathode. For example, in a two-layer film consisting of a carboxylic acid layer and a sulfone layer, it is necessary to incorporate a layer having a carboxylic acid group toward the cathode side.

本発明の電解槽は多孔性陽極を内蔵したガスケットから
なる陽極室、バーフルオーカーボン陽イオン交換膜、勿
孔性陰極を内蔵したガスケットからなる陰極室、さらに
陽イオン交換膜、陽極室といったくり返し単位でありこ
れが使用目的によつても異なるが、2単位以上、100
単位、場合によっては1000単位でも工業的には実施
できる。装置の安定操業及び規模の点からその単位は適
宜選択され、創成はない。単極式電解槽の端末は陽極側
は陽極111C耐食性のある材質の隔壁で、陰極側は陰
極@に対して耐食性のある材質によって押え、一つの単
極皺電槽を構成することができる。この単極式電解槽は
油圧式プレスによって両端よりプレスし運転することが
できるが、堆扱いの便宜上から5単位或いは10単位を
一朗として、ボルト等で締め付は小単位として、これを
多数側積層して電解槽としてもよい。
The electrolytic cell of the present invention has an anode chamber consisting of a gasket containing a porous anode, a barfluorocarbon cation exchange membrane, a cathode chamber consisting of a gasket containing a non-porous cathode, and a cation exchange membrane and an anode chamber. The unit is 2 units or more, 100 units, although it varies depending on the purpose of use.
It can be carried out industrially even in units of 1000 units depending on the case. The unit is appropriately selected from the viewpoint of stable operation and scale of the equipment, and there is no generation. The terminals of the monopolar electrolytic cell are held by a partition wall made of a corrosion-resistant material for the anode 111C on the anode side, and a material that is corrosion-resistant against the cathode @ on the cathode side, thereby forming one single-pole wrinkled battery cell. This monopolar electrolytic cell can be operated by pressing it from both ends with a hydraulic press, but for convenience in handling the pile, 5 or 10 units are set at one time, and bolts are tightened in small units, and these are connected to multiple sides. It may be stacked to form an electrolytic cell.

本発明の電解槽を用いる場合、電極及び電Iii室から
の気泡の離脱を速やかに且つ容易にするため、早い流速
で溶液を流すとき、更に電極M藺止の濃度分極を消去す
るために早い流速で溶液を流すとき、供給した溶質の分
解率が低くなる。そこで電解槽は中方向よりも高い方向
に長い方が望ましく、巾方向の1.1〜10倍の流れ方
向の長さがあることが望ましい。この場合あまりに長さ
方向が長いと工業設備として取扱いが容易でなくなるし
、電槽入口と出口の膿度差が大き過ぎて、電流の不均一
性がひどくなる。勿論、電解槽は重置方向にのみ設置す
るのでなく、水平方向に設置しても、極液を早い流速で
流しているために何ら差しつかえない。或いは同一の電
解槽を複数個設置して、一段目の極液を二段目。
When using the electrolytic cell of the present invention, when flowing the solution at a high flow rate in order to quickly and easily remove bubbles from the electrodes and the electrolytic chamber, the solution should be flowed at a high flow rate to eliminate the concentration polarization of the electrode M. When the solution is flowed at a high flow rate, the rate of decomposition of the supplied solute becomes low. Therefore, it is preferable that the electrolytic cell is longer in the upper direction than in the middle direction, and preferably has a length in the flow direction that is 1.1 to 10 times as long as in the width direction. In this case, if the length is too long, it will not be easy to handle as industrial equipment, and the difference in purulence between the inlet and outlet of the container will be too large, resulting in severe non-uniformity of the current. Of course, the electrolytic cells can be installed not only in the stacked direction, but also in the horizontal direction, since the polar liquid is flowing at a high flow rate. Alternatively, you can install multiple identical electrolytic cells and use the polar liquid from the first stage as the second stage.

三段目と直列に流してもよい。更に、例えば一つの電解
槽の中で一つの陽極室を出た極液を、同じ電解槽内の隣
接した次の陽極i1に供給してもよく、同IIK複数個
の陽極室を通したのち電解槽から排出してもよい。
It may also be run in series with the third stage. Furthermore, for example, the electrolyte leaving one anode chamber in one electrolytic cell may be supplied to the next adjacent anode i1 in the same electrolytic cell, and after passing through a plurality of anode chambers in the same electrolytic cell, It may be discharged from the electrolytic cell.

本発明の電解槽は従来公知のイオン交換膜を用いた如何
なる電解槽とも、その形態、使用態様とも異なる。成る
点ではイオン交換膜を用いた締付型電気透析槽に近い構
造を有しているが、特殊な陽極、陰極を有し、イオン交
換膜を有している点で、且つ各々電極が溶液の流線を乱
すとい5%殊な作用をしている点で電気透析槽とは本質
的に異なる。
The electrolytic cell of the present invention is different from any conventionally known electrolytic cell using an ion exchange membrane, its form, and usage mode. It has a structure similar to a clamp-type electrodialysis tank using an ion-exchange membrane, but it has a special anode, a cathode, and an ion-exchange membrane, and each electrode is connected to the solution. It is essentially different from an electrodialysis tank in that it has a special effect of disturbing the flow lines of the cell.

なお、本発明の目的を十分に満足させるためには、本発
明の電解槽においては多孔性陽極、含ふっ素系陽イオン
交換膜および多孔性陰極がそれぞれ密着するよ5に積層
することが好ましい。即ち、一般にイオン交換膜を用い
る系にあっては、イオン交換膜界面に膜中と溶液中のイ
オンの移動度差に基づく濃度分極層が形成される。他方
、電極界[においても、溶液中のイオンの移動度差と電
極反応の差に基づく濃度分極が生じる。411に電気分
解を高い電流密度で行5とき、この濃度分極現象は高度
に進行する。通常、電極反応では電極からガスが発生す
るため、この発生する気泡によつ【溶液は攪拌され電極
界面の濃度分極は消され、同時に膜、−液界一の濃度分
極もある1度これによって消される。しかしながら、上
記した如き気泡による濃度分極の消去には限界があり、
同時に電極で発生したガスは液性によっては自然対流的
に上昇していく速度が極めて遅く、特に大面積の工業電
解槽においては電解槽内に気泡の滞留が生じる。
In order to fully satisfy the purpose of the present invention, in the electrolytic cell of the present invention, it is preferable that the porous anode, the fluorine-containing cation exchange membrane, and the porous cathode are laminated in such a way that they are in close contact with each other. That is, in a system that generally uses an ion exchange membrane, a concentration polarized layer is formed at the interface of the ion exchange membrane based on the difference in mobility between ions in the membrane and in the solution. On the other hand, also in the electrode field, concentration polarization occurs due to the difference in mobility of ions in the solution and the difference in electrode reaction. When electrolysis at 411 is performed at a high current density, this concentration polarization phenomenon progresses to a high degree. Normally, in an electrode reaction, gas is generated from the electrode, so the generated bubbles agitate the solution and eliminate the concentration polarization at the electrode interface. Be erased. However, there is a limit to the elimination of concentration polarization by bubbles as described above.
At the same time, the rate at which the gas generated at the electrodes rises due to natural convection is extremely slow depending on the liquid properties, and especially in large-area industrial electrolytic cells, bubbles remain in the electrolytic cell.

そのため電極間電圧の上昇を招き、ひいては電解による
生成物の電力原単位の高騰を招く。
This causes an increase in the voltage between the electrodes, which in turn causes a rise in the power consumption rate of the product produced by electrolysis.

そのために単に気泡による濃度分極の消去。To do this, simply eliminate the concentration polarization by air bubbles.

自然対流による気泡の上昇のみでなく、強制的に電極液
を流すととによって濃度分極を完全に消去し、同時に気
泡を含んだ極液を気泡を含まない溶液によって速やかに
置換し、気泡を含んだ溶液を気液分離槽によって分離し
再び気泡を含まない溶液を電解槽に供給することをくり
゛返すととくよって、濃度分極による電圧降下、溶液中
の気泡に基づいて電圧降下を極力減少させることができ
、更に膜面に付着し、電流を適所する気泡も完全に除去
することができるのである。特にこれら濃度分極の消去
、溶液中の気泡の除去、膜面・電極面の気泡の除去等を
より効率的に行5ためには、電極とイオン交換膜が密着
していることが必要である。電極とイオン交換膜の間に
空隔があると、極液を循環するとき、溶液はより圧損の
少ない空隔を通り抜は上述したよ5な効果を発揮するこ
とができない。従って、本発明の電解槽において本質的
には電極とガスケットの厚みが完全に同一なものであれ
ば最も望ましいが、大面積の電極、膜、ガスケットの全
?fiKわたって完全に同一厚みであることは工業設備
においては不可能忙近い。特に大面積の工業設備にあっ
ては、電極、膜。
In addition to the rise of bubbles due to natural convection, the concentration polarization is completely eliminated by forcing the electrode solution to flow, and at the same time, the electrode solution containing bubbles is quickly replaced with a solution that does not contain bubbles, and the electrode solution containing bubbles is removed. By repeating the process of separating the liquid solution in a gas-liquid separation tank and supplying the solution without bubbles to the electrolytic tank again, the voltage drop due to concentration polarization and the voltage drop due to air bubbles in the solution are reduced as much as possible. Furthermore, it is possible to completely remove air bubbles that adhere to the membrane surface and allow the current to pass through. In particular, in order to more efficiently eliminate these concentration polarizations, remove bubbles in the solution, and remove bubbles on the membrane and electrode surfaces5, it is necessary that the electrode and ion exchange membrane are in close contact. . If there is an air gap between the electrode and the ion exchange membrane, when the polar liquid is circulated, the solution will pass through the air gap with less pressure loss, and the above-mentioned effect cannot be achieved. Therefore, in the electrolytic cell of the present invention, it is most desirable if the thickness of the electrode and the gasket are essentially the same. It is almost impossible in industrial equipment to have a completely uniform thickness over the fiK. Especially in large area industrial equipment, electrodes and membranes.

ガスケットと王者ともに少しずつ異なることは避は難い
。そのために、完全に膜−電極が密着して極液の流れを
乱して上述したような効果を発揮するKは、本発明の電
解槽においては電極の厚みをガスケットの厚みの20%
未満薄くすることが望ましい。この場合の電極の厚みと
は、金網状のものの場合にはその交点の厚みを言い、エ
キスバンドメタルの場合もその最大厚みの個所を言5゜
ガスケットの厚みに比較して電極の厚みが20%よりも
大きいと、金属である電極によって高分子化合物である
イオン交換膜は変形、破損する。
It is inevitable that both the gasket and the champion will be slightly different. For this reason, in the electrolytic cell of the present invention, the thickness of the electrode is set to 20% of the thickness of the gasket.
It is desirable to make it thinner than the following. The thickness of the electrode in this case refers to the thickness of the intersection point in the case of wire mesh, and in the case of expanded metal, the thickness of the electrode is 20 degrees compared to the thickness of the gasket. %, the ion exchange membrane, which is a polymer compound, will be deformed and damaged by the metal electrode.

したがって、ガスケットの厚みは一般に電極の厚みと同
一か、電極の厚みより20%、特KIO%、さらに5%
薄くすることが望ましく、限界は20%未満であること
を我々は経験的に知った。ガスケットの厚みと電極厚み
が同一乃至20%の間は適宜電極の形状および硬さ、イ
オン交換膜の強度および可撓性。
Therefore, the gasket thickness is generally the same as the electrode thickness, or 20%, special KIO%, and 5% more than the electrode thickness.
We have found empirically that thinning is desirable and the limit is less than 20%. When the gasket thickness and electrode thickness are the same to 20%, the shape and hardness of the electrode, the strength and flexibility of the ion exchange membrane are determined as appropriate.

ガスケットの硬度等によってその値が選択される。The value is selected depending on the hardness of the gasket, etc.

本発明の電解槽は極めてコンパクトな電解槽を且つ安価
な電解槽というのみでなく、エネルギー消費量の点から
極めて優れたものである。従来、イオン交換膜を用いる
アルカリ金属塩電解などにおいて、°電解電圧に占める
イオン交換膜の電気抵抗による電圧降下は大きい。その
ためできるだけ電気抵抗の低い膜を用いる必要がある。
The electrolytic cell of the present invention is not only an extremely compact and inexpensive electrolytic cell, but also extremely superior in terms of energy consumption. Conventionally, in alkali metal salt electrolysis using an ion exchange membrane, the voltage drop due to the electrical resistance of the ion exchange membrane accounts for a large amount of the electrolysis voltage. Therefore, it is necessary to use a film with as low electrical resistance as possible.

即ち、イオン交換膜の厚みな薄くすること、交換容量を
大きくすること、及びイオン交換膜の強度保持のために
用いられている不活性材料、例えば布、網。
That is, inert materials such as cloth and mesh are used to reduce the thickness of the ion exchange membrane, increase the exchange capacity, and maintain the strength of the ion exchange membrane.

多孔体等の補強材は除くかできるだけ少なくしたがよい
。そのようなとき、イオン交換膜は必然的に機械的強度
が弱くなる。しかるに本発明の電解槽においては陽イオ
ン交換膜が多孔性電極によって両面から支持されること
によって、従来は工業的に使用不可能であった膜を使用
可能とし、同時にこの点からも著しいエネルギー消費量
の低減を図ることができるのである。   “ また、従来型の電解槽では電極で発生したガスが電槽外
に排出されるとき、電解槽上部にガスな多べ含んだ気−
液混合層が存在したが、本発明の電解槽においてはそれ
が少なくなり、従来臘の電解槽に比較して電解槽内に含
まれているガス量は少なく、万一イオン交換膜に損傷が
あったときでも、両極ガスの混合、爆発ということは避
けられる。
Reinforcing materials such as porous bodies should be removed or reduced as much as possible. In such cases, the mechanical strength of the ion exchange membrane inevitably becomes weaker. However, in the electrolytic cell of the present invention, the cation exchange membrane is supported on both sides by porous electrodes, which makes it possible to use membranes that were previously unusable industrially, and at the same time, from this point of view, there is a significant energy consumption. The amount can be reduced. “In addition, in conventional electrolytic cells, when the gas generated at the electrodes is discharged outside the cell, there is a large amount of gas at the top of the electrolytic cell.
Although there was a liquid mixed layer, in the electrolytic cell of the present invention, this layer is reduced, and the amount of gas contained in the electrolytic cell is smaller than that of the conventional electrolytic cell, which prevents damage to the ion exchange membrane. Even in the event of an explosion, mixing of the polar gases and an explosion can be avoided.

さらに、本発明の電解槽を運転する場合、陽極液および
陰極液を一方のみまたは両方ともに流し、循環すること
Kよって、電極液界面および換−液界面に生じる拡散境
膜層の消去、また電極で発生したガスを電解槽外へ除去
することが極めて容易にできる。即ち、従来の電解反応
、とりわけアルカリ金属塩電解においては単に電極で発
生するガスのみKよって電極界面、層界面の境界破壊を
行っていたのに対して、本発明の電解楕においては、強
制的な液循環によって、これを容易に破壊することがで
きる。同時に粘稠な溶液中の発生ガスの自然な上昇のみ
Kよって溶液中からのガスの除去を行っていたのに対し
て、本発明の電解槽では強制的に液を流すことで(ガス
を含まない溶液によってガスを含んだ溶液を置換するこ
とで)、気泡による電圧降下を容易に低減することがで
きる。峙に本発明の電解槽における電解電圧の低下は極
めて顕著であり、従来の電解槽(特に従来のアルカリ金
属塩電解槽)における電解電圧に比較すると驚異的な電
解電圧の低下をもたらす。
Furthermore, when operating the electrolytic cell of the present invention, the anolyte and catholyte are circulated through one or both of them, thereby eliminating the diffusion film layer formed at the electrode liquid interface and the exchange liquid interface, and eliminating the diffusion film layer formed at the electrode liquid interface and the exchange liquid interface. It is extremely easy to remove the gas generated from the electrolytic cell. That is, in contrast to conventional electrolytic reactions, especially in alkali metal salt electrolysis, where the boundary between the electrode and layer interfaces was destroyed simply by the gas generated at the electrodes, the electrolytic ellipse of the present invention This can be easily destroyed by proper fluid circulation. At the same time, gas was removed from the solution only by the natural rise of the gas generated in the viscous solution, whereas in the electrolytic cell of the present invention, the liquid is forced to flow By replacing the gas-containing solution with a gas-containing solution), the voltage drop due to bubbles can be easily reduced. On the other hand, the reduction in electrolysis voltage in the electrolytic cell of the present invention is extremely remarkable, resulting in a surprising reduction in electrolysis voltage when compared to the electrolysis voltage in conventional electrolytic cells (particularly conventional alkali metal salt electrolytic cells).

本発明においては上記循環液の流速も極萄て重要であり
、一般には1〜366oa/secの範囲内で用いられ
、あまりに早いとポンプ動力の点で経済的でなく、jた
1傷/弐以下では気泡離脱作用、境膜破壊作用において
効果が弱い。このような観点から、極液流速としては、
好ましいのは2 am / sec以上更に好ましくは
10cmZ軟以上100(!ml/弐以下である。
In the present invention, the flow rate of the circulating fluid is also extremely important, and is generally used within the range of 1 to 366 oa/sec. If it is too fast, it will be uneconomical in terms of pump power, and In the following, the effect is weak in terms of bubble release action and film destruction action. From this point of view, the polar liquid flow rate is
Preferably it is 2 am/sec or more, more preferably 10 cmZ soft or more and 100 (!ml/2 or less).

勿論、この流速は電流書度、溶液員度、電解槽の構造、
電極の形状、電槽の高さ、ガスの離脱性など各種の因子
によって著しく真なり更に電極形状によって溶液の流線
を乱す効果が大きいときは、それiど早い流速で流す必
要はない。望ましいのは乱流域であるが、乱流域とする
ほど溶液流速を早くするとポンプ動力の点で経済的では
ない。流線を乱し、電極及び層界面の境膜層を破壊する
ことが必要である。このよ5な観点から陽極液、陰極液
の流速は決められるが、種々の条件によって異なり、ま
た極液の液性、濃度等によっても異なり、上記流速以上
なら充分であるが、また別の観点から一般的な表現とし
て、陽極富内或いは陰極室内の溶液中のガス含有率は7
0%以下好ましくは50%以下、更に好ましくは30%
であることである。このような溶液の流速、電流密度、
その他の条件を選定すればよい。また極液を早い流速で
流しmsする場合、陽極液および陰極液ともに循環して
もよいが、一方のみを循環することもできるし或いは流
速は一方のみ早く流し、他方は流速を落して運転する−
こともできる。1IIKフルカリ金属塩水溶液の電気分
解にあっては、気泡の発生と同時に陽極界面及び陽イオ
ン交換膜−液界面の境膜の成長が着しく、これを消去す
るた゛めにできるだけ早い流速で溶液を流す必要がある
。また陰極界面にできる境膜Vc−づく、拡散電位の消
去及び水素ガスの膜面。
Of course, this flow rate depends on the current level, the solution level, the structure of the electrolytic cell,
If this is significantly affected by various factors such as the shape of the electrode, the height of the container, and the ability of gas to escape, and if the shape of the electrode has a large effect of disturbing the flow lines of the solution, then it is not necessary to flow at a faster flow rate. Although a turbulent region is desirable, increasing the solution flow rate so as to create a turbulent region is not economical in terms of pump power. It is necessary to disturb the streamlines and destroy the membrane layer at the electrode and layer interfaces. The flow rate of the anolyte and catholyte can be determined from these five points of view, but it varies depending on various conditions, and also depends on the liquid properties and concentration of the catholyte. Although a flow rate higher than the above is sufficient, there are also other points of view. As a general expression, the gas content in the solution in the anode chamber or cathode chamber is 7.
0% or less, preferably 50% or less, more preferably 30%
It is to be. The flow rate of such solutions, current density,
Other conditions may be selected. In addition, when flowing the polar solution at a high flow rate, both the anolyte and the catholyte may be circulated, but it is also possible to circulate only one of them, or the flow rate of one can be made to flow at a high rate while the other is operated at a lower flow rate. −
You can also do that. In the electrolysis of a 1IIK fulkaline metal salt aqueous solution, bubbles are generated and a boundary film at the anode interface and the cation exchange membrane-liquid interface is likely to grow, and in order to eliminate this, the solution should be flowed at the fastest possible flow rate. There is a need. In addition, a barrier film Vc is formed at the cathode interface, eliminating the diffusion potential and hydrogen gas film surface.

電極界面の脱離を考慮した流速で陰極液は流す必要があ
る。この場合に電極形状、各室の濃度尋を考慮して、各
室の流速を選定する必要がある。
The catholyte must be flowed at a flow rate that takes into account desorption at the electrode interface. In this case, it is necessary to select the flow rate for each chamber by considering the electrode shape and the concentration level in each chamber.

また、本発明の電解槽を運転する場合の電mm度は電解
槽の使用目的によって異なるがアルカリ金属塩電解の場
合には5〜2G0A/dビまでも可能であり、特に電解
槽内における電圧降下が少ないため高い電流密度25A
/d11L″以上g0A/d7fi@で操業するとき経
済的である。勿論、電解槽を設置する場所のエネルギー
コストによって雇適の電流密度は変動するが、従来の電
解槽に比較して高電流密度はと効果的である。
In addition, the electric current when operating the electrolytic cell of the present invention varies depending on the purpose of use of the electrolytic cell, but in the case of alkali metal salt electrolysis, it is possible to reach 5 to 2 G0A/dbi, and in particular, the voltage inside the electrolytic cell High current density 25A due to low drop
It is economical when operating at g0A/d7fi@/d11L'' or higher.Of course, the appropriate current density will vary depending on the energy cost of the location where the electrolyzer is installed, but the current density is higher than that of conventional electrolyzers. Very effective.

以下に本発明の電解槽を用いた実施例を示すが、本発明
はこれによって何ら制限されるものでない。
Examples using the electrolytic cell of the present invention are shown below, but the present invention is not limited thereto.

実施例 1 枠内に通電面積2000dを有し且つ上下に2ケの連通
口と連通溝を有するポリ四弗化エチレン製ガスケット(
厚み2.0■)の中へ、多孔性陽極とし、てチタンのラ
ス材(iIIt大の交点の厚みが2.0〜2.2 wx
 )の両面にルテニウムオキサイドとチタンオキサイド
をコーティングして活性化された不溶性陽極をガスケッ
トとの関に空隔がないよ5に内蔵し、ガスケットの右側
から陽極への給電体を出した。連通溝には活性化処理さ
れていない陽極と同じ厚みでラス材の目開きが密なチタ
ンのラス材を入れて多孔性陽極を内蔵するガスケットと
した。他方、多孔性陰極を内蔵するガスゲットとしては
、ガスケットは陽極のガスケットと同じ厚みで同一材質
で、陽極ガスケットとは異なる上下の位置に1ケの連通
口と連通溝を設けたものを用い、陰極として軟鉄のラス
材(2,0〜2.2mの交点厚み)K、Pダンニッケル
メッキを行い、陰極過電圧を約100ILVまで低減し
たものを用い、給電体はガスケットの左側から出した。
Example 1 A polytetrafluoroethylene gasket (with
A porous anode is inserted into the titanium lath material (thickness of the intersection of IIt size is 2.0 to 2.2 wx).
) An insoluble anode activated by coating both sides with ruthenium oxide and titanium oxide was built into 5 with no space between it and the gasket, and the power supply to the anode was brought out from the right side of the gasket. A titanium lath material with the same thickness as the non-activated anode and with a dense lath opening was inserted into the communication groove to create a gasket containing the porous anode. On the other hand, for a gas get with a built-in porous cathode, the gasket is the same thickness and made of the same material as the anode gasket, and one communication port and communication groove are provided at different upper and lower positions than the anode gasket. As a cathode, a soft iron lath material (intersection thickness of 2.0 to 2.2 m) K, P Dan nickel plated and with a cathode overvoltage reduced to about 100 ILV was used, and the power supply was brought out from the left side of the gasket.

連通溝は軟鉄のラス材で目開きの密な活性化処理してい
ないものを用いた。この両ガスケットの間に入る陽イオ
ン交換膜はテトラフルオロエチレンとパーフルオμ(3
,6−シオキサー4−メチル−7−オクテンスルホニル
フルオライド)の共重合体膜状物で、7ミルの厚みで加
水分解したあとの交換容量が0.91jす1量/グラム
乾燥膜(HIE)で、これを特開昭5B−132069
の方法に準じて、膜の片面のみ膜のイオン交換容量の約
10%をカルボン酸基に変えた。
The communication grooves were made of soft iron lath material with dense openings that had not been subjected to activation treatment. The cation exchange membrane inserted between these two gaskets is made of tetrafluoroethylene and perfluoroμ (3
, 6-thioxer (4-methyl-7-octensulfonyl fluoride), with a thickness of 7 mils and an exchange capacity of 0.91J/g dry membrane (HIE) after hydrolysis. So, this is JP-A-5B-132069
Approximately 10% of the ion exchange capacity of the membrane was changed to carboxylic acid groups on only one side of the membrane according to the method of .

゛ 上記の多孔性陽極を内蔵するガスケットの上に密着
して陽イオン交換膜のカルボン酸基を有しない面を向け
て載せ、次いで多孔性陰極を内蔵するガスケットを密着
して載せ、更にこの上に上記陽イオン交換膜のカルボン
酸基を有する裏面を向けて積層し、更に陽極を内蔵する
ガスケット、陽イオン交換膜と交互に積層して5単位を
構成し、両面にチタン板を当てて両側から油圧プレスに
よってプレスした。
゛ Place the cation exchange membrane tightly on the gasket containing the porous anode with the side without carboxylic acid groups facing, then place the gasket containing the porous cathode tightly on top of this, and then The above-mentioned cation exchange membranes are stacked with the back side with the carboxylic acid group facing, and then the gasket containing the anode and the cation exchange membrane are stacked alternately to form 5 units, and titanium plates are placed on both sides to form 5 units. Pressed by a hydraulic press.

各々のガスゲットから出た給電板をプラスまたはマイナ
スの電源に接続し、陽極液には3.5規定の食塩水を供
給し、陰極室Vc10規定の苛性ソーダ水溶液を供給し
た。電流密度は30A/dm”で85℃で電解し、陽極
液及び陰極液の流速を変化させた。結果を表1に示す。
The power supply plate coming out of each gas get was connected to a positive or negative power source, a 3.5N saline solution was supplied to the anolyte, and a caustic soda aqueous solution of 10N to the cathode chamber was supplied. Electrolysis was carried out at a current density of 30 A/dm'' at 85° C., and the flow rates of the anolyte and catholyte were varied. The results are shown in Table 1.

なお、同一の膜および電極を用いて従来の単極式電解槽
での電解を実施した。即ち単極式電解槽として陽極面上
に陽イオン交換膜を密着させ、陽極の後K 4 cmの
空隔を作り、陽極で発生したガスが離脱上昇し易いよう
にしたものを陽極室とし、陰極は膜間から4m離して設
置した。更に陰極で発生した水素ガスの離脱を容易にす
るため陰極の背面に4αの空隔を作ったものである。陽
極液、陰極液は本発明の電解槽と同一で、電解槽下部か
ら供給し上部から溢流した。
Note that electrolysis was performed in a conventional monopolar electrolytic cell using the same membrane and electrode. That is, the anode chamber is a monopolar electrolytic cell in which a cation exchange membrane is closely attached to the anode surface, and an air gap of K 4 cm is created behind the anode so that the gas generated at the anode can easily escape and rise. The cathode was placed 4 m apart from the membrane. Furthermore, in order to facilitate the release of hydrogen gas generated at the cathode, an air gap of 4α is formed on the back surface of the cathode. The anolyte and catholyte were the same as those in the electrolytic cell of the present invention, and were supplied from the bottom of the electrolytic cell and overflowed from the top.

陽極液および陰極液はともに流して電解を行った。電解
条件その他は全て同一であり、結果を表2に示した。
Electrolysis was carried out by flowing both the anolyte and catholyte. All other electrolytic conditions were the same, and the results are shown in Table 2.

なお、電解槽における極液中のガス含有率を測定するた
め、流速16cm/secで極液を循環しながら電解中
に循環を停止して電解槽の極液の量から極液のガス含有
量を測定したところ10%であった。
In addition, in order to measure the gas content in the polar liquid in the electrolytic cell, the polar liquid is circulated at a flow rate of 16 cm/sec, the circulation is stopped during electrolysis, and the gas content of the polar liquid is determined from the amount of the polar liquid in the electrolytic cell. When measured, it was 10%.

実施例 2 巾が20mw、長さ方向が120CI4の通電面積を有
し、上下に極液供給のための連通口を有するガスケット
を陽極及び陰極を内蔵するために用いた。陽極のための
ガスケットは3■のチタンの板を用いて作り、両面に絶
縁とシール性向上のためKO,25mのプρピレンとテ
トラフルオロエチレンの共重合体からなるゴムシートを
貼り合わせ、3ケの連通口と連通溝を設けた。内蔵する
陽極はチタンのエキスバンドメツシュにルテニウムオキ
サイドとチタンオキサイドをコーティングして用いた。
Example 2 A gasket having a width of 20 mw, a current carrying area of 120 CI4 in the length direction, and a communication port for supplying the electrolyte at the top and bottom was used to house an anode and a cathode. The gasket for the anode was made using a 3-inch titanium plate, and a rubber sheet made of a copolymer of KO, 25m polypropylene and tetrafluoroethylene was pasted on both sides to improve insulation and sealing. A communication port and a communication groove are provided. The built-in anode is a titanium expanded mesh coated with ruthenium oxide and titanium oxide.

なお、エキスバンドメツシュの最高厚みの部分で3.5
〜3.9mの厚みであった。これを上記ガスケット内に
内蔵し、周辺部を点溶接で上下左右に数ケ所つげてガス
ケットと陽極を一体化し、ガスケットの右側から給電体
へのリードを出した。
In addition, the maximum thickness of the expanded band mesh is 3.5.
The thickness was ~3.9 m. This was built into the gasket mentioned above, and the periphery was spot welded at several places on the top, bottom, left and right to integrate the gasket and anode, and a lead to the power supply was provided from the right side of the gasket.

他方、陰極はニッケルのエキスバンドメツシュで交点の
最高厚みの部分が3.5〜3.9鴎のものを用いて、こ
れKqダンニッケルメッキ、貴金属メッキ等を施して陰
極過電圧を(資)A/di”のとき501mVとしたも
のを用いた。
On the other hand, the cathode is a nickel expanded mesh with the highest thickness at the intersection of 3.5 to 3.9 mm, and is coated with Kq dunn nickel plating, precious metal plating, etc. to reduce cathode overvoltage. A/di'' was set at 501 mV.

陰極のためのガスケットとしては3絽の厚みの軟鉄の板
を用いて陽極室のためのガスケットと同一形状で異なる
位置に2ケの連通口を有するものにシール性向上と、絶
縁のためにo、2smの陽極室のガスケットと同一材質
のものを両面に貼り合わせたものを用いた。このガスケ
ットの中に陽極の場合と同様に上記陰極を内蔵し点溶接
をして一体化し、ガスケットの左側から給電体へのリー
ドを出した。
As the gasket for the cathode, a soft iron plate with a thickness of 3 电 was used, and it had the same shape as the gasket for the anode chamber, but had two communication ports in different positions to improve sealing performance and to provide insulation. , a gasket made of the same material as the gasket of the 2sm anode chamber was used and was bonded on both sides. The cathode was built into this gasket in the same way as the anode, and spot welded to integrate it, and a lead to the power supply was provided from the left side of the gasket.

パーフルオロカーボン系陽イオン交換膜として交換容量
0.91j!jfi量/グラム乾燥膜()(W)のもの
で、膜の厚みは0.15■で−方の面のみ0.02鴎の
厚みに亘ってカルボン数基が存在する他はスルホン酸基
を有する膜を用いた。
Exchange capacity is 0.91j as a perfluorocarbon-based cation exchange membrane! jfi amount/g Dry membrane () (W), the thickness of the membrane is 0.15μ, and there are several carboxyl groups on the - side over a thickness of 0.02 mm, and other than that, there are no sulfonic acid groups. A membrane with the following properties was used.

積層は5対行い、チタン板からなるエンドプレートの上
に陽極を内蔵するガスケット。
The gasket consists of 5 pairs of stacked layers and has an anode built in on the end plate made of titanium plate.

陽イオン交換膜(スルホン酸基を有する面を陽極に向け
て)、陰極を内蔵するガスケットの願で積層した。陰極
を含有するガスケットを積層したあと軟鉄のエンドプレ
ートで押え更に両例からプレス機によってプレスした。
A cation exchange membrane (with the side with sulfonic acid groups facing the anode) was laminated with a gasket containing the cathode. After the gasket containing the cathode was laminated, it was pressed with a soft iron end plate and then pressed using a press machine in both cases.

左右それぞれKalた給電体をつなぎ、プラス及びマイ
ナスの電mに接続し、4 OA/dlK”の電流密度で
飽和食塩水の電気分解を実施した。陽極に供給した塩水
は3. ONで各種の流速で流し、陰極液は9.0N−
NaOHで同様に流速を変化させた。電解温度は85℃
であった。
The left and right power supply bodies were connected to each other, connected to positive and negative currents, and electrolysis of saturated salt water was carried out at a current density of 4 OA/dlK.The salt water supplied to the anode was Flow at a flow rate of 9.0N-
The flow rate was similarly varied with NaOH. Electrolysis temperature is 85℃
Met.

なお、比較のために、同じ大きさの電解槽であるが、従
来の複極式電解槽と同様に陽極に膜を支持し、膜と陰極
の間隔を4111とじて各々の陽極及び陰極の背面に4
C1lの気泡抜けの空隔を設けた単極型電解槽を用いた
。電解条件は本発明の電解槽を用いた場合と同様で5あ
り、陰極液および陽極液は各種流速で流した。表3に本
発明の電解槽を用いた電解結果を示し、f14には従来
の単極型電解槽を用〜・た電解結果を示した。
For comparison, an electrolytic cell of the same size is used, but the membrane is supported on the anode like a conventional bipolar electrolytic cell, and the distance between the membrane and the cathode is 4111, so that the back side of each anode and cathode is to 4
A monopolar electrolytic cell with a gap of C1l to allow air bubbles to escape was used. The electrolysis conditions were the same as when using the electrolytic cell of the present invention, and the catholyte and anolyte were flowed at various flow rates. Table 3 shows the electrolysis results using the electrolytic cell of the present invention, and f14 shows the electrolysis results using the conventional monopolar electrolytic cell.

なお、電解中の極液中のガス含有率を測定したところ、
流速1 cm / secのとき70%であり、流速6
 ox / secのとき40%であった。
Furthermore, when we measured the gas content in the polar liquid during electrolysis, we found that
When the flow rate is 1 cm/sec, it is 70%, and when the flow rate is 6
It was 40% at ox/sec.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電解411において用いられる多孔性
陽極または多孔性陰極を内蔵したガスケットの一例であ
り、lがガスケット、2が多孔性陽極(または多孔性陰
極)、3が連通口、4が連通溝、5が給電板をそれぞれ
示す。また、第2図は本発明の同じく多孔性陽極または
多孔性陰極を内蔵したトータス7p−型のガスケットで
あり、1がガスケット。 2が多孔性陽極(または多孔性陰極)、3が一通ロ、4
が給電体を示す。 特許出願人 徳山1違株式会社 第1図
FIG. 1 shows an example of a gasket containing a porous anode or a porous cathode used in the electrolysis 411 of the present invention, where l is a gasket, 2 is a porous anode (or porous cathode), 3 is a communication port, and 4 5 indicates a communication groove and 5 indicates a power supply plate, respectively. Further, FIG. 2 shows a tortoise 7p-type gasket having a built-in porous anode or porous cathode according to the present invention, and 1 is the gasket. 2 is a porous anode (or porous cathode), 3 is a hole, 4
indicates the power supply. Patent Applicant: Tokuyama Ichigo Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】 0) 多孔性陽極を内蔵したガスケット、含ふっ素系陽
イオン交換膜および多孔性陰極を内蔵したガスケットを
順次に積層して構成する単位を繰り返してなる単極曹電
解檜 (2)  多孔性陽極、會ふっ素系陽イオン交換膜およ
び多孔性陰極を特徴とする特許請求の範囲第1項記載の
単tsi電解槽 (萄 多孔性陽極および(または)多孔性陰極とガスケ
ットの厚みが岡−1またはガスケットの厚みを20%未
濃薄くする特許請求の範囲第1項記載の単極曹電解槽 (4)  アルカリ金属塩水溶液の電解に用いる特許請
求の範囲第1項記載の単極式電解槽 (5)  陽極液および(または)陰極液をl tx 
7wt以上の流速で流して電解する特許請求の範囲第3
項記載の単極式電解槽
[Scope of Claims] 0) A monopolar carbon dioxide electrolyte ( 2) The single tsi electrolytic cell according to claim 1, characterized by a porous anode, a fluorine-based cation exchange membrane, and a porous cathode. A monopolar carbon electrolyzer (4) according to claim 1, in which the thickness of Gaoka-1 or the gasket is reduced by 20%. Electrolytic cell (5) Anolyte and/or catholyte
Claim 3: Electrolyzing by flowing at a flow rate of 7wt or more
Monopolar electrolyzer described in section
JP56127746A 1981-08-17 1981-08-17 Unipolar electrolytic cell Granted JPS5831089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56127746A JPS5831089A (en) 1981-08-17 1981-08-17 Unipolar electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56127746A JPS5831089A (en) 1981-08-17 1981-08-17 Unipolar electrolytic cell

Publications (2)

Publication Number Publication Date
JPS5831089A true JPS5831089A (en) 1983-02-23
JPS63512B2 JPS63512B2 (en) 1988-01-07

Family

ID=14967658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56127746A Granted JPS5831089A (en) 1981-08-17 1981-08-17 Unipolar electrolytic cell

Country Status (1)

Country Link
JP (1) JPS5831089A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018178227A (en) * 2017-04-19 2018-11-15 富士通株式会社 Photoelectrochemical reaction apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018178227A (en) * 2017-04-19 2018-11-15 富士通株式会社 Photoelectrochemical reaction apparatus

Also Published As

Publication number Publication date
JPS63512B2 (en) 1988-01-07

Similar Documents

Publication Publication Date Title
US4732660A (en) Membrane electrolyzer
US5082543A (en) Filter press electrolysis cell
JPS62161974A (en) Solution electrolyzing apparatus
JPH0561356B2 (en)
EP0064417A1 (en) An electrochemical cell and methods of carrying out electrochemical reactions
KR890002061B1 (en) A monopolar electrochemical cell,cell unit and process for conducting electrolysis in monopolar cell series
JPS629674B2 (en)
US4608144A (en) Electrode and electrolytic cell
US4648953A (en) Electrolytic cell
JP2926272B2 (en) Target electrode for corrosion prevention of electrochemical tank
JPH05238736A (en) Method for electrochemically regenerating chromosulfuric acid
US4537672A (en) Electrolytic cell
US4729822A (en) Electrolytic cell
CA1175780A (en) Internal downcomer for electrolytic recirculation
JPS5831089A (en) Unipolar electrolytic cell
AU678410B2 (en) Electrolytic cell and electrode therefor
EP0250108A2 (en) Electrolytic cell
JPS6342710B2 (en)
JPS5927393B2 (en) Electrode and electrolysis method
JPS59153888A (en) Process and cell for electrolysis
JPS5867879A (en) Electrolytic cell using ion-exchange membrane
JPS59193291A (en) Electrolysis and electrolytic cell
JPS6239089Y2 (en)
JPS5964786A (en) Single-electrode type electrolytic cell adapted to ion exchange membrane method
JPH09220573A (en) Electrolytic method using two-chamber type electrolytic cell