JPS63315951A - Laser magnetic immunoassay instrument - Google Patents

Laser magnetic immunoassay instrument

Info

Publication number
JPS63315951A
JPS63315951A JP15279187A JP15279187A JPS63315951A JP S63315951 A JPS63315951 A JP S63315951A JP 15279187 A JP15279187 A JP 15279187A JP 15279187 A JP15279187 A JP 15279187A JP S63315951 A JPS63315951 A JP S63315951A
Authority
JP
Japan
Prior art keywords
magnetic
laser
excitation
specimen
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15279187A
Other languages
Japanese (ja)
Other versions
JPH07122636B2 (en
Inventor
Koichi Fujiwara
幸一 藤原
Hiromichi Mizutani
水谷 裕迪
Hiroko Mizutani
弘子 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP15279187A priority Critical patent/JPH07122636B2/en
Priority to DE3751865T priority patent/DE3751865T2/en
Priority to EP87906109A priority patent/EP0287665B1/en
Priority to US07/221,248 priority patent/US5252493A/en
Priority to PCT/JP1987/000694 priority patent/WO1988002118A1/en
Publication of JPS63315951A publication Critical patent/JPS63315951A/en
Priority to US07/915,022 priority patent/US5238810A/en
Publication of JPH07122636B2 publication Critical patent/JPH07122636B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To shorten the time for measurement and to improve the accuracy of measurement by switching and applying DC excitation and intermittent pulse excitation to electromagnets for local concentration of a magnetic material labeled body and selectively detecting only the signal components. CONSTITUTION:A specimen vessel 1 is mounted to the center of the electromagnet pair 2 consisting of circular conical magnetic pole pieces 4-1, 4-2 and a laser light source 100 is so installed that a laser beam 101 passes the center of the specimen vessel in parallel with the axis of the vessel 1. Further, a photoelectron multiplier 105 is installed right above the specimen vessel. The excitation of the electromagnet pair 2 is executed by a circuit having a DC power supply 107 and an intermittent pulse power supply 108. The electromagnet pair 2 is first subjected to DC excitation to collect the magnetic material labeled body to the inside wall surface in the specimen vessel in the peak parts of the magnetic pole pieces 4-1, 4-2 and is then changed over to the intermittent pulse excitation. Only the scattered light of the laser beam at the time of the non- excitation is selectively detected. The detection signals are calculated and averaged repeatedly by which the magnetic material labeled body is detected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、抗原抗体反応を利用した免疫測定装置に関す
るものである。更に詳述するならば、本発明は極めて微
量の検体から特定の抗体または抗原を定量的に検出可能
なレーザ磁気免疫測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an immunoassay device that utilizes antigen-antibody reactions. More specifically, the present invention relates to a laser magnetic immunoassay device capable of quantitatively detecting a specific antibody or antigen from an extremely small amount of specimen.

〔従来の技術〕[Conventional technology]

後天性免疫不全症候群、成人T細胞白血病等のような新
型ウィルス性疾病、あるいは各種ガンの早期検査法とし
て、抗原抗体反応を利用した免疫測定法の開発が、現在
、世界的規模で推進されている。
The development of immunoassay methods that utilize antigen-antibody reactions is currently being promoted on a global scale as an early detection method for new viral diseases such as acquired immunodeficiency syndrome and adult T-cell leukemia, as well as various cancers. There is.

従来から知られる一次反応を利用した微量免疫測定法と
しては、ラジオイムノアッセイ (以下、RIA法と記
す)、酵素イムノアッセイ(EIA)、蛍光イムノアッ
セイ法等が既に実用化されている。
As microimmunoassay methods using conventionally known primary reactions, radioimmunoassay (hereinafter referred to as RIA method), enzyme immunoassay (EIA), fluorescence immunoassay method, etc. have already been put into practical use.

これらの方法は、それぞれアイソトープ、酵素、蛍光物
質を標識として付加した抗原または抗体を用い、これと
特異的に反応する抗体または抗原の有無を検出する方法
である。
These methods use an antigen or antibody labeled with an isotope, an enzyme, or a fluorescent substance, respectively, and detect the presence or absence of an antibody or antigen that specifically reacts with the antigen or antibody.

RIA法は、標識化されたアイソトープの放射線虫を測
定することにより抗原抗体反応に寄与した検体量を定量
するものであり、ピコグラム程度の超微量測定が可能な
現在唯一の方法である。しかしながら、この方法は放射
性物質を利用するので、特殊設備を必要とし、また、半
減期等による標識効果の減衰等を考慮しなければならな
いので、実施には大きな制約がある。更に、放射性廃棄
物処理が社会問題となっている現状を考慮すると、その
実施は自ずと制限される。
The RIA method quantifies the amount of specimen contributing to the antigen-antibody reaction by measuring labeled isotope radioworms, and is currently the only method capable of measuring ultra-trace amounts on the order of picograms. However, since this method uses radioactive substances, it requires special equipment, and the attenuation of the labeling effect due to half-life and other factors must be taken into consideration, so there are significant restrictions on its implementation. Furthermore, considering the current situation where radioactive waste disposal has become a social issue, its implementation is naturally limited.

一方、酵素、蛍光体を標識として用いる方法は、抗原抗
体反応に寄与した検体量を、発色や発光を観測すること
により検出する方法であり、RIA法の如き実施上の制
約はない。しかしながら、発色あるいは発光を精密に定
型することは困難であり、検出限界はナノグラム程度で
ある。
On the other hand, a method using an enzyme or a fluorophore as a label is a method for detecting the amount of a specimen that has contributed to an antigen-antibody reaction by observing color development or luminescence, and there are no restrictions on implementation as in the RIA method. However, it is difficult to precisely define color development or luminescence, and the detection limit is on the order of nanograms.

また、レーザ光を利用して抗原抗反応の有無を検出する
方法として、主に肝臓癌の検出を目的として開発された
AFP  (アルファ・フェトプロティン)を利用した
方法がある。
Furthermore, as a method of detecting the presence or absence of antigen anti-reaction using laser light, there is a method using AFP (alpha-fetoprotein), which was developed mainly for the purpose of detecting liver cancer.

この方法は、AFPに対する抗体をプラスチ、・り微粒
子に付加し、抗原抗体反応によってプラスチック粒子が
凝集して生じる質量変化から調べる方法であり、10”
gの検出感度を達成している。
In this method, an antibody against AFP is added to plastic particles, and the mass change caused by the aggregation of the plastic particles due to the antigen-antibody reaction is investigated.
A detection sensitivity of 1.5 g has been achieved.

これは、従来のレーザー光を用いた方法の百倍以上の感
度であるが、RIA法に比較すると百分の一以下に過ぎ
ない。更に、この方法が水溶液中における抗原抗体複合
物のブラウン運動の変化を利用しているために、抗体を
含む水溶液の温度、揺乱の影響あるいは水溶液に混在す
る不純物粒子の影響を極めて受は易く、これ以上に検出
感度を高めることは原理的に望外のらのである。
This is more than 100 times more sensitive than the conventional method using laser light, but only one hundredth or less compared to the RIA method. Furthermore, since this method utilizes changes in the Brownian motion of antigen-antibody complexes in aqueous solutions, it is extremely susceptible to the effects of the temperature and turbulence of the aqueous solution containing antibodies, as well as the effects of impurity particles mixed in the aqueous solution. In principle, it is undesirable to increase the detection sensitivity beyond this point.

上述のように、上記の免疫測定法においては、高い検出
感度を有するRIA法は、放射性物質を使用するために
、その実施については多くの制約があり、一方、実施の
容易な酵素イムノアツヤ法、蛍光イムノアッセイ等は感
度が低く、精密な定量的測定ができなかった。
As mentioned above, in the above-mentioned immunoassay methods, the RIA method, which has high detection sensitivity, has many restrictions on its implementation due to the use of radioactive substances.On the other hand, the enzyme immunoassay method, which is easy to implement, Fluorescent immunoassays and the like have low sensitivity and cannot perform precise quantitative measurements.

そこで、本発明者らは、上記の欠点を除去した免疫測定
法として、特願昭61−224567号[レーザ磁気免
疫測定法Jを提供した。
Therefore, the present inventors provided Japanese Patent Application No. 61-224567 [Laser Magnetic Immunoassay J] as an immunoassay method that eliminates the above drawbacks.

この方法では、まず、磁性超微粒子を標識として用い、
特定の、又は未知の抗原又は抗体にこの標識を付けて磁
性体標識体とする。次に、検体としての抗体又は抗原を
既知の固相化された抗原又は抗体と抗原抗体反応させ、
又は検体としての抗体又は抗原を直接固相化し、前記磁
性体標識体と抗原抗体反応を起こさせる。その後未反応
の前記磁性体標識体を除去した後に、検体を液相中に分
散させる。この場合に前記検体が、前記磁性体標識体と
特定の抗原抗体反応を起こす抗原又は抗体である場合に
は、検体を含む液相中に磁性体標識体が残存し、それら
以外の場合には、液相中に磁性体標識体は存在しない。
In this method, first, magnetic ultrafine particles are used as a label,
This label is attached to a specific or unknown antigen or antibody to make it a magnetic label. Next, the antibody or antigen as a specimen is subjected to an antigen-antibody reaction with a known immobilized antigen or antibody,
Alternatively, an antibody or antigen as a specimen is directly immobilized on a solid phase, and an antigen-antibody reaction is caused with the magnetic label. Thereafter, after removing the unreacted magnetic label, the specimen is dispersed in the liquid phase. In this case, if the specimen is an antigen or antibody that causes a specific antigen-antibody reaction with the magnetic label, the magnetic label remains in the liquid phase containing the specimen; , no magnetic label exists in the liquid phase.

よって、液相中の磁性体標識体の有無及び存在量を知る
ことにより検体の特定及び定蛍が可能となる。磁性体標
識体の有無及び存在量は、液相中に分散した検体による
レーザー光の散乱、透過光の強度変化を測定4−ること
により知ることができる。
Therefore, by knowing the presence or absence and amount of the magnetic label in the liquid phase, it is possible to identify the specimen and determine its constant fluorescence. The presence or absence of the magnetic label and the amount present can be determined by measuring the scattering of laser light by the specimen dispersed in the liquid phase and the intensity change of the transmitted light.

この方法によれば、RIA法に匹敵する検出感度並びに
精度を有しながら実施上の制限がないという利点がある
This method has the advantage of having detection sensitivity and accuracy comparable to the RIA method, but with no practical limitations.

また更に、本発明者らは、上記の測定法をより具体化し
たレーザ磁気免疫測定装置及び装置を特願昭61−25
2427号で提供した。この出願に係るレーザ磁気免疫
測定装置は、上記の磁性体標識体の濃縮と検体の散乱光
制御を、永久磁石を用いて機械的になすか、あるいは複
数個配列した電磁石等を用いることによりなすようにし
たものである。
Furthermore, the present inventors have proposed a laser magnetic immunoassay device and device that further embodies the above-mentioned measurement method in Japanese Patent Application No. 61-25.
It was provided in No. 2427. The laser magnetic immunoassay device according to this application performs the concentration of the magnetic label and the control of the scattered light of the sample mechanically using a permanent magnet or by using an array of a plurality of electromagnets, etc. This is how it was done.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明では、上記のレーザ磁気免疫測定装置が抱える次
の点を問題としている。
The present invention deals with the following problems that the above-mentioned laser magnetic immunoassay device has.

すなわち、上記の装置において永久磁石を用いる機械的
方法では機構が複雑になり、電磁石を用いる方法では該
電磁石の構造が強力な磁場を発生させるのに適していな
いものであるため磁界を用いた磁性体標識体の局部濃縮
に長時間を要する欠点があった。
In other words, in the above device, the mechanical method using a permanent magnet requires a complicated mechanism, and the method using an electromagnet has a structure that is not suitable for generating a strong magnetic field. This method has the disadvantage that it takes a long time to locally concentrate the labeled substance.

そこで本発明は、構成が簡単で、磁性体標識体の局部濃
縮を短時間で行うことのできるレーザ磁気免疫測定装置
を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a laser magnetic immunoassay device that has a simple configuration and can locally concentrate a magnetic label in a short time.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、磁気超微粒子を標識として利用するレーザ磁
気免疫測定法(特願昭61−224567号)を適用し
た免疫測定装置であり、磁性体標識体を含む液体を収容
する検体容器と、該検体容器を挾む一対の電磁石と、直
流と間欠パルスの2種類を発生させ、これを前記電磁石
に供給する電源と、レーザ光を前記検体容器へ導くレー
ザ光照射光学系と、磁性体標識検体によるレーザ光の散
乱光を受光すべく設置された受光系と、この受光系から
間欠パルスに同期した散乱光のみを選択的に検出し、か
つ該散乱光信号を繰り返し加算・平均化処理する電子回
路部とを具備し、前記電磁石対が、磁心の中心の磁界が
最大であって、該磁心の中心に向って磁界が増大するよ
うに、残留磁化の小さな材料を用いて磁心並びに磁極片
が構成されていることを特徴とするものである。
The present invention is an immunoassay device to which a laser magnetic immunoassay method (Japanese Patent Application No. 61-224567) using magnetic ultrafine particles as a label is applied. A pair of electromagnets that sandwich a sample container, a power source that generates two types of direct current and intermittent pulses and supplies them to the electromagnets, a laser beam irradiation optical system that guides laser light to the sample container, and a magnetically labeled sample. A light receiving system is installed to receive the scattered light of the laser beam, and an electronic system that selectively detects only the scattered light synchronized with intermittent pulses from this light receiving system and repeatedly adds and averages the scattered light signals. the electromagnet pair has a magnetic core and a magnetic pole piece made of a material with small residual magnetization so that the magnetic field is maximum at the center of the magnetic core and increases toward the center of the magnetic core. It is characterized by being configured.

本発明の好ましい態様に従うと、前記検体容器は細管で
あって、該細管を前記電磁石対の間に水平に保持する機
構と、前記照射レーザ光を該細管の軸に沿って、該細管
の中心部に誘導する光学系と、前記電磁石対中心部の前
記検体からの散乱光を該検体上方又は下方から取り出し
、光電子増倍管に誘導する光学系と、が具備されている
According to a preferred embodiment of the present invention, the sample container is a capillary, and a mechanism for holding the capillary horizontally between the pair of electromagnets, and a mechanism for directing the irradiation laser beam along the axis of the capillary to the center of the capillary. and an optical system that extracts scattered light from the specimen at the center of the electromagnet pair from above or below the specimen and guides it to a photomultiplier tube.

また、本発明の好ましい別の態様に従うと、前記電源は
定められた時間大きな直流を連続的に出力した後、周期
が0.05Hzから10Hzの範囲内の間欠パルスであ
って、その波高値が前記連続直流値よりも小さく、かつ
DCオフセットのないパルスを出力するように制御され
ている。
According to another preferred aspect of the present invention, after the power source continuously outputs a large direct current for a predetermined period of time, the power source outputs an intermittent pulse having a period within a range of 0.05Hz to 10Hz, the peak value of which is an intermittent pulse. It is controlled to output a pulse that is smaller than the continuous DC value and has no DC offset.

さらに、本発明の好ましい別の態様に従うと、前記電磁
石対は独立励磁あるいは和動励磁が選択できるように、
電流回路と、磁気回路が具備されている。
Furthermore, according to another preferred aspect of the present invention, the electromagnet pair can be selectively excited between independent excitation and summation excitation.
A current circuit and a magnetic circuit are provided.

〔作用〕[Effect]

本発明では、1対の特殊電磁石を使用し、直流励磁と間
欠パルス励磁を切り替えることにより、検体の濃縮と該
検体の散乱光制御を効果的に行った。このため、測定時
間の短縮と測定制度の向上に極めて有利になった。
In the present invention, by using a pair of special electromagnets and switching between DC excitation and intermittent pulse excitation, the concentration of the specimen and the control of the scattered light of the specimen were effectively performed. For this reason, it has become extremely advantageous in shortening measurement time and improving measurement precision.

更に、レーザ散乱光測定の際、上述の発明の磁場の変動
周期に同期した散乱光の検出に方法に加えて、検体から
の散乱光信号を繰り返し加算・平均化処理を行うことに
より、測定感度と測定の再現性を著しく向上することか
出来た。
Furthermore, when measuring laser scattered light, in addition to the above-mentioned method of detecting scattered light synchronized with the variation period of the magnetic field, measurement sensitivity can be improved by repeatedly adding and averaging the scattered light signals from the specimen. We were able to significantly improve the reproducibility of measurements.

〔実施例〕〔Example〕

以下に図面を参照して本発明をより具体的に詳述するが
、以下に示すものは本発明の一実施例に過ぎず、本発明
の技術的範囲を同等制限するものではない。
The present invention will be described in more detail below with reference to the drawings, but what is shown below is only one embodiment of the present invention, and does not similarly limit the technical scope of the present invention.

第1図は本発明の1実施例を説明するレーザ磁気免疫測
定装置の該略図であって、lは検体容器、2は電磁石、
2−1.2−2は電磁石コイル、3−1,3−2は該電
磁石の磁心、4−1,4−2は該電磁石の磁極片、5−
1,5−2は該電磁石の継鉄、6は該電磁石が作る磁束
を制御するための磁束制御片、7は台、100はレーザ
光源(レーザ光照射光学系)、 101は照射レーザ光
線、102は検体からのレーザ散乱光束、+03はスリ
ット、104は該レーザ散乱光束を集光するためのレン
ズ、105は該レーザ散乱光を受光するための光電子増
倍管、106は光電子増倍管の出力を処理する電子回路
部である。前記検体容器1は内径2.5mmの細管であ
り、該細管は前記電磁石対の中心に、水平に取り付けら
れている。前記レーザ光源100は、レーザ光線101
が前記細管の軸に平行に、該細管の中心部を通るように
、設置されている。スリット103、レンズ104、光
電子増倍管105 (これらの部材はレーザ散乱光束を
受光する受光系を構成している)は、前記電磁石対中心
部の前記検体容器!中の磁性体標識体からの散乱光を真
上に受光するように設置されている。前記電磁石対はコ
イル、並びに純鉄製の磁心、磁極片及び継鉄から構成さ
れていて、コイル2−1と2−2は同じ方向に各500
0回巻かれている。前記継鉄5−1,5−2は非磁性材
料で造られた台7上に搭載され、前記電磁石対の磁気空
隙長調整できるように台7上をスライド出来るようにな
っている。前記磁束制御片6はくさび状の形状であり、
前記継鉄5−1と5−2の間に着脱出来るようになって
いる。前記電磁石2のつくる磁束は磁束制御片6で制御
され、該磁束制御片6を継鉄5−1.5−2の間に挿入
すると、前記検体が挿入された磁気空隙部の磁束密度は
増大する。
FIG. 1 is a schematic diagram of a laser magnetic immunoassay device illustrating an embodiment of the present invention, in which l is a sample container, 2 is an electromagnet,
2-1.2-2 is an electromagnet coil, 3-1, 3-2 is a magnetic core of the electromagnet, 4-1, 4-2 is a magnetic pole piece of the electromagnet, 5-
1, 5-2 is a yoke for the electromagnet, 6 is a magnetic flux control piece for controlling the magnetic flux generated by the electromagnet, 7 is a stand, 100 is a laser light source (laser light irradiation optical system), 101 is an irradiation laser beam, 102 is a laser scattered light beam from the specimen, +03 is a slit, 104 is a lens for condensing the laser scattered light beam, 105 is a photomultiplier tube for receiving the laser scattered light, and 106 is a photomultiplier tube. This is an electronic circuit section that processes output. The sample container 1 is a thin tube with an inner diameter of 2.5 mm, and the thin tube is horizontally attached to the center of the electromagnet pair. The laser light source 100 emits a laser beam 101
is placed parallel to the axis of the thin tube and passing through the center of the thin tube. The slit 103, the lens 104, and the photomultiplier tube 105 (these members constitute a light receiving system that receives the laser scattered light beam) are connected to the sample container at the center of the pair of electromagnets. It is installed directly above to receive the scattered light from the magnetic label inside. The electromagnet pair is composed of a coil, a magnetic core made of pure iron, a magnetic pole piece, and a yoke.
It has been wound 0 times. The yokes 5-1 and 5-2 are mounted on a stand 7 made of non-magnetic material, and are slidable on the stand 7 so that the length of the magnetic gap between the electromagnet pairs can be adjusted. The magnetic flux control piece 6 has a wedge shape,
It can be attached and detached between the yoke 5-1 and 5-2. The magnetic flux generated by the electromagnet 2 is controlled by a magnetic flux control piece 6, and when the magnetic flux control piece 6 is inserted between the yoke 5-1, 5-2, the magnetic flux density in the magnetic gap where the specimen is inserted increases. do.

一方、磁束制御片6を継鉄5−1.5−2の間から脱離
すると、前記電磁石対は2つの独立した電磁石として作
用する。磁束制御片6は上述のようにうさび状になって
いるから、該磁束制御片を市用継鉄の間に出し入れする
ことにより、前記電磁石対間の磁気空隙部の磁束密度は
一定範囲内で任意に調節出来る。前記磁極片4−1.4
−2は円錐上の形状が好ましく、該磁極片4−1.4−
2は前記磁心3−1.3−2上にボルトで止められてい
る。
On the other hand, when the magnetic flux control piece 6 is removed from between the yoke 5-1, 5-2, the electromagnet pair acts as two independent electromagnets. Since the magnetic flux control piece 6 is wedge-shaped as described above, by moving the magnetic flux control piece 6 in and out between the city yoke, the magnetic flux density in the magnetic gap between the electromagnet pair is kept within a certain range. It can be adjusted arbitrarily. Said magnetic pole piece 4-1.4
-2 preferably has a conical shape, and the magnetic pole piece 4-1.4-
2 is bolted onto the magnetic core 3-1, 3-2.

第2図は前記電磁石対を励磁する電源及び電源回路を示
したものであって、本電源は、前記磁性体標識体の濃縮
と、濃縮後の該磁性体標識体の駆動に用いられる。前記
電磁石コイル2−1.2−2はスイッチSWIにより接
続または分離することが出来、該スイッチSWIは同時
に直流電源I07の投入スイッチと連動している。一方
、前記電磁石コイル2−2はスイッチSW2を通して、
間欠パルス電源108に接続されている。該スイッチS
W2は前記スイッチSWIと開閉方向が逆であって、ス
イッチSW+を閉じた場合、スイッチS W 2は開か
れる。
FIG. 2 shows a power supply and a power supply circuit for exciting the electromagnet pair, and this power supply is used for concentrating the magnetic label and driving the magnetic label after concentration. The electromagnetic coils 2-1, 2-2 can be connected or disconnected by a switch SWI, which is simultaneously connected to a turn-on switch of the DC power source I07. On the other hand, the electromagnetic coil 2-2 passes through the switch SW2,
It is connected to an intermittent pulse power source 108. The switch S
The opening/closing direction of W2 is opposite to that of the switch SWI, and when the switch SW+ is closed, the switch SW2 is opened.

第3図、第4図は第1図において、前記電磁石対を上方
から見たときの磁極片4−1.4−2と検体容器1の平
面図であって、8は検体対土用のワセリン、9は磁性体
標識体である。第3図は上述の磁性体標識体の濃縮工程
を、第4図は濃縮後の該磁性体標識体の駆動工程を説明
するものである。
3 and 4 are plan views of the magnetic pole pieces 4-1 and 4-2 and the sample container 1 when the electromagnet pair is viewed from above in FIG. 1, and 8 is a plan view of the sample container 1. Vaseline 9 is a magnetic label. FIG. 3 illustrates the above-mentioned concentration process of the magnetic label, and FIG. 4 illustrates the driving process of the magnetic label after concentration.

次に、磁性体標識体の濃縮工程を説明する。まず、第2
図のスイッチSWlを閉じ、前記コイル2−1と2−2
に直流電源107を接続する。この際、第1図の磁束制
御片6は継鉄5−1と5−2の間に挿入される。前記電
磁石対は前記磁極片が円錐上の形状をしているから、該
電磁石を直流励磁すると該電磁石対中心部の磁気空隙部
の磁束密度が最大になる。本実施例では該磁気空隙長5
mmであり、IAを通電すると、該電磁石対中心部で最
大12000Gが得られた。
Next, the step of concentrating the magnetic label will be explained. First, the second
Close the switch SWl in the figure and close the coils 2-1 and 2-2.
A DC power supply 107 is connected to. At this time, the magnetic flux control piece 6 shown in FIG. 1 is inserted between the yokes 5-1 and 5-2. Since the magnetic pole piece of the electromagnet pair has a conical shape, when the electromagnet is excited with direct current, the magnetic flux density in the magnetic gap at the center of the electromagnet pair becomes maximum. In this example, the magnetic gap length 5
mm, and when IA was energized, a maximum of 12,000 G was obtained at the center of the pair of electromagnets.

第3図(a)は濃縮前、(b)は濃縮後の検体容器内部
の磁性体標識体の分布を模式的に示したものである。(
a)図に於いて、前記電磁石対を励磁する前では、検体
容器内部の磁性体標識体は溶液中に一様に分布している
が、該電磁石対を直流励磁した後は、(b)図に示すよ
うに、該磁性体標識体は該磁極片の頂点部の検体容器壁
内面に集められる。
FIG. 3(a) schematically shows the distribution of the magnetic label inside the sample container before concentration, and FIG. 3(b) schematically shows the distribution of the magnetic label inside the sample container after concentration. (
(a) In the figure, before the electromagnet pair is excited, the magnetic label inside the sample container is uniformly distributed in the solution, but after the electromagnet pair is DC excited, (b) As shown in the figure, the magnetic label is collected on the inner surface of the sample container wall at the apex of the magnetic pole piece.

次に、濃縮後の該磁性体標識体の駆動工程を説明する。Next, the process of driving the magnetic label after concentration will be explained.

第2図のスイッチSWIを開き、スイッチSW2を閉じ
、間欠パルス電源108を前記電磁石2−2に接続する
。この際、第1図の磁束制御片6は継鉄5−1と5−2
の間から除去し、該電磁石コイル2−1と2−2を切り
放す。
The switch SWI in FIG. 2 is opened, the switch SW2 is closed, and the intermittent pulse power source 108 is connected to the electromagnet 2-2. At this time, the magnetic flux control pieces 6 in FIG.
Then, the electromagnetic coils 2-1 and 2-2 are cut off.

第4図(a)は濃縮後の該磁性体標識体の駆動工程にお
いて、前記電磁石コイル2−1をパルス波高値0.2 
A、周期0.2Hzの間欠パルスで励磁中の磁性体標識
体の分布を、(b)は該電磁石コイルを非励磁中の磁性
体標識体の分布を、模式的に示したものである。すなわ
ち、(a)においては、該磁性体標識体は該磁極片の頂
点部の検体容器壁内面に集中分布しているが、(b)に
おいては、前記磁心3−1.3−2及び該磁極片の残留
磁化が小さいため、電磁石対中心部の磁界はほとんど存
在しない状況になり、該磁性体標識体は溶液中をブラウ
ン運動により該検体容器壁面から周囲に拡散するから、
時間と共に該磁極片頂点部を中心として、検体容器内部
に一様に分布することになる。
FIG. 4(a) shows that the electromagnetic coil 2-1 is operated at a pulse height of 0.2 in the step of driving the magnetic label after concentration.
A schematically shows the distribution of magnetic labels while being excited by intermittent pulses with a period of 0.2 Hz, and (b) schematically shows the distribution of magnetic labels while the electromagnetic coil is not excited. That is, in (a), the magnetic label is concentrated and distributed on the inner surface of the sample container wall at the apex of the magnetic pole piece, but in (b), the magnetic label is concentrated on the inner surface of the sample container wall at the apex of the magnetic pole piece. Since the residual magnetization of the magnetic pole pieces is small, there is almost no magnetic field between the electromagnet pairs at the center, and the magnetic label diffuses from the wall surface of the sample container to the surrounding area by Brownian motion in the solution.
Over time, the particles will be uniformly distributed inside the sample container centering on the apex of the magnetic pole piece.

従って、曲用細間の軸沿って、該細管の中心部に誘導さ
れた前記レーザ光線は、該電磁石対中心部の検体により
散乱され、前記パルス電源の周期に対応して散乱光強度
は変化する。検体からの散乱光は該検体容器上方又は下
方から取り出すことが出来ろ。
Therefore, the laser beam guided to the center of the narrow tube along the axis of the curved narrow tube is scattered by the electromagnet and the specimen at the center, and the intensity of the scattered light changes in accordance with the period of the pulsed power source. do. Scattered light from the specimen can be taken out from above or below the specimen container.

前記検体容器1は、好ましくはレーザ光線径よりも口径
の大きな細管であって、該細管は抗原抗体反応後の検体
をマイクロシリンジに取り付けられた該細管の内部に吸
引した後、その一方の口をワセリン等で封止すれば、そ
の後の検体の取扱に便利である。該細管は前記電磁石対
の中心部に水平に取り付けられることが好ましい。その
理由は、該細管を垂直に保持した場合、該電磁石コイル
を非励磁にすると前記磁極片の中心部に濃縮された該磁
性体標識体が、自らの重力で該磁極片の中心部から落下
するため、散乱中心部が前記パルス励磁毎に上下する欠
点があるためである。
The sample container 1 is preferably a thin tube with a diameter larger than the diameter of the laser beam, and after sucking the sample after antigen-antibody reaction into the inside of the thin tube attached to a microsyringe, the sample container 1 is a thin tube having one opening thereof. If the tube is sealed with Vaseline or the like, it will be convenient for subsequent handling of the specimen. Preferably, the capillary is mounted horizontally at the center of the electromagnet pair. The reason for this is that when the thin tube is held vertically and the electromagnetic coil is de-energized, the magnetic label concentrated in the center of the magnetic pole piece falls from the center of the magnetic pole piece under its own gravity. This is because there is a drawback that the scattering center moves up and down with each pulse excitation.

前記パルス励磁は周期が0.05HzからlOH2の範
囲が好ましい。0.05Hz以下では測定に長時間を要
すること、10Hz以上では磁性体標識体が磁界変化に
追従できないためである。また、該パルスは波高値か直
流励磁電流値より小であって、DCオフセットがないこ
とが好ましい。DCオフセットが存在すると、該磁性体
標識体が常に市用磁極片中心部の細管の内壁にトラップ
されたままになり、散乱光強度変動が生じなくなるから
である。
The period of the pulse excitation is preferably in the range of 0.05 Hz to 1OH2. This is because at 0.05 Hz or less, a long time is required for measurement, and at 10 Hz or more, the magnetic label cannot follow changes in the magnetic field. Further, it is preferable that the pulse has a peak value smaller than the DC excitation current value and has no DC offset. This is because if a DC offset exists, the magnetic label always remains trapped on the inner wall of the thin tube at the center of the commercial magnetic pole piece, and no variation in scattered light intensity occurs.

また、前記電磁石対は濃縮と磁界駆動を効率的に行うた
め、2つの電磁石コイルは独立励磁と和動励磁が選択で
きるように、例えば、本実施例のような電流回路と、磁
気回路が具備されていることが好ましい。
In addition, in order for the electromagnet pair to efficiently perform concentration and magnetic field drive, the two electromagnetic coils are equipped with, for example, a current circuit and a magnetic circuit as in this embodiment so that independent excitation and summative excitation can be selected. It is preferable that the

前記検体からの散乱光は光電子増倍管105によって受
光される。光電子増倍管105の出力は電子回路部10
6に供給され、電子回路部106は、間欠パルスに同期
した散乱光のみを選択的に検出し、かつ該散乱光信号を
繰り返し加算・平均化処理する。これにより、ピコグラ
ム台の極微量の磁性体標識体を検出することができる。
Scattered light from the specimen is received by a photomultiplier tube 105. The output of the photomultiplier tube 105 is transmitted to the electronic circuit section 10
6, the electronic circuit unit 106 selectively detects only the scattered light synchronized with the intermittent pulse, and repeatedly adds and averages the scattered light signals. This makes it possible to detect extremely small amounts of magnetic labels on the order of picograms.

〔発明の効果〕〔Effect of the invention〕

以上詳述のように、本発明に従うレーザ磁気免疫測定装
置は、1対の特殊電磁石を使用し、直流励磁と間欠パル
ス励磁を切り替え、信号成分のみを選択的に検出ずろら
のであるから、構成が簡単で測定時間の短縮と測定制変
の向上を図ることができる。
As detailed above, the laser magnetic immunoassay device according to the present invention uses a pair of special electromagnets, switches between DC excitation and intermittent pulse excitation, and selectively detects only signal components. It is easy to use and can shorten measurement time and improve measurement variation.

本発明は、特に検査の自動化に適した、超高感度な免疫
測定装置を提供するものであるので、各種のウィルス、
癌等の精密検査等に適用すれば、癌あるいはウィルス性
疾患等の早期診断が可能となり、有効な早期治療を的確
に実施することが可能となる。また、抗原抗体反応の他
に、従来RIA法が適用されているペプチドホルモン等
の種々のホルモンあるいは種々の酵素、ビタミン、薬剤
などの測定にも応用することが可能である。
The present invention provides an ultra-sensitive immunoassay device that is particularly suitable for test automation, so it can be used to detect various viruses,
If applied to detailed examinations of cancer, etc., it becomes possible to diagnose cancer or viral diseases at an early stage, and it becomes possible to accurately implement effective early treatment. Furthermore, in addition to antigen-antibody reactions, it can also be applied to the measurement of various hormones such as peptide hormones, various enzymes, vitamins, drugs, etc., to which the RIA method has been conventionally applied.

このように、本発明か医学・医療の分野で果たす効果は
計り知れない。
As described above, the effects of the present invention in the medical and medical fields are immeasurable.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を説明するためのものであって
、第1図は本発明によろレーザ磁気免疫測定装置の概略
構成図、第2図は電磁石対を励磁する電源の回路図、第
3図(a) 、 (b)、第4図(a) 、 (b)は
第1図において電磁石対を上方から見たときの磁極片と
検体容器の平面図であって、第3図(a)。 (b)は磁性体標識体の濃縮工程を示す説明図、第4図
(a) 、 (b)は濃縮後の磁性体標識体の駆動工程
を示す説明図である。 ■・・・・・・検体容器、2・・・・・・電磁石、3−
1.3−2・・・・・・磁心、4−1.4−2−・・・
・磁極片、9・・・・・・磁性体櫟識体、100・・・
・・・レーザ光源(レーザ光照射光学系)、103・・
・・・・スリット(受光系)、IO2・・・・・・レン
ズ(受光系)、105・・・・・・光電子増倍管(受光
系)、106・・・・・・電子回路部、107,108
・・・・・・電源。 出願人   日本電信電話株式会社 第2図 コイル2−1           コイル2−210
7.108 :電源
The drawings are for explaining one embodiment of the present invention, and FIG. 1 is a schematic configuration diagram of a laser magnetic immunoassay device according to the present invention, and FIG. 2 is a circuit diagram of a power source that excites a pair of electromagnets. 3(a), (b), and 4(a), (b) are plan views of the magnetic pole piece and sample container when the electromagnet pair is viewed from above in FIG. (a). 4(b) is an explanatory diagram showing the step of concentrating the magnetically labeled material, and FIGS. 4(a) and 4(b) are explanatory diagrams showing the driving step of the magnetically labeled material after concentration. ■...Sample container, 2...Electromagnet, 3-
1.3-2...Magnetic core, 4-1.4-2-...
・Magnetic pole piece, 9...Magnetic material, 100...
...Laser light source (laser light irradiation optical system), 103...
...Slit (light receiving system), IO2... Lens (light receiving system), 105... Photomultiplier tube (light receiving system), 106... Electronic circuit section, 107,108
······power supply. Applicant Nippon Telegraph and Telephone Corporation Figure 2 Coil 2-1 Coil 2-210
7.108: Power supply

Claims (4)

【特許請求の範囲】[Claims] (1)磁性体標識体を含む液体を収容する検体容器と、
該検体容器を挾む一対の電磁石と、直流と間欠パルスの
2種類を発生させ、これを前記電磁石に供給する電源と
、レーザ光を前記検体容器へ導くレーザ光照射光学系と
、磁性体標識検体によるレーザ光の散乱光を受光すべく
設置された受光系と、この受光系から間欠パルスに同期
した散乱光のみを選択的に検出し、かつ該散乱光信号を
繰り返し加算・平均化処理する電子回路部とを具備して
なり、前記電磁石対は磁心の中心の磁界が最大であって
、該磁心の中心に向って磁界が増大するように、残留磁
化の小さな材料を用いて、該磁心並びに磁極片が構成さ
れていることを特徴とするレーザ磁気免疫測定装置。
(1) A sample container containing a liquid containing a magnetic label;
A pair of electromagnets that sandwich the sample container, a power source that generates two types of direct current and intermittent pulses and supplies them to the electromagnets, a laser beam irradiation optical system that guides laser light to the sample container, and a magnetic label. A light receiving system is installed to receive the scattered light of the laser light by the specimen, and from this light receiving system, only the scattered light synchronized with the intermittent pulse is selectively detected, and the scattered light signals are repeatedly added and averaged. The electromagnet pair is made of a material with small residual magnetization so that the magnetic field at the center of the magnetic core is maximum and increases toward the center of the magnetic core. and a magnetic pole piece.
(2)前記検体容器は細管であって、該細管を前記電磁
石対の間に水平に保持する機構と、前記照射レーザ光を
該細管の軸に沿って、該細管の中心部に誘導する光学系
と、前記電磁石対中心部の前記検体からの散乱光を該検
体上方又は下方から取り出し、光電子増倍管に誘導する
光学系と、を具備することを特徴とする特許請求範囲の
第1項記載のレーザ磁気免疫測定装置。
(2) The sample container is a thin tube, and includes a mechanism for holding the thin tube horizontally between the pair of electromagnets, and an optical system for guiding the irradiated laser beam to the center of the thin tube along the axis of the thin tube. and an optical system that extracts scattered light from the specimen at the center of the pair of electromagnets from above or below the specimen and guides it to a photomultiplier tube. The laser magnetic immunoassay device described.
(3)前記電源は定められた時間大きな直流を連続的に
出力した後、周期が0.05Hzから10Hzの範囲内
の間欠パルスであって、その波高値が前記連続直流値よ
りも小さく、かつDCオフセットのないパルスを出力す
るように制御されていることを特徴とする特許請求範囲
の第1項記載のレーザ磁気免疫測定装置。
(3) After the power supply continuously outputs a large direct current for a predetermined period of time, the power supply outputs an intermittent pulse with a period in the range of 0.05Hz to 10Hz, the peak value of which is smaller than the continuous DC value, and The laser magnetic immunoassay device according to claim 1, wherein the device is controlled to output a pulse without DC offset.
(4)前記電磁石対は独立励磁あるいは和動励磁が選択
できるように、電流回路と、磁気回路が具備されている
ことを特徴とする特許請求範囲の第1項記載のレーザ磁
気免疫測定装置。
(4) The laser magnetism immunoassay device according to claim 1, wherein the electromagnet pair is provided with a current circuit and a magnetic circuit so that independent excitation or summation excitation can be selected.
JP15279187A 1986-09-22 1987-06-19 Laser magnetic immunoassay device Expired - Lifetime JPH07122636B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP15279187A JPH07122636B2 (en) 1987-06-19 1987-06-19 Laser magnetic immunoassay device
DE3751865T DE3751865T2 (en) 1986-09-22 1987-09-22 LASER MAGNETIC IMMUNITY TEST METHOD AND DEVICE THEREFOR
EP87906109A EP0287665B1 (en) 1986-09-22 1987-09-22 Laser magnetic immunoassay method and apparatus therefor
US07/221,248 US5252493A (en) 1986-09-22 1987-09-22 Laser magnetic immunoassay method and apparatus therefor
PCT/JP1987/000694 WO1988002118A1 (en) 1986-09-22 1987-09-22 Laser magnetic immunoassay method and apparatus therefor
US07/915,022 US5238810A (en) 1986-09-22 1992-07-15 Laser magnetic immunoassay method and apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15279187A JPH07122636B2 (en) 1987-06-19 1987-06-19 Laser magnetic immunoassay device

Publications (2)

Publication Number Publication Date
JPS63315951A true JPS63315951A (en) 1988-12-23
JPH07122636B2 JPH07122636B2 (en) 1995-12-25

Family

ID=15548227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15279187A Expired - Lifetime JPH07122636B2 (en) 1986-09-22 1987-06-19 Laser magnetic immunoassay device

Country Status (1)

Country Link
JP (1) JPH07122636B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236824A (en) * 1988-04-26 1993-08-17 Nippon Telegraph And Telephone Corporation Laser magnetic immunoassay method and method by a magnetophoresis apparatus therefor
US5238811A (en) * 1988-04-26 1993-08-24 Nippon Telegraph And Telephone Corporation Laser magnetic immunoassay method and apparatus therefor and superparamagnetic material-labeled body and method for the manufacture of same
US5340749A (en) * 1988-04-26 1994-08-23 Nippon Telegraph And Telephone Corporation Method for collecting and preparing specimens for immune reactions

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236824A (en) * 1988-04-26 1993-08-17 Nippon Telegraph And Telephone Corporation Laser magnetic immunoassay method and method by a magnetophoresis apparatus therefor
US5238811A (en) * 1988-04-26 1993-08-24 Nippon Telegraph And Telephone Corporation Laser magnetic immunoassay method and apparatus therefor and superparamagnetic material-labeled body and method for the manufacture of same
US5340749A (en) * 1988-04-26 1994-08-23 Nippon Telegraph And Telephone Corporation Method for collecting and preparing specimens for immune reactions
US5498550A (en) * 1988-04-26 1996-03-12 Nippon Telegraph & Telephone Corporation Device for collecting or preparing specimens using magnetic micro-particles

Also Published As

Publication number Publication date
JPH07122636B2 (en) 1995-12-25

Similar Documents

Publication Publication Date Title
WO1988002118A1 (en) Laser magnetic immunoassay method and apparatus therefor
US5498550A (en) Device for collecting or preparing specimens using magnetic micro-particles
US5238810A (en) Laser magnetic immunoassay method and apparatus thereof
US4222744A (en) Assay for ligands
KR20110089194A (en) Membrane-based assays using time-resolved fluorescence
KR20050062531A (en) Membrane-based assays using time-resolved fluorescence
US5238811A (en) Laser magnetic immunoassay method and apparatus therefor and superparamagnetic material-labeled body and method for the manufacture of same
JP2683172B2 (en) Sample measuring method and sample measuring device
US5236824A (en) Laser magnetic immunoassay method and method by a magnetophoresis apparatus therefor
EP0339623B1 (en) Laser magnetic immunoassay method and apparatus therefor
JPH01109263A (en) Method and apparatus for laser magnetic immunoassay
JP2502546B2 (en) Laser magnetic immunoassay method
JPS63315951A (en) Laser magnetic immunoassay instrument
JP2551627B2 (en) Laser magnetic immunoassay device
JPH02151766A (en) Measurement of laser magnetic immunity
JPS63302367A (en) Method and apparatus for measuring immunity by magnetism
JP2509227B2 (en) Laser magnetic immunoassay device
JPS63188766A (en) Method and instrument for laser magnetic immunoassay
JPH07111429B2 (en) Laser magnetic immunoassay
JP2599175B2 (en) Laser magnetic immunoassay method and measuring apparatus, superparamagnetic label used for laser magnetic immunoassay, and method for producing the same
JPS63106559A (en) Method and apparatus for laser magnetic immunoassay
JPH0820450B2 (en) Laser magnetic immunoassay method and apparatus
JPH07111428B2 (en) Laser magnetic immunoassay method and measuring apparatus
JP2502148B2 (en) Non-separable laser magnetic immunoassay method and measuring apparatus
JP3353978B2 (en) Optical specific affinity measuring method and specific affinity measuring device used therein

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071225

Year of fee payment: 12