JPH0442788Y2 - - Google Patents

Info

Publication number
JPH0442788Y2
JPH0442788Y2 JP18695884U JP18695884U JPH0442788Y2 JP H0442788 Y2 JPH0442788 Y2 JP H0442788Y2 JP 18695884 U JP18695884 U JP 18695884U JP 18695884 U JP18695884 U JP 18695884U JP H0442788 Y2 JPH0442788 Y2 JP H0442788Y2
Authority
JP
Japan
Prior art keywords
glass
fluorescence
fluorescent
radiation
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18695884U
Other languages
Japanese (ja)
Other versions
JPS61102885U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18695884U priority Critical patent/JPH0442788Y2/ja
Publication of JPS61102885U publication Critical patent/JPS61102885U/ja
Application granted granted Critical
Publication of JPH0442788Y2 publication Critical patent/JPH0442788Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

〔考案の技術分野〕 本考案は、放射線の被曝線量を測定する蛍光ガ
ラス線量計に使用される照合ガラスに係り、特に
被曝線量を照合するための蛍光ラジオフオトルミ
ネツセンスの強度の信頼性を向上させた蛍光ガラ
ス線量計用照合ガラスに関する。 〔考案の技術的背景とその問題点〕 一般に蛍光ガラス線量計は銀イオンを含有した
リン酸塩ガラス(以下銀活性リン酸塩ガラスと称
す)体を検出器として用いており、この銀活性リ
ン酸塩ガラス体は放射線を被曝するとガラス体内
に蛍光中心を生じ、紫外線で励起することにより
橙色の蛍光ラジオフオトルミネツセンスを発生す
る。この蛍光強度は放射線の被曝量に比例するの
で、蛍光強度を測定することにより被曝放射線量
を求めることができる。 この放射線量の測定は、紫外線励起用光源たと
えば水銀ランプからの光を光学的フイルタを介し
て所定波長以上の光を遮断した後、透過した紫外
線を直方体状の銀活性リン酸塩ガラス体の一側面
に垂直に入射させる。紫外線励起により銀活性リ
ン酸塩ガラス体から発する蛍光を入射光線に対し
直角方向に取り出し、フイルタを介して所定波長
範囲外の光を遮断した透過光を光電子増倍管で変
換した出力信号から蛍光強度を測定して被曝線量
を求める。この測定においては、一定の蛍光量を
発生する蛍光標準ガラスを照合ガラスとして使用
し、照合ガラスの基準蛍光量と比較測定すること
により、前記銀活性リン酸塩ガラス体の被曝放射
線量を決定するものである。一般に蛍光ガラス線
量計の測定範囲は10mR〜103R(レントゲン)で
あるが、前記照合ガラスはその蛍光量が被測定試
料の蛍光量付近のものを選択して使用する。 従来、照合ガラスはMn2+イオン、Sm3+イオン
Nd3+イオンなどのいずれか1種を含む蛍光ガラ
ス体、または測定範囲内の放射線量を標準照射し
た銀活性リン酸塩ガラス体が用いられている。し
かるに、これらの照合ガラスを使用した蛍光ガラ
ス線量計には次のような欠点がある。 照合ガラスとしてMn2+イオン、Sm3+イオ
ン、Nd3+イオンなどのいずれか1種を含む蛍
光ガラス体を用いた場合、その蛍光強度の温度
係数が銀活性リン酸塩ガラスのラジオフオトル
ミネツセンスの温度係数と異なるため、測定は
常に一定の室温の場所で行うか、または測定時
の室温による温度補正をしなければならず、こ
れらが測定誤差の要因となつている。また特公
昭47−51919号公報および特公昭50−38352号公
報に記載されているパルス測定方式を採用した
蛍光ガラス線量計においては、この照合ガラス
の蛍光減衰時間が放射線を被曝した銀活性リン
酸塩ガラスの蛍光減衰時間に比べて短いので、
銀活性リン酸塩ガラス体の放射線被曝による蛍
光を観測するための遅延観測時間では、感度の
よい蛍光を測定することができず、線量値の正
確な照合ができない。 照合ガラスとして10R未満の照射線量既知の
放射線を標準照射した銀活性リン酸塩ガラス体
を用いた場合、上記項の欠点は解消される
が、銀活性リン酸塩ガラス体は年間80〜
100mRの自然放射線の被曝によつて、その蛍
光量に経時変化を生じるため低線量測定におけ
る測定誤差の要因となる。 〔考案の目的〕 本考案は上記事情を考慮してなされたもので、
放射線の被曝線量を照合するための蛍光ラジオフ
オトルミネツセンスの強度の信頼性を向上させた
蛍光ガラス線量計用照合ガラスを提供することを
目的とする。 〔考案の概要〕 本考案は上記の目的を達成するために、10R以
上の放射線を被曝させた銀活性リン酸塩ガラスか
らなる照合ガラスにおいて、その蛍光検出面を金
属、プラスチツク等で部分的に被覆することによ
り、照合ガラスの蛍光ラジオフオトルミネツセン
スの強度を任意に調節することができるようにし
たものである。10R以上の放射線を被曝させた照
合ガラスは、自然放射線の被曝を考慮しても、そ
の蛍光量の変化は年間1%以内であり、十分実用
に供せられる。 本考案は、直方体状の照合ガラスの励起紫外線
の入射面および射出面を除く他の面すなわち蛍光
検出面の一部分を、金属またはプラスチツク等で
被覆することにより、このガラス自体が発する蛍
光量を低下させ、低線量測定用の照合ガラスとし
て使用可能としたものである。また、この照合ガ
ラスは被覆する面積を変えることにより、その蛍
光量を任意に調節することができるので、1個の
照合ガラスで広い範囲の放射線量測定に適応でき
るものである。 〔考案の実施例〕 本考案の詳細を図示の実施例により説明する。 保持具1に装着された照合ガラス2は、メタリ
ン酸アルミニウム60重量%、メタリン酸ナトリウ
ム20重量%、オルトリン酸ナトリウム20重量%メ
タリン酸銀0.3重量%なる組成の銀活性リン酸塩
ガラス(特公昭50−10333号公報に記載されたガ
ラス)からなり、15×12×3.5mm3の直方体状に研
摩加工されたものである。励起紫外線ビーム3は
照合ガラス2の上方から入射し下方に射出する。
このとき発生する蛍光は矢示の方向から検出され
るが、蛍光検出面4の一部分を金属たとえば銅板
よりなるマスク5によつて被覆することにより、
その蛍光量を低下させるようになつている。した
がつて蛍光検出面4のマスク5によつて被覆され
る面積を調節することにより、照合ガラス2から
任意の蛍光量を得ることができる。 次に励起紫外線に窒素ガスレーザのパルス光を
用いる蛍光ガラス線量計(特公昭50−38352号公
報に記載されたもの)を使用し、前記照合ガラス
60Coγ線を103Rおよび3×104Rに照射し、蛍
光検出面を被覆するマスクの面積を種々変えて発
生する蛍光量を調査した結果を次表に示す。マス
ク面積は照合ガラスの蛍光検出面に対する比率で
ある。
[Technical Field of the Invention] The present invention relates to a reference glass used in a fluorescent glass dosimeter that measures radiation exposure dose, and in particular, to evaluate the reliability of the intensity of fluorescent radiophotoluminescence for comparing the exposure dose. This invention relates to an improved reference glass for fluorescent glass dosimeters. [Technical background of the invention and its problems] Fluorescent glass dosimeters generally use a phosphate glass containing silver ions (hereinafter referred to as silver activated phosphate glass) as a detector; When an acid salt glass body is exposed to radiation, a fluorescent center is generated within the glass body, and when excited by ultraviolet rays, an orange fluorescent radiophotoluminescence is generated. Since this fluorescence intensity is proportional to the amount of radiation exposure, the amount of radiation exposure can be determined by measuring the fluorescence intensity. This radiation dose measurement is carried out by passing light from an ultraviolet excitation light source, such as a mercury lamp, through an optical filter to block light of a predetermined wavelength or more, and then transmitting the transmitted ultraviolet rays to a rectangular parallelepiped-shaped silver activated phosphate glass body. Inject it perpendicularly to the side. Fluorescence emitted from a silver-activated phosphate glass body by ultraviolet excitation is extracted in a direction perpendicular to the incident light beam, and the transmitted light is filtered to block light outside a predetermined wavelength range, and the transmitted light is converted by a photomultiplier tube. Fluorescence is obtained from the output signal. Measure the intensity and determine the exposure dose. In this measurement, a fluorescence standard glass that generates a certain amount of fluorescence is used as a reference glass, and the amount of radiation to which the silver activated phosphate glass body is exposed is determined by comparing the measurement with the reference fluorescence amount of the reference glass. It is something. Generally, the measurement range of a fluorescent glass dosimeter is 10 mR to 10 3 R (X-Ray), but the reference glass is selected to have a fluorescence amount close to that of the sample to be measured. Traditionally, reference glasses contain Mn 2+ ions, Sm 3+ ions
A fluorescent glass body containing any one type of Nd 3+ ion, or a silver activated phosphate glass body irradiated with a standard radiation dose within the measurement range is used. However, fluorescent glass dosimeters using these reference glasses have the following drawbacks. When a fluorescent glass body containing any one of Mn 2+ ions, Sm 3+ ions, Nd 3+ ions, etc. is used as a reference glass, the temperature coefficient of the fluorescence intensity is similar to that of the radiophotoluminescence of silver-activated phosphate glass. Since the temperature coefficient is different from the temperature coefficient of the tsensence, the measurement must be always performed at a constant room temperature, or the temperature must be corrected based on the room temperature at the time of measurement, which causes measurement errors. In addition, in fluorescent glass dosimeters that adopt the pulse measurement method described in Japanese Patent Publication No. 47-51919 and Japanese Patent Publication No. 50-38352, the fluorescence decay time of the reference glass is the same as that of silver activated phosphoric acid exposed to radiation. Because it is shorter than the fluorescence decay time of salt glass,
The delayed observation time for observing fluorescence due to radiation exposure of the silver activated phosphate glass body does not allow sensitive fluorescence measurements and accurate verification of dose values. If a silver activated phosphate glass body irradiated with a standard radiation dose of less than 10R is used as a reference glass, the drawbacks mentioned above will be resolved, but the silver activated phosphate glass body
Exposure to 100mR of natural radiation causes a change in the amount of fluorescence over time, which causes measurement errors in low-dose measurements. [Purpose of the invention] This invention was made in consideration of the above circumstances.
An object of the present invention is to provide a reference glass for a fluorescent glass dosimeter that improves the reliability of the intensity of fluorescent radiophotoluminescence for comparing the radiation exposure dose. [Summary of the invention] In order to achieve the above-mentioned purpose, the present invention uses a reference glass made of silver-activated phosphate glass that has been exposed to radiation of 10R or more, and partially covers the fluorescence detection surface with metal, plastic, etc. By coating, the intensity of the fluorescent radiophotoluminescence of the reference glass can be adjusted as desired. The reference glass that has been exposed to radiation of 10R or more has a change in fluorescence level of less than 1% per year, even considering exposure to natural radiation, and is therefore suitable for practical use. The present invention reduces the amount of fluorescence emitted by the glass itself by coating a part of the fluorescence detection surface of the rectangular parallelepiped reference glass, excluding the entrance and exit surfaces of the excitation ultraviolet rays, with metal or plastic. This allows it to be used as a reference glass for low-dose measurements. Furthermore, since the amount of fluorescence can be arbitrarily adjusted by changing the covered area of this reference glass, one reference glass can be used to measure radiation doses over a wide range. [Embodiments of the invention] The details of the invention will be explained with reference to illustrated embodiments. The reference glass 2 attached to the holder 1 is made of silver activated phosphate glass (Tokuko Showa) with a composition of 60% by weight of aluminum metaphosphate, 20% by weight of sodium metaphosphate, 20% by weight of sodium orthophosphate, and 0.3% by weight of silver metaphosphate. It is made of glass (described in Japanese Patent No. 50-10333) and polished into a rectangular parallelepiped shape of 15 x 12 x 3.5 mm3 . The excitation ultraviolet beam 3 enters the reference glass 2 from above and exits downward.
The fluorescence generated at this time is detected from the direction of the arrow, but by covering a part of the fluorescence detection surface 4 with a mask 5 made of metal, for example, a copper plate,
It is designed to reduce the amount of fluorescence. Therefore, by adjusting the area of the fluorescence detection surface 4 covered by the mask 5, an arbitrary amount of fluorescence can be obtained from the reference glass 2. Next, using a fluorescent glass dosimeter (described in Japanese Patent Publication No. 50-38352) that uses pulsed light from a nitrogen gas laser as the excitation ultraviolet light, 60 Coγ rays are applied to the reference glass at 10 3 R and 3×10 4 The following table shows the results of an investigation of the amount of fluorescence generated by irradiating R and varying the area of the mask covering the fluorescence detection surface. The mask area is the ratio of the reference glass to the fluorescence detection surface.

〔考案の効果〕[Effect of idea]

以上のように本考案は、10R以上の放射線を被
曝させた銀活性リン酸塩ガラスからなる照合ガラ
スであつて、その蛍光検出面の一部分を金属また
はプラスチツク等で被覆することにより蛍光ラジ
オフオトルミネツセンスの強度を任意に調節する
ことができるようにしたものであるから、低線量
は勿論広い範囲の放射線量測定に照合ガラスとし
て使用することが可能である。また、この照合ガ
ラスは被測定ガラスとの間に蛍光強度の温度係数
および蛍光減衰時間について全く差がないので、
正確な照合ができ、蛍光ガラス線量計の測定精度
の向上に大きく寄与する効果がある。
As described above, the present invention is a reference glass made of silver-activated phosphate glass that has been exposed to radiation of 10R or more, and a part of the fluorescence detection surface is coated with metal or plastic to generate fluorescent radiophotoluminescence. Since the intensity of the radiation can be adjusted arbitrarily, it can be used as a reference glass for measuring not only low doses but also a wide range of radiation doses. In addition, there is no difference between this reference glass and the glass to be measured in terms of temperature coefficient of fluorescence intensity and fluorescence decay time.
Accurate verification is possible and has the effect of greatly contributing to improving the measurement accuracy of fluorescent glass dosimeters.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案の実施例を示す斜視図である。 2……照合ガラス、4……蛍光検出面、5……
マスク。
The drawing is a perspective view showing an embodiment of the present invention. 2... Reference glass, 4... Fluorescence detection surface, 5...
mask.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 放射線の被曝線量を測定する蛍光ガラス線量計
に使用される照合ガラスにおいて、10R(レント
ゲン)以上の放射線を被曝させた銀活性リン酸塩
ガラスからなる照合ガラスの蛍光検出面を部分的
に被覆することにより、その蛍光ラジオフオトル
ミネツセンスの強度を任意に調節することができ
るようにしたことを特徴とする蛍光ガラス線量計
用照合ガラス。
In reference glass used in fluorescent glass dosimeters that measure radiation exposure doses, the fluorescence detection surface of the reference glass made of silver-activated phosphate glass that has been exposed to radiation of 10R (X-ray) or more is partially covered. A reference glass for a fluorescent glass dosimeter, characterized in that the intensity of the fluorescent radiophotoluminescence can be arbitrarily adjusted.
JP18695884U 1984-12-10 1984-12-10 Expired JPH0442788Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18695884U JPH0442788Y2 (en) 1984-12-10 1984-12-10

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18695884U JPH0442788Y2 (en) 1984-12-10 1984-12-10

Publications (2)

Publication Number Publication Date
JPS61102885U JPS61102885U (en) 1986-06-30
JPH0442788Y2 true JPH0442788Y2 (en) 1992-10-09

Family

ID=30744425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18695884U Expired JPH0442788Y2 (en) 1984-12-10 1984-12-10

Country Status (1)

Country Link
JP (1) JPH0442788Y2 (en)

Also Published As

Publication number Publication date
JPS61102885U (en) 1986-06-30

Similar Documents

Publication Publication Date Title
Araki et al. Measurements of Gamma‐Knife helmet output factors using a radiophotoluminescent glass rod dosimeter and a diode detector
US20120112076A1 (en) Remote detection of radiation
Tsuda A few remarks on photoluminescence dosimetry with high energy X-rays
US3412248A (en) Method and means utilizing a pulsed ultraviolet laser for readout of photoluminescent dosimeters
JPH0442788Y2 (en)
Ertl et al. Shuttle dose at the Vienna Leksell gamma knife
JPH03102284A (en) Method and apparatus for measuring glass dosage
YU38192A (en) GAS ANALYSIS PROCEDURE AND DEVICE
JP2949134B2 (en) Reference glass for fluorescent glass dosimeter
Ritz et al. Radiation intensity measurements with silver-activated glass block dosimeters
JPH03291593A (en) Collating glass for fluorescent glass dosimeter
JPS6351983B2 (en)
Quimby A method for the study of scattered and secondary radiation in x-ray and radium laboratories
JP2634075B2 (en) Fluorescent glass dosimeter and its reading device
Mayer et al. A scintillation counter technique for the X-ray determination of bone mineral content
US3519821A (en) Method and apparatus for calibrating radiation detection and measurement instruments
JPS59190681A (en) Method and apparatus for measuring glass dose
JP3029899B2 (en) Glass dosimeter
JP2971756B2 (en) Fluorescent glass dosimeter measuring device
JP3064538B2 (en) Fluorescent glass dosimeter
JP2971772B2 (en) Fluorescent glass dosimeter measuring device
Jordan Review of recent advances in non gel dosimeters
JPH0225852B2 (en)
US3614435A (en) Dosimeter for pulsed ionizing radiation
JP2965473B2 (en) Fluorescent glass dosimeter