JPS6351983B2 - - Google Patents

Info

Publication number
JPS6351983B2
JPS6351983B2 JP24408284A JP24408284A JPS6351983B2 JP S6351983 B2 JPS6351983 B2 JP S6351983B2 JP 24408284 A JP24408284 A JP 24408284A JP 24408284 A JP24408284 A JP 24408284A JP S6351983 B2 JPS6351983 B2 JP S6351983B2
Authority
JP
Japan
Prior art keywords
glass
fluorescence
fluorescent
radiation
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24408284A
Other languages
Japanese (ja)
Other versions
JPS61122135A (en
Inventor
Tooru Ikegami
Takahiro Ai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Techno Glass Co Ltd
Original Assignee
Toshiba Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Glass Co Ltd filed Critical Toshiba Glass Co Ltd
Priority to JP24408284A priority Critical patent/JPS61122135A/en
Publication of JPS61122135A publication Critical patent/JPS61122135A/en
Publication of JPS6351983B2 publication Critical patent/JPS6351983B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は、被爆放射線量を測定する蛍光ガラス
線量計において、測定値を較正するために使用さ
れる蛍光ガラス線量計用蛍光標準ガラスに関す
る。 〔発明の技術的背景とその問題点〕 一般に蛍光ガラス線量計は銀イオンを含有した
リン酸塩ガラス(以下銀活性リン酸ガラスと称
す)を検出器として用いており、この銀活性リン
酸ガラスは波長300〜400nmの紫外線励起により
蛍光を発するが、その蛍光強度は被曝放射線量に
比例するので、蛍光強度を測定することにより放
射線量を求めることができるものである。 前記放射線量の測定は、たとえば紫外線励起用
光源として水銀ランプを用い、この水銀ランプか
らの光を光学的フイルタを介して所定波長以上の
光を遮断した後、透過した紫外線を直方体状の銀
活性リン酸ガラスの一側面に垂直に入射させる。
そして紫外線励起により銀活性リン酸ガラスから
発する蛍光を入射光線に対し直角方向に取り出
し、フイルタを介して所定波長範囲外の光を遮断
した透過光を光電子増培管で変換した出力信号か
ら蛍光強度を測定するようにしている。しかしこ
の測定方法においては、最も良好な銀活性リン酸
ガラスでも被曝前の蛍光強度がγ線線量値に換算
して約150mR程度であり、10mR程度の被曝線量
の測定については十分な測定精度が得られないと
いう問題を有している。 上記の問題点を解決するため、たとえば特公昭
47―51919号公報および特公昭50―38352号公報に
記載されているように、パルス測定方式を採用し
た蛍光ガラス線量計が提案されている。銀活性リ
ン酸ガラスの蛍光中心を極く短い紫外線パルスで
刺激すると、前記蛍光中心による蛍光を発する。
この蛍光の減衰特性において蛍光強度が最高値の
1/eになる時間を減衰時間と定義すると放射線
被曝後の銀活性リン酸ガラスの蛍光の減衰時間は
3.2μsecである。これに対し放射線被曝前の蛍光
の減衰時間は0.3μsecと極めて短い。従つてパル
ス測定方式では、第3図に示すようにガラスマト
リツクスにもとづく放射線被曝前の蛍光の減衰時
間が、放射線被曝による蛍光中心にもとづく蛍光
の減衰時間の約1/10であるため、観測時間を遅延
させることでこれらを完全に分離することがで
き、10mR程度の低線量を高い精度で測定するこ
とができる。 しかるに、パルス測定方式にもとづく蛍光ガラ
ス線量計には次のような欠点がある。 測定の際に線量値の較正を行うための蛍光標
準ガラスとして、従来の連続光による測定で使
用されているMn2+イオン、Sm3+イオン、
Nd3+イオンなどを含む蛍光ガラスを用いた場
合、これらのガラスの蛍光の減衰時間が放射線
を被曝した銀活性リン酸ガラスの蛍光の減衰時
間に比べて短いので、パルス測定方式によつて
銀活性リン酸ガラスの放射線被曝による蛍光を
観測するための遅延観測時間では、感度のよい
蛍光強度を測定することができず、線量値の正
確な較正ができない。 前記蛍光標準ガラスとして、照射線量既知の
放射線を標準照射した銀活性リン酸ガラスを用
いた場合、上記項の蛍光の減衰時間が相違す
る欠点は解消されるが、銀活性リン酸ガラスは
年間80〜100mRの自然放射線被曝によつて、
その蛍光強度に経時変化が生じるため、10mR
程度の低線量測定においては測定誤差の原因と
なり、蛍光標準ガラスとしての役割を果たさな
い。 〔発明の目的〕 本発明は、上記事情に鑑みなされたもので、パ
ルス測定方式にもとづく蛍光ガラス線量計による
測定線量値の較正用ガラスとして、10mR程度の
低線量の測定に適合しその測定精度を向上させる
蛍光ガラス線量計用蛍光標準ガラスを提供するこ
とを目的とする。 〔発明の概要〕 本発明は上記の目的を達成するために、本発明
者らが種々実験研究した結果見出したもので、放
射線被曝の有無には関係なく励起紫外線パルスに
よつて一定量の蛍光を生じ、その蛍光減衰時間お
よび蛍光スペクトルが放射線被曝後の銀活性リン
酸ガラスのものと近似し、かつその蛍光強度がγ
線線量値に換算して5R以下であるような特性を
有する蛍光標準ガラスである。すなわち、重量百
分率でSiO250〜80%、B2O30〜25%、Al2O30〜
10%、アリカリ金属酸化物5〜25%、二価金属酸
化物5〜25%を含む基礎ガラスに蛍光剤として
Eu2O30.002〜0.05%を添加してなり、波長300〜
400nmの紫外線励起により発する蛍光の減衰特性
において蛍光強度が最高値の1/eとなる時間が
1.5〜6μsecの範囲にある蛍光ガラス線量計用蛍光
標準ガラスである。 本発明の基礎ガラス組成は、通常のソーダ石灰
ガラスもしくは硼珪酸ガラスであり、その組成自
体は新規なものではない。また、ガラスバツチに
Eu2O3を添加して蛍光ガラスを作成することも既
に知られている。しかし、これらの蛍光ガラスに
おいて、特に前記パルス測定方式の蛍光ガラス線
量計に応用するため、励起紫外線パルスによつて
一定量の蛍光を生じ、その蛍光の減衰時間および
蛍光スペクトルが放射線被曝後の銀活性リン酸ガ
ラスのものと近似し、かつその蛍光強度がγ線線
量値に換算して5R以下であるような特性のもの
を蛍光標準ガラスとして使用することは、本発明
者らが初めて解明し得たものである。 〔発明の実施例〕 本発明の実施例について表を参照して説明す
る。表に示された基礎ガラス組成に異なる量の
Eu2O3を添加したバツチをそれぞれ約1300〜1400
℃の温度で4時間溶融し、この溶融ガラスを一定
形状に鋳造成形し、切断、荒摺、研磨の各工程を
経て所定の形状の試料を作製した。これらの試料
について、励起紫外線に窒素ガスレーザパルスを
応用した蛍光ガラス線量計(東芝製FGD―8)
を使用して、γ線線量値に換算した蛍光強度を測
定した。
[Technical Field of the Invention] The present invention relates to a fluorescent standard glass for a fluorescent glass dosimeter used to calibrate measured values in a fluorescent glass dosimeter that measures exposure radiation doses. [Technical background of the invention and its problems] Fluorescent glass dosimeters generally use phosphate glass containing silver ions (hereinafter referred to as silver-activated phosphate glass) as a detector; emits fluorescence when excited by ultraviolet light with a wavelength of 300 to 400 nm, and the fluorescence intensity is proportional to the exposure radiation dose, so the radiation dose can be determined by measuring the fluorescence intensity. To measure the radiation dose, for example, a mercury lamp is used as a light source for excitation of ultraviolet rays, and after passing the light from the mercury lamp through an optical filter to block light of a predetermined wavelength or more, the transmitted ultraviolet rays are transferred to a rectangular parallelepiped-shaped silver activator. The light is applied perpendicularly to one side of the phosphate glass.
Then, the fluorescence emitted from the silver-activated phosphate glass by ultraviolet excitation is taken out in a direction perpendicular to the incident light beam, and the transmitted light is filtered to block light outside a predetermined wavelength range.The output signal is converted by a photomultiplier tube and the fluorescence intensity is determined. I try to measure it. However, in this measurement method, even with the best silver-activated phosphate glass, the fluorescence intensity before exposure is about 150 mR when converted to a gamma ray dose value, and the measurement accuracy is insufficient for measuring an exposure dose of about 10 mR. The problem is that it cannot be obtained. In order to solve the above problems, for example,
As described in Japanese Patent Publication No. 47-51919 and Japanese Patent Publication No. 50-38352, fluorescent glass dosimeters employing a pulse measurement method have been proposed. When the fluorescent centers of silver-activated phosphate glass are stimulated with a very short pulse of ultraviolet light, the fluorescent centers emit fluorescence.
In this fluorescence decay characteristic, if the time when the fluorescence intensity reaches the maximum value of 1/e is defined as the decay time, then the fluorescence decay time of silver activated phosphate glass after exposure to radiation is
It is 3.2μsec. In contrast, the fluorescence decay time before radiation exposure is extremely short at 0.3 μsec. Therefore, in the pulse measurement method, as shown in Figure 3, the decay time of fluorescence based on the glass matrix before radiation exposure is approximately 1/10 of the decay time of fluorescence based on the fluorescence center due to radiation exposure, so the observation is difficult. By delaying the time, these can be completely separated, making it possible to measure doses as low as 10 mR with high precision. However, fluorescent glass dosimeters based on the pulse measurement method have the following drawbacks. Mn 2+ ions, Sm 3+ ions, which are used in conventional continuous light measurements, are used as fluorescence standard glasses to calibrate dose values during measurements.
When fluorescent glasses containing Nd 3+ ions are used, the fluorescence decay time of these glasses is shorter than that of silver-activated phosphate glass exposed to radiation. The delayed observation time used to observe fluorescence due to radiation exposure of activated phosphate glass does not allow for sensitive fluorescence intensity measurements and accurate calibration of dose values. When using silver-activated phosphate glass that has been irradiated with radiation with a known dose as the fluorescence standard glass, the disadvantage of the difference in fluorescence decay time mentioned above is solved, but silver-activated phosphate glass By natural radiation exposure of ~100mR,
Because the fluorescence intensity changes over time, 10mR
In low-dose measurements, it causes measurement errors and does not serve as a fluorescence standard glass. [Purpose of the Invention] The present invention has been made in view of the above circumstances, and is suitable for use in measuring low doses of about 10 mR as a glass for calibrating dose values measured by fluorescent glass dosimeters based on the pulse measurement method. The purpose of the present invention is to provide a fluorescent standard glass for fluorescent glass dosimeters that improves the performance of fluorescent glass dosimeters. [Summary of the Invention] In order to achieve the above object, the present invention was discovered as a result of various experimental studies by the present inventors. The fluorescence decay time and fluorescence spectrum are similar to those of silver-activated phosphate glass after exposure to radiation, and the fluorescence intensity is γ
This is a fluorescent standard glass that has characteristics such that the radiation dose value is 5R or less. i.e. SiO 2 50-80%, B 2 O 3 0-25%, Al 2 O 3 0-
As a fluorescent agent in base glasses containing 10%, alkali metal oxides 5-25%, and divalent metal oxides 5-25%.
Added Eu 2 O 3 0.002~0.05%, wavelength 300 ~
The time at which the fluorescence intensity reaches its maximum value of 1/e is the decay characteristic of fluorescence emitted by 400nm ultraviolet excitation.
This is a fluorescent standard glass for fluorescent glass dosimeters in the range of 1.5 to 6 μsec. The basic glass composition of the present invention is a conventional soda-lime glass or borosilicate glass, and the composition itself is not new. Also, glass battu
It is also already known to create fluorescent glasses by adding Eu2O3 . However, in order to apply these fluorescent glasses to the above-mentioned pulse measurement type fluorescent glass dosimeter, a certain amount of fluorescence is generated by the excitation ultraviolet pulse, and the decay time and fluorescence spectrum of the fluorescence are determined by the silver after exposure to radiation. The present inventors were the first to elucidate that a glass with characteristics similar to those of activated phosphate glass and whose fluorescence intensity is 5R or less when converted to a γ-ray dose value can be used as a fluorescence standard glass. That's what I got. [Examples of the Invention] Examples of the invention will be described with reference to tables. of different amounts to the basic glass composition shown in the table.
Approximately 1300-1400 batches each with added Eu2O3
The molten glass was melted at a temperature of 40°C for 4 hours, and the molten glass was cast into a predetermined shape, and a sample with a predetermined shape was produced through the steps of cutting, roughening, and polishing. For these samples, we used a fluorescent glass dosimeter (Toshiba FGD-8) that applied nitrogen gas laser pulses to excitation ultraviolet light.
was used to measure the fluorescence intensity converted into a γ-ray dose value.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上のように本発明は、重量百分率でSiO250
〜80%、B2O30〜25%、Al2O30〜10%、アリカリ
金属酸化物5〜25%、二価金属酸化物5〜25%を
含む基礎ガラスに蛍光剤としてEu2O3を0.002〜
0.05重量%添加してなる蛍光標準ガラスであり、
励起紫外線パルスによつて生じる蛍光減衰時間お
よび蛍光スペクトルが放射線被曝後の銀活性リン
酸ガラスのものとほとんど近似し、放射線被曝の
有無とは関係なく励起紫外線パルスによつて一定
量の蛍光を発し、かつその蛍光強度がγ線線量値
に換算して5R以下であることから、パルス測定
方式にもとづく蛍光ガラス線量計の低線量測定時
の較正用蛍光標準ガラスとして最適のものであ
る。この蛍光標準ガラスは前記蛍光ガラス線量計
と組み合せて使用することにより、測定精度を
10mRの低線量にて±3%と著しく向上させる。
また長期間の使用に対しても十分な安定性を示す
等すぐれた効果がある。 なお、本発明のガラスの耐候性を向上させる目
的でMgF2等の薄膜を表面に被着しても、上記性
能には何等影響が認められない。
As described above, the present invention has SiO 2 50 in weight percentage.
~80%, B2O3 0-25 %, Al2O3 0-10 %, alkali metal oxides 5-25%, divalent metal oxides 5-25% with Eu2 as a fluorescent agent in the base glass. O3 from 0.002
It is a fluorescent standard glass made by adding 0.05% by weight,
The fluorescence decay time and fluorescence spectrum produced by the excitation ultraviolet pulse are almost similar to those of silver-activated phosphate glass after exposure to radiation, and a constant amount of fluorescence is emitted by the excitation ultraviolet pulse regardless of the presence or absence of radiation exposure. , and its fluorescence intensity is less than 5R when converted into a gamma ray dose value, making it ideal as a fluorescent standard glass for calibrating low-dose measurements of fluorescent glass dosimeters based on the pulse measurement method. This fluorescent standard glass can be used in combination with the fluorescent glass dosimeter to improve measurement accuracy.
Significant improvement of ±3% at low dose of 10mR.
It also has excellent effects such as sufficient stability for long-term use. Note that even if a thin film of MgF 2 or the like is deposited on the surface of the glass of the present invention for the purpose of improving its weather resistance, no effect is observed on the above-mentioned performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のガラスのEu2O3添加量と蛍光
強度との関係を示す曲線図、第2図は本発明のガ
ラスおよびその基礎ガラスの蛍光強度と蛍光減衰
時間との関係を示す曲線図、第3図は銀活性リン
酸ガラスの蛍光強度と蛍光減衰時間との関係を示
す曲線図、第4図は本発明のガラスが発する蛍光
の波長と蛍光強度との関係を示す曲線図、第5図
は放射線を被曝した銀活性リン酸ガラスが発する
蛍光の波長と蛍光強度との関係を示す曲線図であ
る。
Figure 1 is a curve diagram showing the relationship between the amount of Eu 2 O 3 added and the fluorescence intensity of the glass of the present invention, and Figure 2 is a curve diagram showing the relationship between the fluorescence intensity and fluorescence decay time of the glass of the present invention and its base glass. Figure 3 is a curve diagram showing the relationship between fluorescence intensity and fluorescence decay time of silver-activated phosphate glass; Figure 4 is a curve diagram showing the relationship between fluorescence wavelength and fluorescence intensity emitted by the glass of the present invention. , FIG. 5 is a curve diagram showing the relationship between the wavelength of fluorescence and fluorescence intensity emitted by silver-activated phosphate glass exposed to radiation.

Claims (1)

【特許請求の範囲】[Claims] 1 重量百分率でSiO250〜80%、B2O30〜25%、
Al2O30〜10%、アリカリ金属酸化物5〜25%、
二価金属酸化物5〜25%を含む基礎ガラスに蛍光
剤としてEu2O30.002〜0.05%を添加してなり、波
長300〜400nmの紫外線励起により発する蛍光の
減衰特性において蛍光強度が最高値の1/eとな
る時間が1.5〜6μsecの範囲にあることを特徴とす
る蛍光ガラス線量計用蛍光標準ガラス。
1 SiO 2 50-80%, B 2 O 3 0-25% by weight percentage,
Al 2 O 3 0-10%, alkali metal oxide 5-25%,
It is made by adding 0.002 to 0.05% of Eu 2 O 3 as a fluorescent agent to a base glass containing 5 to 25% of divalent metal oxide, and the fluorescence intensity is the highest in the decay characteristics of fluorescence emitted by excitation of ultraviolet light with a wavelength of 300 to 400 nm. 1. A fluorescent standard glass for a fluorescent glass dosimeter, characterized in that the time for 1/e of is in the range of 1.5 to 6 μsec.
JP24408284A 1984-11-19 1984-11-19 Standard fluorescent glass for fluorescent glass dosimeter Granted JPS61122135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24408284A JPS61122135A (en) 1984-11-19 1984-11-19 Standard fluorescent glass for fluorescent glass dosimeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24408284A JPS61122135A (en) 1984-11-19 1984-11-19 Standard fluorescent glass for fluorescent glass dosimeter

Publications (2)

Publication Number Publication Date
JPS61122135A JPS61122135A (en) 1986-06-10
JPS6351983B2 true JPS6351983B2 (en) 1988-10-17

Family

ID=17113462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24408284A Granted JPS61122135A (en) 1984-11-19 1984-11-19 Standard fluorescent glass for fluorescent glass dosimeter

Country Status (1)

Country Link
JP (1) JPS61122135A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103130414A (en) * 2013-03-05 2013-06-05 中山大学 Rare earth-doped silicate luminescent glass and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106479500B (en) * 2016-09-29 2018-08-28 华南农业大学 A kind of luminescent glass ceramic and its preparation method and the application in LED illumination device
CN107129143B (en) * 2017-05-16 2022-04-12 东旭光电科技股份有限公司 Novel composition for chemically strengthened glass having excellent optical properties, and glass
CN108793733A (en) * 2018-06-20 2018-11-13 昆明理工大学 A kind of high-melting-point LED fluorescent glass and discharge plasma sintering preparation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103130414A (en) * 2013-03-05 2013-06-05 中山大学 Rare earth-doped silicate luminescent glass and preparation method thereof

Also Published As

Publication number Publication date
JPS61122135A (en) 1986-06-10

Similar Documents

Publication Publication Date Title
US5569927A (en) Composite material dosimeters
Piesch et al. Properties of radiophotoluminescent glass dosemeter systems using pulsed laser UV excitation
Hofmann et al. Heavy particle dosimetry with high temperature peaks of CaF2: Tm and 7LiF phosphors
Wall et al. The suitability of different preparations of thermoluminescent lithium borate for medical dosimetry
Iwao et al. Ag-doped phosphate glass with high weathering resistance for RPL dosimeter
Ranchoux et al. Fibre remote optoelectronic gamma dosimetry based on optically stimulated luminescence of Al2O3: C
JP2016145145A (en) Glass for fluorescent glass dosimeter
US2752506A (en) Meter for high radiation fluxes
JPS6351983B2 (en)
Nishikawa et al. Radio-photoluminescence phenomenon in Cs2O-SrO-Al2O3-P2O5 glasses doped with different concentrations of Ag2O
US4039834A (en) Thermoluminescent CaF2 (Tm) and method for its use
JPH0225852B2 (en)
US3554920A (en) Energy independent radiophotoluminescence dosimeter with good fading stability
Schayes et al. Thermoluminescent properties of natural calcium fluoride
JP5161141B2 (en) Fluorescent glass dosimeter glass and fluorescent glass dosimeter sensitive to thermal neutrons
JP2949134B2 (en) Reference glass for fluorescent glass dosimeter
US4204976A (en) Glass for radio-photoluminescence dosimetry
JPH03291593A (en) Collating glass for fluorescent glass dosimeter
Scacco et al. Defects in γ-irradiated KMgF3: Tl+ crystals
Blair Applications of Radiation Effects in Glasses in Low‐and High‐Level Dosimetry
JPH0442788Y2 (en)
Bajaj et al. An introduction to radio-photoluminescence and scintillation for dosimetric applications
JPS59190681A (en) Method and apparatus for measuring glass dose
Haldar et al. Effect of solute mass and solvent pH on lyoluminescent saccharides used for gamma-ray dosimetry
JP2636099B2 (en) Infrared amount measuring method and infrared amount meter