JPS5926897B2 - Fluorescent magnetic particle concentration measuring device - Google Patents

Fluorescent magnetic particle concentration measuring device

Info

Publication number
JPS5926897B2
JPS5926897B2 JP3752676A JP3752676A JPS5926897B2 JP S5926897 B2 JPS5926897 B2 JP S5926897B2 JP 3752676 A JP3752676 A JP 3752676A JP 3752676 A JP3752676 A JP 3752676A JP S5926897 B2 JPS5926897 B2 JP S5926897B2
Authority
JP
Japan
Prior art keywords
fluorescent magnetic
fluorescent
excitation light
container
magnetic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3752676A
Other languages
Japanese (ja)
Other versions
JPS52120885A (en
Inventor
一雄 渡辺
勝洋 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP3752676A priority Critical patent/JPS5926897B2/en
Publication of JPS52120885A publication Critical patent/JPS52120885A/en
Publication of JPS5926897B2 publication Critical patent/JPS5926897B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【発明の詳細な説明】 本発明は、螢光磁粉探傷検査に用いられる螢光磁粉検査
液の螢光磁粉濃度を測定する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for measuring the concentration of fluorescent magnetic particles in a fluorescent magnetic particle test solution used for fluorescent magnetic particle inspection.

螢光磁粉探傷検査は、被検査材の表面キズを検査するこ
とを目的としており、被検査材を磁化し表面キズ部に漏
洩磁束を発生させ、さらに螢光磁粉を懸濁した検査液を
散布して漏洩磁束により表面キズ部に磁着される螢光磁
粉の単位長さ当りの量により有害なキズであるかいなか
を判断゛している。
Fluorescent magnetic particle flaw detection is aimed at inspecting for surface flaws on the inspected material, and involves magnetizing the inspected material to generate leakage magnetic flux at the surface flaws, and then spraying a test liquid containing fluorescent magnetic particles suspended in it. Whether the flaw is harmful or not is determined based on the amount of fluorescent magnetic powder per unit length that is magnetically attracted to the surface flaw due to leakage magnetic flux.

すなわち、表面キズ部に磁着された螢光磁粉の量により
表面キズの深さを判断している。
That is, the depth of the surface flaw is determined based on the amount of fluorescent magnetic powder magnetically attached to the surface flaw.

したがつて、一定の漏洩磁束を発生している表面キズ部
に検査液を一定時間、一定流速にて散布した場合表面キ
ズ部に磁着される螢光磁粉量は、検査液の螢光磁粉濃度
にほぼ比例しているため、螢光磁粉濃度が基準値より上
下した場合、有害な深いキズを無害な浅いキズと判定し
たり、無害な浅いキズを有害な深いキズと判定すること
になるため螢光磁粉濃度を一定にする必要があつた。ま
た、検査液に投入する螢光磁粉の中には螢光体と磁粉と
が結びついて、螢光磁粉探傷検査に有効なもの(以下、
有効螢光磁粉という)と螢光磁粉製造技術上螢光磁粉探
傷検査に用をなさない螢光体(以下、無効螢光磁粉とい
う)が混在しており、それらの比はほぼ同量である。こ
のため検査液を使用していると、有効螢光磁粉は被検査
材に磁着されて、検査液中から持ち出されるが、非磁性
体である無効螢光磁粉は、被検査材に磁着されずに検査
液中に残るため使用中に検査液中の有効螢光磁粉と無効
螢光磁粉との比が異なつてくる。したがつて、検査液中
の無効螢光磁粉を除き、有効螢光磁粉の濃度のみを測定
する必要がある。従来は、まず、検査液に紫外線を照射
して有効螢光磁粉と無効螢光磁粉との両者からの発光量
を測定し、続いて磁石にて有効螢光磁粉を沈澱させ無効
螢光磁粉からの発光量を測定して前者より後者の値を差
し引くことにより、検査液中の有効螢光磁粉濃度を測定
するものがあつた。
Therefore, when a test liquid is sprayed at a constant flow rate for a certain period of time onto a surface flaw that generates a certain amount of leakage magnetic flux, the amount of fluorescent magnetic particles magnetized to the surface flaw is equal to the fluorescent magnetic powder of the test liquid. Since it is approximately proportional to the concentration, if the concentration of fluorescent magnetic particles is higher or lower than the standard value, a harmful deep scratch will be determined to be a harmless shallow scratch, or a harmless shallow scratch will be determined to be a harmful deep scratch. Therefore, it was necessary to keep the fluorescent magnetic powder concentration constant. In addition, among the fluorescent magnetic particles added to the test solution, the fluorescent substance and magnetic particles are combined and are effective for fluorescent magnetic particle inspection (hereinafter referred to as
Effective fluorescent magnetic powder) and fluorescent material that is useless for fluorescent magnetic particle inspection due to the manufacturing technology of fluorescent magnetic powder (hereinafter referred to as ineffective fluorescent magnetic powder) coexist, and their ratio is approximately the same. . For this reason, when a test liquid is used, effective fluorescent magnetic particles are magnetically attached to the material to be inspected and taken out of the test liquid, but ineffective fluorescent magnetic particles, which are non-magnetic substances, are magnetically attached to the material to be inspected. During use, the ratio of effective and ineffective fluorescent magnetic particles in the testing liquid becomes different. Therefore, it is necessary to remove the ineffective fluorescent magnetic particles in the test liquid and measure only the concentration of the effective fluorescent magnetic particles. Conventionally, the test solution was first irradiated with ultraviolet rays to measure the amount of light emitted from both effective and ineffective fluorescent magnetic particles, and then the effective fluorescent magnetic particles were precipitated using a magnet, and the ineffective fluorescent magnetic particles were separated from the active fluorescent magnetic particles. There is a method that measures the effective fluorescent magnetic particle concentration in the test solution by measuring the amount of luminescence and subtracting the latter value from the former.

ところが、まず有効螢光磁粉、無効螢光磁粉の両者を測
定する場合において、有効螢光磁粉ばかりでなく、無効
螢光磁粉も時間の経過につれて自然沈澱していくので、
従つて、測定値が定まらず、測定誤差が30%位あつた
。また、有効螢光磁粉を磁石にて沈澱させる場合におい
て、有効螢光磁粉は徐々に沈澱し、ほとんどが沈澱する
までに約10分以上時間を要し測定に長時間かかる欠点
があつた。
However, when first measuring both effective and ineffective fluorescent magnetic particles, not only the effective fluorescent magnetic particles but also the ineffective fluorescent magnetic particles naturally precipitate over time.
Therefore, the measured value was not determined, and the measurement error was about 30%. Furthermore, when the effective fluorescent magnetic powder is precipitated using a magnet, the effective fluorescent magnetic powder gradually precipitates, and it takes about 10 minutes or more for most of it to precipitate, resulting in the disadvantage that the measurement takes a long time.

また、有効螢光磁粉を沈澱させる時間中に無効螢光磁粉
の1部も沈澱し、正確な有効螢光磁粉の量が測定できな
かつた。
Further, during the time period for precipitating the effective fluorescent magnetic powder, a portion of the ineffective fluorescent magnetic powder also precipitated, making it impossible to accurately measure the amount of effective fluorescent magnetic powder.

また、螢光磁粉を発光させるための紫外線を照射する光
源として、低圧水銀灯が用いられているが、低圧水銀灯
は、周囲温度変化2『C±10℃に対して紫外線量が約
50(fl)変化するため紫外線量を測定して、低圧水
銀灯の電源に帰還することにより、紫外線量を一定にす
る方法が一般的に考えられるが、低圧水銀灯の紫外線量
は、周囲温度約30るC〜40℃までは、正特性であり
、前記温度を越えると負特性になるため、この方法では
、一定の狭い範囲の周囲温度内でなければ、一定の紫外
線量を得ることはできない。
In addition, a low-pressure mercury lamp is used as a light source for irradiating ultraviolet rays to cause fluorescent magnetic powder to emit light.Low-pressure mercury lamps have an ultraviolet radiation amount of about 50 (fl) for an ambient temperature change of 2'C±10°C. Since the amount of ultraviolet rays varies, it is generally considered that the amount of ultraviolet rays can be kept constant by measuring the amount of ultraviolet rays and feeding it back to the power source of the low-pressure mercury lamp. It has a positive characteristic up to .degree. C., and becomes a negative characteristic above that temperature. Therefore, with this method, it is not possible to obtain a constant amount of ultraviolet rays unless the ambient temperature is within a certain narrow range.

また、低圧水銀灯が劣化して紫外線量が減少すると、紫
外線量を増すために低圧水銀灯に加える電力がさらに増
加し過大な電力が低圧水銀灯に加えられることになり増
々低圧水銀灯の劣化が早められる欠点を持つていた。本
発明の目的は、従来の欠点を除き、螢光磁粉探傷検査に
用いられる螢光磁粉検査液中の螢光磁粉濃度を精度よく
測定できる装置を提供することである。
In addition, when a low-pressure mercury lamp deteriorates and the amount of ultraviolet rays decreases, the electric power applied to the low-pressure mercury lamp increases further to increase the amount of ultraviolet rays, which causes the lamp to deteriorate more quickly. Had to have. SUMMARY OF THE INVENTION An object of the present invention is to provide an apparatus capable of accurately measuring the concentration of fluorescent magnetic particles in a fluorescent magnetic particle test solution used for fluorescent magnetic particle inspection, while eliminating the drawbacks of the conventional apparatus.

次に、添付図面に基づいて本発明の実施例について本発
明を詳細に説明する。
Next, the present invention will be described in detail with reference to embodiments of the present invention based on the accompanying drawings.

第1図において、検査液容器1は螢光磁粉検査液1aを
入れるもので、方形状であり、励起光および帝光を透過
する特性の材料で作られている。
In FIG. 1, a test liquid container 1 contains a fluorescent magnetic powder test liquid 1a, has a rectangular shape, and is made of a material that transmits excitation light and imperial light.

収納慕3は、検査液容器1をスリツト5、スリツト6に
対して一定の位置に収める構造のものである。ヒーター
2は、収納器3に取りつけられており、検査液容器1内
の検査液1a中の有効螢光磁粉、無効螢光磁粉が自然沈
澱しないように検査液1aを熱撹拌するものである。励
磁コイル4は、収納器3に取りつけられており検査液1
a中の磁性体である有効螢光磁粉を検査液容器1の底部
に磁着させるためのものである。
The storage cup 3 has a structure in which the test liquid container 1 is housed in a fixed position with respect to the slits 5 and 6. The heater 2 is attached to the container 3, and heats the test liquid 1a to prevent effective fluorescent magnetic particles and ineffective fluorescent magnetic particles from spontaneously settling in the test liquid 1a in the test liquid container 1. The excitation coil 4 is attached to the storage container 3 and the test liquid 1
This is for magnetically attaching the effective fluorescent magnetic powder, which is the magnetic substance in a, to the bottom of the test liquid container 1.

励起光源7は、波長約3650λの紫外線を強く発する
ものであつて、励起光源ケース10内に配置されている
。光学フイルタ一8は、可視光線を除き、波長約365
0λの紫外線を透過する特性のものである。
The excitation light source 7 strongly emits ultraviolet light having a wavelength of about 3650λ, and is disposed within the excitation light source case 10. The optical filter 18 has a wavelength of about 365, excluding visible light.
It has the characteristic of transmitting 0λ ultraviolet rays.

スリツト5は、検査液容器1内の角部の検査液1a?C
IjjJ起光源7からの励起光を照射する位置に取りつ
けられている。すなわち、このような構成とするのは、
検査液1aのよごれによる励起光の透過特性の変化を受
けない、極く狭い範囲の検査液1aに励起光を照射する
ためである。光電変換器9は、励起光源ケース10内で
励起光源7の近くに配置され、励起光量を検出するもの
である。
The slit 5 is the corner of the test liquid 1a in the test liquid container 1. C
It is attached at a position where excitation light from the IjjJ excitation light source 7 is irradiated. In other words, this configuration is
This is because the excitation light is applied to a very narrow range of the test liquid 1a, which is not affected by the change in the transmission characteristics of the excitation light due to contamination of the test liquid 1a. The photoelectric converter 9 is arranged near the excitation light source 7 within the excitation light source case 10 and detects the amount of excitation light.

スリツト6は、励起光の照射方向に対して直角方向で収
納器3の角部に取り付けられており、検査液1aのよご
れによる励起光、螢光の減衰の変化を受けない範囲、す
なわち、第4図のAの範囲の螢光磁粉からの螢光をシー
ルドケース13内に配置された光電変換器11につたえ
るものである。光学フイルタ一12は、励起光を遮断し
て、螢光を透過する特性のものである。
The slit 6 is attached to a corner of the container 3 in a direction perpendicular to the irradiation direction of the excitation light, and is located in a range where the attenuation of the excitation light and fluorescent light is not affected by the dirt of the test liquid 1a, that is, the The fluorescent light from the fluorescent magnetic powder in the range A in FIG. 4 is transmitted to the photoelectric converter 11 disposed within the shield case 13. The optical filter 12 has a characteristic of blocking excitation light and transmitting fluorescent light.

第2図は、第1図の装置の側立面図であつて、鉄芯14
は、励磁コイル4の中に取りつけられており励磁コイル
4の発生する磁束を検査液容器1の底部に集中させるた
めのものである。
FIG. 2 is a side elevational view of the apparatus of FIG.
is attached to the excitation coil 4 to concentrate the magnetic flux generated by the excitation coil 4 on the bottom of the test liquid container 1.

鉄芯14は、残留磁気のない磁性材料で作られ、励磁コ
イル4とで電磁石を形成していると考えてよい。第1図
および第2図の装置には、第3図にプロツク線図で示す
ような電子的処理回路が付加されるとよく、第3図にお
いて、割算回路15は、励起光量を検出している光電変
換器9と螢光量を検出している光電変換器11との電気
信号を受け、光電変換器9の電気信号にて光電変換器1
1の電気信号を割算する回路である。光電変換器11か
らの電気信号は、螢光磁粉濃度と励起光量とを掛け合せ
た値であり、光電変換器9からの電気信号すなわぢ励起
光量で割算することにより、励起光量の変化の影響は打
ち消されることによる。
The iron core 14 is made of a magnetic material with no residual magnetism, and can be considered to form an electromagnet together with the excitation coil 4. It is preferable to add an electronic processing circuit as shown in the block diagram in FIG. 3 to the devices shown in FIGS. 1 and 2. In FIG. 3, the dividing circuit 15 detects the amount of excitation light. The photoelectric converter 1 receives electrical signals from the photoelectric converter 9 detecting the amount of fluorescence and the photoelectric converter 11 detecting the amount of fluorescent light.
This is a circuit that divides an electrical signal of 1. The electrical signal from the photoelectric converter 11 is a value obtained by multiplying the fluorescent magnetic powder concentration and the amount of excitation light, and by dividing it by the electrical signal from the photoelectric converter 9, i.e., the amount of excitation light, changes in the amount of excitation light can be calculated. The effect is due to cancellation.

したがつて、励起光量の変動に関係なく螢光磁粉濃度に
関する信号のみをとりだすことができる。割算回路15
の信号を受け、検査液1a中の螢光磁粉濃度を表示する
ための表示器16が設けられている。
Therefore, only a signal related to the concentration of fluorescent magnetic particles can be extracted regardless of fluctuations in the amount of excitation light. Division circuit 15
A display 16 is provided for receiving the signal and displaying the concentration of fluorescent magnetic particles in the test liquid 1a.

本発明のこの実施例の装置にて、検査液1aの螢光磁粉
濃度測定を行う場合、まず、励起光源7、光電変換器9
,11、ヒーター2、割算回路15、表示器16を動作
状態にする。
When measuring the fluorescent magnetic particle concentration of the test liquid 1a using the apparatus of this embodiment of the present invention, first, the excitation light source 7, the photoelectric converter 9
, 11, heater 2, divider circuit 15, and display 16 are put into operation.

検査液容器1内に検査液1aを入れ、その検査液1aの
入つた検査液容器1を収納器3に収納すると、検査液1
aはヒーター2により熱攪拌され、検査液1a中の螢光
磁粉は自然沈澱することなく均一に懸濁される。
When the test liquid 1a is put into the test liquid container 1 and the test liquid container 1 containing the test liquid 1a is stored in the container 3, the test liquid 1
a is thermally stirred by a heater 2, and the fluorescent magnetic particles in the test liquid 1a are uniformly suspended without spontaneous precipitation.

光学フイルタ一8、スリツト5を介して、励起光源7に
より励起光が検査液容器1内の角部の検査液1aに照射
され、角部の有効螢光磁粉、無効螢光磁粉は励起光によ
り励起発光する。
Via the optical filter 8 and the slit 5, the excitation light source 7 irradiates the test liquid 1a at the corner of the test liquid container 1 with excitation light, and the effective and ineffective fluorescent magnetic particles at the corner are exposed to the excitation light. Emit light upon excitation.

スリツト6、光学フイルタ一12を介して光電変換器1
1にて検査液1a中の角部のみの螢光量をとらえ電気量
に変換する。割算回路15は、励起光量を検出する光電
変換器9の電気信号にて、光電変換器11の電気信号を
割算して、有効螢光磁粉と無効螢光磁粉とを含む濃度(
以下全体濃度という)の電気信号をとりだし、表示器1
6は、全体濃度を表示する。
The photoelectric converter 1 passes through the slit 6 and the optical filter 12.
1 captures the amount of fluorescence only at the corners of the test liquid 1a and converts it into an amount of electricity. The division circuit 15 divides the electrical signal of the photoelectric converter 11 by the electrical signal of the photoelectric converter 9 that detects the amount of excitation light, and calculates the concentration (containing effective fluorescent magnetic powder and ineffective fluorescent magnetic powder).
The electrical signal of the total concentration (hereinafter referred to as the total concentration) is taken out, and the display 1
6 displays the total density.

この全体濃度を読みとつておいてもよいし、別に記憶回
路(図示していない)を設けてこれに記憶させておいて
もよい。次に、励磁コイル4を動作させると、鉄芯14
により検査液容器1の底部の検査液1a付近に磁束が発
生する。
This total density may be read out or may be stored in a separate storage circuit (not shown). Next, when the excitation coil 4 is operated, the iron core 14
As a result, magnetic flux is generated near the test liquid 1a at the bottom of the test liquid container 1.

検査液1aはヒーター2の熱により攪拌されており、順
次検査液容器1の底部に循環し磁性体である有効螢光磁
粉は、検査液容器1の底部に磁着されるが、非磁性体で
ある無効螢光磁粉は、磁着されずに攪拌されて、検査液
中に均一に懸濁されている。
The test solution 1a is stirred by the heat of the heater 2, and the effective fluorescent magnetic powder, which is a magnetic material, is circulated to the bottom of the test solution container 1 and is magnetized to the bottom of the test solution container 1, but the non-magnetic material The ineffective fluorescent magnetic particles are not magnetized but are stirred and uniformly suspended in the test liquid.

一定時間経ると、有効螢光磁粉は、総て検査液容器1の
定部に磁着される。総て有効螢光磁粉が磁着された後に
ヒーター2により撹拌され懸濁している無効螢光磁粉の
濃度(以下、無効分濃度という)を表示器16にて読取
る。
After a certain period of time, all of the effective fluorescent magnetic particles are magnetically attached to a fixed part of the test liquid container 1. After all the effective fluorescent magnetic particles are magnetized, the concentration of the suspended invalid fluorescent magnetic particles stirred by the heater 2 (hereinafter referred to as the invalid concentration) is read on the display 16.

この無効分濃度は、一度記憶回路に記憶させてもよい。
つづいて、前記全体濃度から無効分濃度を差し引くこと
により有効磁粉濃度を知ることができる。このような減
算は、記憶回路に関連させて別に減算回路(図示してい
ない)を設けておいて、記憶回路から全体濃度値および
無効分濃度を減算回路に読みだして減算動作を行なうよ
うにしてもよい。無効分濃度の読取りに対しては、あら
かじめ有効螢光磁粉が総て磁着される時間を測定してお
き、タイマーを用いて、ランプまたはブザーにて知らせ
るようにすればよい。
This reactive concentration may be stored once in a storage circuit.
Next, the effective magnetic particle concentration can be determined by subtracting the invalid concentration from the total concentration. For such subtraction, a separate subtraction circuit (not shown) is provided in conjunction with the storage circuit, and the total concentration value and the reactive concentration are read out from the storage circuit to the subtraction circuit to perform the subtraction operation. It's okay. In order to read the concentration of the reactive component, the time required for all of the effective fluorescent magnetic particles to be magnetized may be measured in advance, and a timer may be used to notify the measurement using a lamp or a buzzer.

また、全体濃度から無効分濃度を差し引く場合において
、前記タイマーが動作した時に、記憶回路に電気的に記
憶されている全体濃度から無効分濃度を電気的に差し引
き、有効磁粉濃度を表示する方式でも良い。
In addition, in the case of subtracting the reactive concentration from the total concentration, when the timer operates, the reactive concentration is electrically subtracted from the total concentration electrically stored in the storage circuit, and the effective magnetic particle concentration is displayed. good.

また、検査液に投入する螢光磁粉の中には有効螢光磁粉
と無効螢光磁粉が約同量混在しているので、あらかじめ
、たとえば0.19/1,0.2y/l・・・・・・・
・・1f!/lの螢光磁粉濃度の検査液を作り、これら
の検査液の有効磁粉濃度を測定し、この有効磁粉濃度に
対応させて、螢光磁粉濃度を表示器16に0.19/1
,0.79/l・・・・・・・・・19/lと目盛を目
盛つているため使用中の検査液の有効磁粉濃度を測定す
ることにより、検延液に投入する螢光磁粉に換算されて
何9/lであるかを知ることができる。
In addition, since the fluorescent magnetic powder added to the test solution contains approximately the same amount of effective fluorescent magnetic powder and ineffective fluorescent magnetic powder, it is necessary to prepare the fluorescent magnetic powder in advance, for example, 0.19/1, 0.2 y/l, etc.・・・・・・
...1f! Test liquids with a fluorescent magnetic particle concentration of /l are prepared, the effective magnetic particle concentrations of these test liquids are measured, and the fluorescent magnetic particle concentration is displayed on the display 16 as 0.19/1 in correspondence with this effective magnetic particle concentration.
, 0.79/l......19/l, so by measuring the effective magnetic particle concentration of the test liquid in use, the fluorescent magnetic powder added to the test liquid can be measured. You can find out how many 9/l it is after conversion.

尚、上述の実施例では、攪拌器としてヒーターを使用し
たが、電磁石のコイルを用いてもよいし、またその他の
撹拌装置を用いてもよい。
In the above-described embodiments, a heater was used as the stirrer, but an electromagnetic coil or other stirring device may also be used.

以上実施例において説明したごとく、本発明の装置は、
検査液を攪拌器にて攪拌することにより螢光磁粉を自然
沈澱させることなく均一に懸濁させて、まず有効および
無効螢光磁粉の両者の測定において、自然沈澱による測
定誤差をなくし、続いて無効螢光磁粉の測定において、
無効螢光磁粉を自然沈澱させることなく、有効螢光磁粉
のみを磁気的に短時間に沈澱させることができる。
As explained above in the embodiments, the device of the present invention has the following features:
By stirring the test liquid with a stirrer, the fluorescent magnetic particles are uniformly suspended without spontaneous precipitation, firstly, in the measurement of both effective and ineffective fluorescent magnetic particles, measurement errors due to natural precipitation are eliminated, and then In the measurement of ineffective fluorescent magnetic particles,
It is possible to magnetically precipitate only effective fluorescent magnetic powder in a short time without spontaneously precipitating ineffective fluorescent magnetic powder.

また、本発明の装置は、光電変換器9からの励起光量に
比例した信号にて、光電変換器11からの螢光量に比例
した電気信号すなわち螢光磁粉濃度と励起光量との掛け
合わされた値を割算することにより螢光磁粉濃度を測定
することにより、測定値が励起光量の変動に影響されな
いようにされている。更に、本発明の装置は、スリツト
5、スリツト6=::↓=;:T;:÷〒により、検査
液の表層部の螢光磁粉からの螢光光線を測定しているの
で、検査液のよごれ度合により励起光線および螢光光線
が減衰することによる測定誤差が生じないようにされて
いる。
Furthermore, the device of the present invention uses a signal proportional to the amount of excitation light from the photoelectric converter 9 to generate an electric signal proportional to the amount of fluorescent light from the photoelectric converter 11, that is, a value obtained by multiplying the fluorescent magnetic particle concentration and the amount of excitation light. By measuring the concentration of fluorescent magnetic particles by dividing , the measured value is made unaffected by fluctuations in the amount of excitation light. Furthermore, the device of the present invention measures the fluorescent light from the fluorescent magnetic particles in the surface layer of the test liquid using the slit 5 and slit 6 =::↓=;:T;:÷〒. Measurement errors due to attenuation of the excitation light and fluorescence light due to the degree of contamination are avoided.

前記したように、有効および無効螢光磁粉の全体濃度の
測定につづいて、励磁コイル4により検査液容器1の底
部に有効螢光磁粉のみを集めることができるため、無効
螢光磁粉濃度を正確に測定できるものである。
As described above, following the measurement of the total concentration of effective and ineffective fluorescent magnetic particles, only effective fluorescent magnetic particles can be collected at the bottom of the test liquid container 1 by the excitation coil 4, so that the concentration of ineffective fluorescent magnetic particles can be accurately determined. It is something that can be measured.

従来、前記全体濃度の測定および無効螢光磁粉濃度の測
定誤差が、それぞれ約30%あつたが、本発明の装置を
用いることにより測定誤差約5(F6に向上した。
Conventionally, the measurement errors of the total concentration and the ineffective fluorescent magnetic powder concentration were each about 30%, but by using the apparatus of the present invention, the measurement error was improved to about 5 (F6).

したがつて、前記全体濃度から無効螢光磁粉濃度を差し
引くことにより、検査液に投入する螢光磁粉に換算して
、螢光磁粉濃度を精度良く測定できるようになり、螢光
磁粉探傷検査の精度が向上した。また、測定時間は従来
の方式では10分であつたのが、本装置では30秒と短
縮された。
Therefore, by subtracting the invalid fluorescent magnetic particle concentration from the total concentration, it becomes possible to accurately measure the fluorescent magnetic particle concentration in terms of the fluorescent magnetic powder added to the test solution, which is useful for fluorescent magnetic particle inspection. Improved accuracy. Furthermore, the measurement time was 10 minutes with the conventional method, but was shortened to 30 seconds with this device.

また、キズ部の螢光磁粉からの螢光を光電子増倍管で受
け、自動的にキズの検出を行う自動螢光探傷機の使用に
おいて、キズの検出精度を安定するためには、検査液の
螢光磁粉濃度管理が最も重要な問題であり、螢光磁粉濃
度を正しく測定する装置がなければ自動螢光探傷機は、
実用的には使用できないものであつたが、本発明装置を
用いることにより可能となつた。
In addition, when using an automatic fluorescence flaw detector that automatically detects flaws by receiving fluorescence from fluorescent magnetic particles in the flawed area using a photomultiplier tube, in order to stabilize the flaw detection accuracy, it is necessary to The most important issue is the control of the concentration of fluorescent magnetic particles, and without a device that can accurately measure the concentration of fluorescent magnetic particles, automatic fluorescent flaw detectors cannot be used.
Although this was not practical, it became possible by using the device of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面の第1図は本発明の一実施例を概略的に示す一
部断面平面図、第2図は第1図の装置の一部断両立面図
、第3図は本発明において用いる電気回路の一例を示す
プロツク線図、第4図は本発明における検査液容器中の
検査液の検出箇所を示す図である。 1・・・・・・検査液容器、1a・・・・・・検査液、
2・・・・・・ヒーター、4・・・・・・励磁コイル、
5,6・・・・・・スリツト、7・・・・・・励起光源
、8,12・・・・・・光学フイルタ一、9,11・・
・・・・光電変換器、14・・・・・・鉄芯、15・・
・・・・割算回路、16・・・・・・表示器、A・・・
・・・角部。
FIG. 1 of the accompanying drawings is a partially sectional plan view schematically showing an embodiment of the present invention, FIG. 2 is a partially sectional elevational view of the apparatus shown in FIG. 1, and FIG. FIG. 4 is a block diagram showing an example of the circuit, and is a diagram showing the detection location of the test liquid in the test liquid container in the present invention. 1...Test liquid container, 1a...Test liquid,
2...Heater, 4...Excitation coil,
5, 6... Slit, 7... Excitation light source, 8, 12... Optical filter, 9, 11...
...Photoelectric converter, 14...Iron core, 15...
...Division circuit, 16...Display unit, A...
...corner.

Claims (1)

【特許請求の範囲】 1 所定量の螢光磁粉検査液を入れるための容器と、該
容器内の螢光磁粉検査液を撹拌するための攪拌手段と、
前記容器内の少なくとも一部分に一時的に磁気吸引力を
及ぼすための磁気吸引手段と、前記容器内の蛍光磁粉検
査液に励起光線を照射するための励起光源と、蛍光磁粉
検査液からの蛍光光線の量を測定するための測定手段と
を備えたことを特徴とする蛍光磁粉濃度測定装置。 2 前記測定手段は、前記励起光源からの励起光線を受
けてそれに応じた第1の電気信号を発生する第1の光電
変換器と、螢光磁粉検査液からの螢光光線を受けてそれ
に応じた第2の電気信号を発生する第2の光電変換器と
、前記第1の電気信号および第2の電気信号を受けて第
1の電気信号で第2の電気信号を割算するための割算回
路と、該割算回路からの前記割算の商を表わす信号を受
けてそれに応じて螢光磁粉濃度を表示するための表示器
とを備える特許請求の範囲第1項記載の螢光磁粉濃度測
定装置。 3 前記測定手段は、更に、前記割算回路からの前記割
算の商を表わす信号を記憶するための記憶回路と、該記
憶回路に記憶された信号を受けて減算を行なうための減
算回路とを備えており、前記表示器は、該減算回路から
の前記減算の差を表わす信号を受けてそれに応じて螢光
磁粉濃度を表示する特許請求の範囲第2項記載の螢光磁
粉濃度測定装置。 4 前記容器は、励起光線および螢光光線を透過しうる
材料で形成されており、前記容器の角部の一方の側面に
は、前記励起光源からの励起光線を該角部に導く第1の
光学手段が設けられ、他方の側面には該角部からの螢光
光線を前記測定手段へ導く第2の光学手段が設けられて
いる特許請求の範囲第1項または第2項または第3項記
載の螢光磁粉濃度測定装置。 5 前記第1の光学手段は、紫外線のみを透過させる光
学フィルターおよびスリット手段からなり、前記第2の
光学手段は、螢光光線のみを透過させる光学フィルター
およびスリット手段からなる特許請求の範囲第4項記載
の螢光磁粉濃度測定装置。 6 前記攪拌手段は、前記容器の下部に設けられるヒー
ターである特許請求の範囲第1項または第2項または第
3項または第4項または第5項記載の螢光磁粉濃度測定
装置。 7 前記磁気吸引手段は、前記容器の下部に設けられる
電磁石である特許請求の範囲第1項または第2項または
第3項または第4項または第5項または第6項記載の螢
光磁粉濃度測定装置。
[Scope of Claims] 1. A container for containing a predetermined amount of a fluorescent magnetic particle test liquid, and a stirring means for stirring the fluorescent magnetic powder test liquid in the container;
a magnetic attraction means for temporarily exerting a magnetic attraction force on at least a portion of the container; an excitation light source for irradiating the fluorescent magnetic particle test solution in the container with an excitation light beam; and a fluorescent light beam from the fluorescent magnetic particle test solution. What is claimed is: 1. A fluorescent magnetic particle concentration measuring device comprising: measuring means for measuring the amount of . 2. The measuring means includes a first photoelectric converter that receives excitation light from the excitation light source and generates a first electrical signal in response to the excitation light, and a first photoelectric converter that receives the fluorescent light from the fluorescent magnetic powder test liquid and generates a first electric signal in response to the excitation light. a second photoelectric converter that generates a second electrical signal, and a divider that receives the first electrical signal and the second electrical signal and divides the second electrical signal by the first electrical signal; The fluorescent magnetic powder according to claim 1, comprising a calculation circuit and a display for receiving a signal representing the quotient of the division from the dividing circuit and displaying the fluorescent magnetic powder concentration accordingly. Concentration measuring device. 3. The measuring means further includes a storage circuit for storing a signal representing the quotient of the division from the division circuit, and a subtraction circuit for receiving the signal stored in the storage circuit and performing subtraction. The fluorescent magnetic particle concentration measuring device according to claim 2, wherein the display device receives a signal representing the difference between the subtractions from the subtracting circuit and displays the fluorescent magnetic particle concentration accordingly. . 4. The container is made of a material that can transmit excitation light and fluorescent light, and one side of a corner of the container has a first ring that guides the excitation light from the excitation light source to the corner. Optical means is provided, and the other side is provided with a second optical means for guiding the fluorescent light from the corner to the measuring means. The fluorescent magnetic powder concentration measuring device described above. 5. The first optical means comprises an optical filter and slit means that transmit only ultraviolet rays, and the second optical means comprises an optical filter and slit means that transmit only fluorescent rays. Fluorescent magnetic powder concentration measuring device as described in . 6. The fluorescent magnetic powder concentration measuring device according to claim 1, 2, 3, 4, or 5, wherein the stirring means is a heater provided at the lower part of the container. 7. Fluorescent magnetic powder concentration according to claim 1 or 2 or 3 or 4 or 5 or 6, wherein the magnetic attraction means is an electromagnet provided at the lower part of the container. measuring device.
JP3752676A 1976-04-02 1976-04-02 Fluorescent magnetic particle concentration measuring device Expired JPS5926897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3752676A JPS5926897B2 (en) 1976-04-02 1976-04-02 Fluorescent magnetic particle concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3752676A JPS5926897B2 (en) 1976-04-02 1976-04-02 Fluorescent magnetic particle concentration measuring device

Publications (2)

Publication Number Publication Date
JPS52120885A JPS52120885A (en) 1977-10-11
JPS5926897B2 true JPS5926897B2 (en) 1984-07-02

Family

ID=12499974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3752676A Expired JPS5926897B2 (en) 1976-04-02 1976-04-02 Fluorescent magnetic particle concentration measuring device

Country Status (1)

Country Link
JP (1) JPS5926897B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08261934A (en) * 1995-03-17 1996-10-11 Aretsuku Denshi Kk Fluorescence detector
KR101202187B1 (en) 2010-10-21 2012-11-20 주식회사 에네스지 Nondestructive ultrasonic detection device for blade tenon of turbine rotor
CN105823822B (en) * 2015-01-07 2018-11-06 宝山钢铁股份有限公司 Magnetic flaw detection ink usability evaluation method for magnetic powder inspection non-destructive testing

Also Published As

Publication number Publication date
JPS52120885A (en) 1977-10-11

Similar Documents

Publication Publication Date Title
HK1015878A1 (en) Method and apparatus for luminescence assays
ATE53674T1 (en) METHOD AND DEVICE FOR MEASURING RADIATION.
KR20120059179A (en) Estimating device and Method for detecting gas outputting alpa-ray
JPS5926897B2 (en) Fluorescent magnetic particle concentration measuring device
Mori et al. Radioactivity and geometrical distribution measurements of α-emitter specimens with the imaging plate
JP6603265B2 (en) Concentration measuring method of fluorescent magnetic powder liquid, concentration measuring apparatus of fluorescent magnetic powder liquid
US3842285A (en) Method and a device for the mechanical modulation of a particle flux
JPS63188766A (en) Method and instrument for laser magnetic immunoassay
JPS63221278A (en) Radiation dose detector
JP2636099B2 (en) Infrared amount measuring method and infrared amount meter
JP2509227B2 (en) Laser magnetic immunoassay device
Mayer et al. A scintillation counter technique for the X-ray determination of bone mineral content
Muramatsu et al. End-window counting of tritium radioactivity by scintillation phosphor combined with prismatic light guide
JP3170649B2 (en) Method for managing magnetic powder liquid in magnetic particle flaw detection and artificial defect sensor device used in the method
Quimby A method for the study of scattered and secondary radiation in X-ray and radium laboratories
US2843755A (en) Radioactive inspection of housings
JPH0442788Y2 (en)
JPH11216551A (en) Method and device to measure continuous casting molten metal level
Bates Some physical factors affecting radiographic image quality: Their theoretical basis and measurement
RU1836643C (en) Luminescent dosimeter for individual dosimetry of ionizing radiation
US3614435A (en) Dosimeter for pulsed ionizing radiation
JPH03128414A (en) Inclination sensor
SU885938A1 (en) Magnetic field strength measuring method
JPS57132078A (en) 2-dimensional radiation detector
JPS63315951A (en) Laser magnetic immunoassay instrument