JP3353978B2 - Optical specific affinity measuring method and specific affinity measuring device used therein - Google Patents

Optical specific affinity measuring method and specific affinity measuring device used therein

Info

Publication number
JP3353978B2
JP3353978B2 JP30519293A JP30519293A JP3353978B2 JP 3353978 B2 JP3353978 B2 JP 3353978B2 JP 30519293 A JP30519293 A JP 30519293A JP 30519293 A JP30519293 A JP 30519293A JP 3353978 B2 JP3353978 B2 JP 3353978B2
Authority
JP
Japan
Prior art keywords
substance
luminescence
specific affinity
reagent
insoluble substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30519293A
Other languages
Japanese (ja)
Other versions
JPH07159407A (en
Inventor
正人 木村
隆 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP30519293A priority Critical patent/JP3353978B2/en
Publication of JPH07159407A publication Critical patent/JPH07159407A/en
Application granted granted Critical
Publication of JP3353978B2 publication Critical patent/JP3353978B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えば、抗原抗体反応
や核酸結合反応等の特異親和性反応により生じる化学発
光を検出する光学的特異親和性測定方法及びこれに用い
られる特異親和性測定装置に関する。
The present invention relates to, for example, an antigen-antibody reaction.
For measuring optical specific affinity for detecting chemiluminescence generated by a specific affinity reaction such as nucleic acid binding reaction and nucleic acid binding reaction, and a specific affinity measuring device used for the method.

【0002】[0002]

【従来の技術】生体関連物質の測定は、環境衛生の分野
や医療の分野で日常検査として実施されている。特に医
療の分野では、疾病の特定や疾病に対する治療効果の判
定等の目的で、数多くの施設で数多くの種類の検査が実
施されている。中でも、最近公衆衛生上の問題となって
いる後天性免疫不全症候群(AIDS)等の感染症や、
従来特定が困難であった癌関連物質等も、特異親和性物
質による反応の一つである抗原抗体反応を用いることで
測定することが可能となっている。AIDS等で代表さ
れる感染症の診断も抗原抗体反応を用いて検出すること
は可能であるが、他に感染性微生物の遺伝子であるDN
AあるいはRNAをその核酸の特徴部分と結合する相補
核により測定することも可能である。
2. Description of the Related Art Measurement of biological substances is carried out as a daily test in the fields of environmental hygiene and medical care. In particular, in the medical field, many types of tests are performed at many facilities for the purpose of identifying a disease, determining a therapeutic effect on the disease, and the like. In particular, infectious diseases such as acquired immunodeficiency syndrome (AIDS), which have recently become public health problems,
Cancer-related substances, etc., which have been difficult to identify in the past, can be measured by using an antigen-antibody reaction, which is one of the reactions with a specific affinity substance. Diagnosis of infectious diseases represented by AIDS and the like can be detected using an antigen-antibody reaction.
It is also possible to measure A or RNA by a complementary nucleus binding to a characteristic portion of the nucleic acid.

【0003】この核酸と相補核酸の反応も特異親和性物
質による反応の一つであるが、他にはホルモンの一つで
あるインシュリンとインシュリンリセプタの反応のよう
なリセプタ反応もその一つとして知られている。
[0003] The reaction between a nucleic acid and a complementary nucleic acid is one of the reactions using a specific affinity substance. In addition, a receptor reaction such as a reaction between insulin, which is one of the hormones, and an insulin receptor is also known. Have been.

【0004】上述したような特異親和性反応を用いた分
析方法は数多知られているが、それらの全てに共通する
ことは、特異親和性物質と結合した物質の量を測定しな
ければならないということである。この物質の測定の方
法としては、特異親和性物質と被結合物質とが結合する
ことにより、それ自身あるいはそれに結合しているトレ
−サの性質が変化することを利用して、結合した被結合
物質量を求める均一測定法(ホモジニアス法)と、何ら
かの方法により特異親和性物質と被測定物質の複合体を
不溶性にした後、特異親和性物質と結合した被結合物質
と結合していないそれとを分離するB(bound) /F(Fre
e)分離の操作を必要とする不均一法(ヘテロジニアス
法)に大別される。
There are many known analytical methods using the specific affinity reaction as described above, but all of them have in common that the amount of a substance bound to a specific affinity substance must be measured. That's what it means. As a method for measuring this substance, the fact that the specific affinity substance and the substance to be bound bind to each other and change the properties of the tracer bound to the substance itself or the substance to be bound is used. A homogeneous measurement method (homogeneous method) for determining the amount of a substance, and a method in which the complex of the specific affinity substance and the substance to be measured are made insoluble by some method, and then the substance not bound to the substance bound to the specific affinity substance B (bound) / F (Fre
e) It is broadly classified into a heterogeneous method requiring a separation operation.

【0005】これらのうち不均一法は、特異親和性物質
と被結合物質の複合体に、更に複合体と結合する特異的
結合物質を加え、複合体を大きな分子にすることで不溶
性にする方法が古くから知られているが、信頼性に欠け
るため現在ではあまり用いられなくなっている。
[0005] Among these, the heterogeneous method is a method of adding a specific binding substance that binds to a complex with a specific affinity substance and a substance to be bound, and making the complex insoluble by making the complex a large molecule. Has been known for a long time, but is not widely used today due to lack of reliability.

【0006】最近では、この方法に代わり、予め不溶性
物質に特異親和性物質を結合させておき、不溶性物質を
反応液と分離することで結合した被結合物質と、結合し
ていないそれとを分離するB/F分離を行う方法が一般
的である。
In recent years, instead of this method, a specific affinity substance is previously bound to an insoluble substance, and the bound substance is separated from the unbound substance by separating the insoluble substance from the reaction solution. A method of performing B / F separation is general.

【0007】また、不溶性物質としてビ−ズ、瀘紙等の
ような反応管以外の物質を用いる方法と、反応管自身を
用いる方法が知られている。更に、トレ−サとして、古
くは放射性同位元素を用いた方法が一般的であった。そ
して、近年は非放射性物質である酵素を用いる酵素免疫
分析方法(EIA)が普及したが、更に感度を上げるた
めに発光物質をトレ−サとして用いる方法が近年普及し
つつあり、例えば特開平2−245662号公報に示さ
れている。
Further, a method using a substance other than the reaction tube such as a bead or a filter paper as an insoluble substance and a method using the reaction tube itself are known. Further, as a tracer, a method using a radioactive isotope has been generally used in the past. In recent years, an enzyme immunoassay (EIA) using an enzyme which is a non-radioactive substance has become widespread. In order to further increase sensitivity, a method using a luminescent substance as a tracer has been spreading recently. No. 245662.

【0008】[0008]

【発明が解決しようとする課題】化学発光物質のいくつ
かは、対応する基質物質の存在下で瞬間的に強い発光を
生じる。かかる化学発光物質をトレ−サとして不溶性物
質(例えば、反応容器または担体粒子等)の表面に結合
させた後に発光させる方法では、不溶性物質の表面だけ
で発光するため、その発光量を効率的に測定することは
困難であった。特に不溶性物質として微小なビ−ズを用
いる際には、浮遊状態の微粒子の表面からの発光が微粒
子そのものに反射されるため、正確に発光量を測定する
ことが困難であるという欠点がある。また、使用してい
る微粒子を反射の少ない微粒子とすると逆に消光(クエ
ンチング)という現象が発生するため、いずれの場合も
発光量の正確な計測は困難だった。
Some of the chemiluminescent substances give rise to an intense luminescence instantaneously in the presence of the corresponding substrate substance. In the method of emitting light after binding such a chemiluminescent substance as a tracer to the surface of an insoluble substance (for example, a reaction vessel or carrier particles), light is emitted only on the surface of the insoluble substance. It was difficult to measure. In particular, when a fine bead is used as the insoluble substance, the luminescence from the surface of the floating fine particles is reflected by the fine particles themselves. In addition, if the used fine particles are particles having a low reflection, a phenomenon called quenching occurs. On the contrary, it is difficult to accurately measure the light emission amount in any case.

【0009】本発明の目的とするところは、発光光量を
正確に検出することができ測定精度の高い光学的特異親
和性測定方法及びこれに用いられる特異親和性測定装置
を提供することにある。
[0009] It is an object of the present invention, the measurement accuracy high optical specificity parents can accurately detect the emitted light amount
An object of the present invention is to provide a method for measuring compatibility and a specific affinity measuring device used for the method.

【0010】[0010]

【課題を解決するための手段および作用】上記目的を達
成するために請求項1の発明は、不溶性物質を用いて得
られた特異親和性結合複合物に、B/F分離の後に第1
試薬を添加して不溶性物質に結合した被発光誘発物質を
解離させ、被発光誘発物質に第2試薬を添加し被発光誘
発物質を化学発光させて光量を検出する光学的免疫測定
方法において、被発光誘発物質を解離させたのち、浮遊
状態にある不溶性物質を非浮遊状態とし、不溶性物質と
被発光誘発物質とを分離して被発光誘発物質を化学発光
させる。
In order to achieve the above object, the invention of claim 1 is to provide a specific affinity binding complex obtained by using an insoluble substance with a first affinity binding compound after B / F separation.
In an optical immunoassay method, a reagent is added to dissociate the luminescence-inducing substance bound to the insoluble substance, and the second reagent is added to the luminescence-inducing substance, and the luminescence-inducing substance is chemiluminescent to detect the amount of light. After dissociating the luminescence-inducing substance, the insoluble substance in a floating state is made non-floating, and the insoluble substance and the luminescence-inducing substance are separated to cause the luminescence-inducing substance to emit chemiluminescence.

【0011】また、請求項3の発明は、不溶性物質を用
いて得られた特異親和性結合複合物に、B/F分離の後
に第1試薬を添加して不溶性物質に結合した被発光誘発
物質を解離させ、被発光誘発物質に第2試薬を添加し被
発光誘発物質を化学発光させて光量を検出する免疫測定
装置において、被発光誘発物質と解離して浮遊状態にあ
る不溶性物質を非浮遊状態とし、不溶性物質と被発光誘
発物質とを分離する不溶性物質分離手段を設けた。
Further, the invention of claim 3 provides a luminescence-inducing substance which is obtained by adding a first reagent to a specific affinity binding complex obtained by using an insoluble substance after B / F separation and binding to the insoluble substance. Is dissociated, the second reagent is added to the luminescence-inducing substance, and the luminescence-inducing substance is chemiluminescent to detect the amount of light. In this state, an insoluble substance separating means for separating the insoluble substance and the luminescence inducing substance was provided.

【0012】そして、これらの発明は、発光光量を正確
に検出することができ、測定精度を向上できるようにし
た。アリジニウム化合物はアルカリ性下過酸化水素の存
在で急激に発光することが知られている。しかし、過酸
化水素はアルカリ性では不安定であるため、アルカリ溶
液と過酸化水素溶液を使用直前に混合し、これをアクリ
ジニウム化合物が結合している微小ビ−ズに添加する方
法が自動化の方法としては一般的である。勿論、初めの
試薬を予めアクリジニウム化合物が結合している不溶性
物質に添加し、充分攪拌した後、次の試薬を添加する方
法も半自動化法としては良く知られている。
In these inventions, the amount of emitted light can be accurately detected, and the measurement accuracy can be improved. It is known that an aridinium compound emits light rapidly in the presence of hydrogen peroxide under alkaline conditions. However, since hydrogen peroxide is unstable under alkaline conditions, a method of mixing an alkali solution and a hydrogen peroxide solution immediately before use and adding this to a microbead to which an acridinium compound is bound has been used as an automation method. Is common. Of course, a method of adding the first reagent to an insoluble substance to which an acridinium compound is bound in advance, stirring the mixture thoroughly, and then adding the next reagent is well known as a semi-automated method.

【0013】今回、アクリジニウム化合物としてアクリ
ジニウムエステル化合物を用いることで化学発光の現象
を引き起こす前に酸性下でこのエステル結合を開裂させ
ることができることに気付き、このアクリジニウムエス
テル化合物を微小ビ−ズから解離させ、溶液の上清液中
に溶解している状態のアクリジニウム化合物を発光させ
ることが可能となった。
At this time, it was noticed that by using an acridinium ester compound as an acridinium compound, the ester bond could be cleaved under acidity before causing the phenomenon of chemiluminescence. And the acridinium compound dissolved in the supernatant of the solution can emit light.

【0014】具体的には、アクリジニウムエステル化合
物が結合している応磁性の微小な不溶性物質(磁性ビ−
ズ)に過酸化水素を含む酸性溶液を添加し、攪拌してア
クリジニウム化合物を不溶性物質より解離させた後、電
磁石により不溶性物質を一ケ所に集め、上清液にアルカ
リ溶液を添加し、アクリジニウム化合物を発光させる。
そして、その発光量を光検出器により検出する。
Specifically, a susceptible microinsoluble substance (magnetic beads) to which an acridinium ester compound is bound is attached.
), Add an acidic solution containing hydrogen peroxide, stir to dissociate the acridinium compound from the insoluble substance, collect the insoluble substance in one place with an electromagnet, add the alkaline solution to the supernatant, add the acridinium compound To emit light.
Then, the light emission amount is detected by the photodetector.

【0015】磁性粒子を用いる場合、磁気的に容器内壁
に引き寄せた状態で容易に反応容器を洗浄したり、光量
測定できるので、任意の粒径であっても効率よく処理で
き、且つ微粒子による光散乱・吸収等の測定上の障害を
有効に回避できる点で好ましい。磁性流体を含まない懸
濁性の微粒子を用いる場合には、適宜のフィルタによる
分離が可能な粒径または遠心分離が可能な比重等を有し
ているものを用いればよい。場合によっては、中空粒子
等の低比重粒子を用いるか、或いは発光試薬の添加時点
で、反応容器中が適宜の高比重な液体を保持しているよ
うに調整することにより、微粒子が発光反応工程にて選
択的に液中に実質的に懸濁せずに安定に水面付近に浮遊
するようにすれば、遠心処理または磁気的操作を経るこ
となく、測定時の粒子の影響を有効に除きながら横方向
または下方から光量測定することができる点で好まし
い。
When magnetic particles are used, the reaction container can be easily washed and the amount of light can be easily measured while being magnetically attracted to the inner wall of the container. This is preferable because obstacles in measurement such as scattering and absorption can be effectively avoided. When using suspending fine particles that do not contain a magnetic fluid, those having a particle size that can be separated by an appropriate filter or a specific gravity that can be centrifuged may be used. In some cases, fine particles are used in the luminescence reaction process by using low specific gravity particles such as hollow particles, or by adjusting the reaction vessel to hold an appropriate high specific gravity liquid at the time of addition of the luminescent reagent. If it is made to float stably near the surface of the water without being substantially suspended in the liquid, it is possible to effectively eliminate the effects of particles during measurement without going through centrifugation or magnetic operation. This is preferable in that the amount of light can be measured from the lateral direction or from below.

【0016】また、微粒子に固相化した試薬を用いる以
外にも、透明部材からなる反応容器の内壁面に抗体等を
固相化したものや、0.5mm 以上の直径もしくは長さから
なる球状その他の形状の試験片を使用しても同様な作用
効果を奏する。一方、抗体等を固相化した反応容器を用
いる場合には、B/F分離を含む免疫反応の間、微粒子
等の固相を吸引してしまう恐れがないので、洗浄液を簡
単かつ十分に行えるとともに、検出工程において微粒子
等の固相に邪魔されることなく測定できるという利点が
ある点で好ましい。
In addition to the use of a reagent immobilized on fine particles, a reaction vessel made of a transparent member having an antibody or the like immobilized on the inner wall thereof, or a spherical or other material having a diameter or length of 0.5 mm or more. The same operation and effect can be obtained by using a test piece having the shape of On the other hand, when a reaction vessel having an antibody or the like immobilized thereon is used, the washing solution can be simply and sufficiently used because there is no danger of aspirating the solid phase such as fine particles during the immunoreaction including B / F separation. In addition, it is preferable in that the measurement can be performed without being disturbed by a solid phase such as fine particles in the detection step.

【0017】必要ならば、フロ−チュ−ブの途中の流路
内壁に抗体等を固相化してチュ−ブ内の流速を制御する
ことにより、円滑に反応とB/F分離とを行った後、上
述した酸性溶液と共にアクリジニウム化合物を透明度の
高い測定セルに流入させることで受光効率の向上を図る
こともできる。
If necessary, the reaction and B / F separation were carried out smoothly by immobilizing an antibody or the like on the inner wall of the flow path in the middle of the tube and controlling the flow rate in the tube. Thereafter, the acridinium compound is caused to flow into the highly transparent measurement cell together with the above-mentioned acidic solution, so that the light receiving efficiency can be improved.

【0018】本発明において、固相化されたアクリジニ
ウム誘導体は、微粒子または反応容器壁面から遊離して
液中に拡散して均一な発光を生じる。従って、必要なら
ば、拡散を早めるために反応容器中の液体を攪拌するよ
うに、適宜の強度の振動を加えたり、適宜の注入速度・
注入角度でもって発光用試薬を注入するなどの処置を行
ってもよい。また、測定原理はサンドイッチ法でも競合
法でも構わない。アクリジニウム誘導体の発光反応を開
始させる発光用試薬としては、過酸化水素が挙げられ
る。一般に、アクリジニウム誘導体および過酸化水素に
よる発光反応は所定のアルカリ条件下では僅かに発光す
るが、酸性条件下では強く発光する。
In the present invention, the solidified acridinium derivative is released from the fine particles or the wall surface of the reaction vessel and diffuses into the liquid to generate uniform light emission. Therefore, if necessary, vibration of an appropriate intensity is applied so as to agitate the liquid in the reaction vessel to accelerate diffusion, or an appropriate injection speed and
A treatment such as injecting a luminescent reagent at an injection angle may be performed. The principle of measurement may be a sandwich method or a competitive method. As a luminescence reagent for initiating a luminescence reaction of an acridinium derivative, hydrogen peroxide can be mentioned. Generally, the luminescence reaction by the acridinium derivative and hydrogen peroxide emits light slightly under a predetermined alkaline condition, but emits strong light under an acidic condition.

【0019】本発明の方法において、アクリジニウムエ
ステル化合物は強酸化条件でエステル結合が切れ、場合
によってはタンパクの結合部分から解離することによ
り、液中に速やかに拡散するものである。従って、強酸
条件をもたらすには、公知の強酸性化合物、例えば、塩
酸、硫酸、硝酸等のいずれか又は適宜混合液を用いて、
上記拡散作用が得られる程度のpHを適宜選択すればよ
い。具体的には0.1規定(N)の硝酸を含有する溶液
を反応後の支持体に接触させると、数秒程度で充分量の
アクリジニウムエステル化合物を解離して略飽和傾向と
なる。かかる強酸条件の有効pHは、3以下、好ましく
は2以下である。本発明において、アクリジニウムエス
テル化合物の種類としては、種々のアクリジニウムエス
テル誘導体であっても強酸下条件でエステル結合が切れ
る訳であるから、特に限定されない。
In the method of the present invention, the acridinium ester compound is rapidly diffused into a liquid by breaking an ester bond under strong oxidizing conditions and, in some cases, dissociating from a protein binding portion. Therefore, to provide strong acid conditions, known strong acidic compounds, for example, hydrochloric acid, sulfuric acid, nitric acid, etc.
The pH at which the above-mentioned diffusion action can be obtained may be appropriately selected. More specifically, when a solution containing 0.1 N (N) nitric acid is brought into contact with the support after the reaction, a sufficient amount of the acridinium ester compound is dissociated in about several seconds, and the tendency becomes substantially saturated. The effective pH under such strong acid conditions is 3 or less, preferably 2 or less. In the present invention, the kind of the acridinium ester compound is not particularly limited, even if various acridinium ester derivatives are used, since the ester bond is broken under a strong acid condition.

【0020】一方、かかる強酸条件は、上述したように
発光反応を一時的に保留状態にできるから、アルカリ性
物質の添加時機に応じて所望のタイミングで発光反応を
開始させることが可能である。但し、発光反応を測定す
るに当たり、アルカリ性物質を添加してから発光が生じ
るまでの時間は極めて短時間であるので、光遮断された
暗環境下でアルカリ性物質の添加操作を行うのが好まし
い。分析時間を短縮する上で好ましいタイミングは、充
分量のアクリジニウムエステル化合物が液中に解離して
拡散した直後であるから、実験により種々反応条件に最
適な時間を設定すればよい。0.1規定の硝酸液による
解離反応においては、数秒後にアルカリ性物質を添加す
ればよい。
On the other hand, under such a strong acid condition, the luminescence reaction can be temporarily suspended as described above, so that the luminescence reaction can be started at a desired timing according to the timing of addition of the alkaline substance. However, in measuring the luminescence reaction, since the time from the addition of the alkaline substance to the emission of luminescence is extremely short, it is preferable to perform the addition operation of the alkaline substance in a dark environment where light is blocked. A preferable timing for shortening the analysis time is immediately after a sufficient amount of the acridinium ester compound is dissociated and diffused in the solution. Therefore, an optimal time may be set for various reaction conditions by experiments. In the dissociation reaction using a 0.1 N nitric acid solution, an alkaline substance may be added after a few seconds.

【0021】[0021]

【実施例】以下、本発明の一実施例を図1〜図3に基づ
いて説明する。図1は本発明の一実施例の要部を示して
おり、図中の符号1は化学発光を利用した生体関連物質
の免疫測定装置(以下、測定装置と称する)である。こ
の測定装置1には発光反応部2が備えられており、この
発光反応部2においては、光検出手段としての光電子倍
増管(以下、PMTと称する)3が本体4に差込まれて
いる。本体4は密閉された箱状のもので、本体4の中に
は壁5によって仕切られた測光セル収容室6とPMT収
容室7とが形成されている。壁5には第1の窓8が形成
されており、この窓8には開閉自在な第1のシャッタ9
が取付けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows a main part of an embodiment of the present invention, and reference numeral 1 in the figure denotes an immunoassay apparatus for a biological substance using chemiluminescence (hereinafter, referred to as a measurement apparatus). The measuring device 1 is provided with a light emitting reaction section 2, in which a photomultiplier tube (hereinafter referred to as PMT) 3 as a light detecting means is inserted into a main body 4. The main body 4 is a closed box, in which a photometric cell housing chamber 6 and a PMT housing chamber 7 separated by a wall 5 are formed. A first window 8 is formed in the wall 5, and a first shutter 9 that can be opened and closed is formed in the window 8.
Is installed.

【0022】PMT3は、本体4の外に配置されたソケ
ット10に装着されており、PMTホルダ11によって
覆われている。さらに、PMT3はその受光側を窓8に
向けている。ソケット10からは信号線ケ−ブル12が
導出されており、PMT3は信号線ケ−ブル12を介し
て信号処理装置13に接続されている。また、ソケット
10からは高圧電源ケ−ブル14も導出されており、P
MT3は高圧電源15に接続されている。そして、PM
T3には高圧電源15から高電圧(例えば−1000V) が
印加されるとともに、PMT3は入射した光の強度に応
じたパルス信号を信号処理装置13へ出力する。信号処
理装置13はパルスカウンティング機能や演算機能等を
有している。
The PMT 3 is mounted on a socket 10 arranged outside the main body 4 and covered by a PMT holder 11. Further, the light receiving side of the PMT 3 faces the window 8. A signal line cable 12 is led out of the socket 10, and the PMT 3 is connected to the signal processing device 13 via the signal line cable 12. A high-voltage power supply cable 14 is also led out of the socket 10,
MT3 is connected to high voltage power supply 15. And PM
A high voltage (for example, -1000 V) is applied to T3 from the high-voltage power supply 15, and the PMT 3 outputs a pulse signal corresponding to the intensity of the incident light to the signal processing device 13. The signal processing device 13 has a pulse counting function, an arithmetic function, and the like.

【0023】測光セル収容室6にはセルホルダ16が設
けられており、このセルホルダ16には試料容器として
の測光セル17が自在に着脱される。測光セル17は分
析対象となる試薬や試料を収容するためのものである。
また、セルホルダ16には、測光セル17の有無を検知
するための測光セルセンサ18が備えられている。さら
に、セルホルダ16には、測光セル17内の磁性粒子を
集磁するための電磁石19が内蔵されている。
A cell holder 16 is provided in the photometric cell storage chamber 6, and a photometric cell 17 as a sample container is freely attached to and detached from the cell holder 16. The photometric cell 17 is for containing a reagent or a sample to be analyzed.
The cell holder 16 is provided with a photometric cell sensor 18 for detecting the presence or absence of the photometric cell 17. Further, an electromagnet 19 for collecting magnetic particles in the photometric cell 17 is built in the cell holder 16.

【0024】測光セル収容室5には、第1及び第2の分
注プロ−ブ20、21(第1及び第2の試薬添加手段)
と、攪拌棒22とが備えられている。両分注プロ−ブ2
0、21は、分注駆動源23、24や第1及び第2の試
薬容器25、26に接続されており、測光セル17に所
定の試薬を分注する。分注駆動源23、24や第1及び
第2の試薬容器25、26は本体4の外に配置されてい
る。ここで、分注駆動源23、24としてシリンジ等の
一般的な機器を利用することが可能である。
First and second dispensing probes 20 and 21 (first and second reagent adding means) are provided in the photometric cell accommodating chamber 5.
And a stirring bar 22. Double dispensing probe 2
Numerals 0 and 21 are connected to the dispensing driving sources 23 and 24 and the first and second reagent containers 25 and 26, and dispens a predetermined reagent to the photometric cell 17. The dispensing drive sources 23 and 24 and the first and second reagent containers 25 and 26 are arranged outside the main body 4. Here, general equipment such as a syringe can be used as the dispensing drive sources 23 and 24.

【0025】また、攪拌棒22は、本体4の外に配置さ
れた昇降回転機構部27に連結されている。そして、攪
拌棒22は、測光セル17がセルホルダ16に着脱され
る際には、作業の障害にならないよう上昇し、測光セル
17内の試薬と試料の混合液を攪拌する際には、下降し
て測光セル17に進入する。
The stirring rod 22 is connected to an elevating and rotating mechanism 27 disposed outside the main body 4. When the photometric cell 17 is attached to and detached from the cell holder 16, the stirring rod 22 is raised so as not to hinder the operation, and is lowered when the mixed solution of the reagent and the sample in the photometric cell 17 is stirred. To enter the photometric cell 17.

【0026】本体4には、測光セル収容室6に面して開
口した第2の窓28が設けられており、この第2の窓2
8には開閉自在な第2のシャッタ29が取付けられてい
る。第2の窓28は、測光セル17を測光セル収容室6
に出入れするために利用される。また、第2のシャッタ
29は、外乱光が測光セル収容室6に侵入することを防
止する。
The main body 4 is provided with a second window 28 which is opened facing the photometric cell accommodating chamber 6.
A second shutter 29 that can be opened and closed is attached to 8. The second window 28 connects the photometric cell 17 to the photometric cell accommodation room 6.
Used to get in and out. The second shutter 29 prevents disturbance light from entering the photometric cell housing 6.

【0027】この第2のシャッタ25及び前記第1のシ
ャッタ9には開閉センサ30、31が付設されており、
これらの開閉センサ30、31によって各シャッタ9、
29の開閉状態が検出される。
Open / close sensors 30 and 31 are attached to the second shutter 25 and the first shutter 9, respectively.
Each of these shutters 9,
29 is detected.

【0028】つぎに、上述の測定装置1により行われる
測光方法を説明する。ここでは、免疫反応の結果生じた
免疫複合体と未反応の抗原或いは抗体との分離を、抗原
或いは抗体の一方を磁性粒子(不溶性物質、応磁化物
質、ビ−ズ)に固相して、磁性粒子上で免疫複合体(特
異親和性結合複合物)を形成させる免疫反応システムを
例に挙げて説明する。
Next, a photometric method performed by the above-described measuring apparatus 1 will be described. Here, the separation of the immune complex generated as a result of the immune reaction and the unreacted antigen or antibody is carried out by immobilizing one of the antigen or antibody on magnetic particles (insoluble substance, magnetizable substance, beads), The following describes an example of an immune reaction system that forms an immune complex (specific affinity binding complex) on magnetic particles.

【0029】本実施例では、化学発光の発光基質とし
て、瞬間的な発光現象を引起こすアクリジニウムエステ
ル化合物(被発光誘発物質)を使用する。また、化学発
光に到るまでの一連の免疫反応は、測光セル17内で既
に行われ、且つ、B/F分離も終了しているとする。
In this embodiment, an acridinium ester compound (a substance that induces luminescence) that causes an instantaneous luminous phenomenon is used as a luminescent substrate for chemiluminescence. Further, it is assumed that a series of immune reactions up to chemiluminescence has already been performed in the photometric cell 17 and B / F separation has been completed.

【0030】まず、第2のシャッタ29を開け、B/F
分離後の測光セル17を測光セルホルダ16に装着す
る。そして、第2のシャッタ29を閉じ、外乱光を遮
る。このとき、セルホルダ16の電磁石19はOFF状
態にあり、攪拌棒22は上昇している。また、第1のシ
ャッタ9は閉じており、高圧電源15はOFF状態にあ
る。第1及び第2のシャッタ9、29が閉じていること
が確認され、且つ、測光セル17がセルホルダ16に装
着されていることが確認された後、第1の分注プロ−ブ
20から第1試薬としての過酸化水素溶液が、測光セル
17に所定量加えられる。
First, the second shutter 29 is opened, and the B / F
The photometric cell 17 after the separation is mounted on the photometric cell holder 16. Then, the second shutter 29 is closed to block disturbance light. At this time, the electromagnet 19 of the cell holder 16 is in the OFF state, and the stirring bar 22 is up. Further, the first shutter 9 is closed, and the high-voltage power supply 15 is in an OFF state. After the first and second shutters 9 and 29 are confirmed to be closed and the photometric cell 17 is confirmed to be mounted on the cell holder 16, the first dispensing probe 20 and the second A predetermined amount of a hydrogen peroxide solution as one reagent is added to the photometric cell 17.

【0031】この溶液は過酸化水素の安定を保つために
酸性に調整されてるが、この液性のために、磁性粒子上
に免疫複合体を介して結合しているアクリジニウムエス
テル化合物のエステル結合が解離され、アリジニウム化
合物が過酸化水素溶液の上清液に拡散される。この反応
を促進するために、攪拌棒22が、測光セル17内の磁
性粒子と過酸化水素溶液を攪拌する。
This solution is adjusted to be acidic in order to maintain the stability of hydrogen peroxide, but because of this liquidity, the ester of an acridinium ester compound bound to the magnetic particles via an immune complex. The bond is dissociated and the aridinium compound diffuses into the supernatant of the hydrogen peroxide solution. In order to promote this reaction, the stirring rod 22 stirs the magnetic particles in the photometric cell 17 and the hydrogen peroxide solution.

【0032】つぎに、第1のシャッタ9が開かれ、PM
T3の高圧電源15がONされる。PMT3の出力が安
定するまで、約10〜30秒間このまま放置する。この間、
電磁石19をONし、測光セル内の磁性粒子に磁力を作
用さて、磁性粒子を測光セル17の底部に集磁する。
Next, the first shutter 9 is opened, and PM
The high voltage power supply 15 of T3 is turned on. This is left for about 10 to 30 seconds until the output of PMT3 is stabilized. During this time,
When the electromagnet 19 is turned on, a magnetic force is applied to the magnetic particles in the photometric cell to collect the magnetic particles at the bottom of the photometric cell 17.

【0033】この後、再度測光セル17がセルホルダ1
6によって保持されていることを確認し、第2の分注プ
ロ−ブ21から測光セル17へ、第2試薬としてのアル
カリ溶液を所定量加える。このアルカリ溶液の添加によ
り、測光セル17中の上清液に拡散したアクリジニウム
化合物が瞬間的に発光する。したがって、アルカリ溶液
の分注に連動してPMT3による測光動作を開始させ
る。
Thereafter, the photometric cell 17 is again placed in the cell holder 1.
6, a predetermined amount of an alkaline solution as a second reagent is added from the second dispensing probe 21 to the photometric cell 17. With the addition of the alkali solution, the acridinium compound diffused in the supernatant liquid in the photometric cell 17 emits light instantaneously. Therefore, the photometric operation by the PMT 3 is started in conjunction with the dispensing of the alkaline solution.

【0034】微弱光を測光する場合、PMT3の出力は
パルス出力となる。そのため、パルスをカウントする時
間を予め決め、その時間内のパルス数をカウントし、微
弱光の光量を算出する。この方法はフォトンカウンティ
ング法と呼ばれる測光方式であるが、本実施例において
は、この方式を採用することが可能である。
When measuring faint light, the output of the PMT 3 is a pulse output. Therefore, the time for counting pulses is determined in advance, the number of pulses within that time is counted, and the amount of weak light is calculated. This method is a photometric method called a photon counting method. In this embodiment, this method can be adopted.

【0035】本実施例のようにアクリジニウム化合物を
利用した場合、約10秒間程度の測光によって全発光量を
計測することができる。測光動作終了後、第1のシャッ
タ9が閉じられ、高圧電源15がOFFされる。測光に
先立って電磁石19はOFFされている。電磁石19の
磁力が雑音源になることを防止するためである。さら
に、第1のシャッタ9が閉じられていること、及び、高
圧電源15がOFFされていることが確認された後、第
2のシャッタ24が閉じられ、測光セル17が取出され
る。
When an acridinium compound is used as in this embodiment, the total light emission can be measured by photometry for about 10 seconds. After the photometric operation is completed, the first shutter 9 is closed, and the high-voltage power supply 15 is turned off. Prior to photometry, the electromagnet 19 is turned off. This is to prevent the magnetic force of the electromagnet 19 from becoming a noise source. Further, after it is confirmed that the first shutter 9 is closed and the high-voltage power supply 15 is turned off, the second shutter 24 is closed, and the photometric cell 17 is taken out.

【0036】そして、上述の動作が繰返され、複数の試
料について発光免疫測定が行われる。上述のような測定
装置1においては、磁性粒子が電磁石19により集磁さ
れて測光セル17の底に沈降し、上清液中の磁性粒子が
アクリジニウム化合物から分離され、上清液が均一体と
なる。したがって、磁性粒子の表面での反射を防止する
ことができる。さらに、消光(クエンチング)を防止す
るために反射の少い微粒子を用いる必要がない。この結
果、微弱な化学発光を正確に検出でき、測定精度を向上
することが可能になる。
Then, the above operation is repeated, and luminescence immunoassay is performed on a plurality of samples. In the measuring device 1 as described above, the magnetic particles are collected by the electromagnet 19 and settle at the bottom of the photometric cell 17, the magnetic particles in the supernatant liquid are separated from the acridinium compound, and the supernatant liquid becomes a homogenous substance. Become. Therefore, reflection on the surface of the magnetic particles can be prevented. Further, there is no need to use fine particles having low reflection in order to prevent quenching. As a result, weak chemiluminescence can be accurately detected, and measurement accuracy can be improved.

【0037】以下に、具体的な実験例と結果を示す。1.実験例 まず、β2−ミクログロブリン(β2−MG)に対する
抗体(三菱化成)を粒径4.5 μmの磁性粒子(DYNABEAD
S,DYNA1 社)に4×108 個/ml固相化した磁性試薬
(粒子濃度 w/v%)10μlを、マイクロプレ−ト
(ヌンク社、平底)の各ウエルにて各種濃度のβ2−M
Gを含むPBS溶液(pH 7.4) 10μlと夫々室温で5
分間反応させた。次に、ウエルの側部に磁石を15秒間
当てることにより、反応後の磁性粒子をウエルの一方の
内壁に集め、緩衝液にて2回洗浄することにより、第1
回目のB/F分離を行った。次いで、同様にして、アク
リジニウム誘導体−I(同仁化学)を標識した抗イムノ
グロブリン抗体100μlを注入して室温で5分間反応
させた後に洗浄を行った。約0.6%過酸化水素溶液を
含む0.1N硝酸溶液(A)と、過酸化水素溶液を含ま
ない同硝酸液(B)とを50μlずつ別個のウエルに分
注した。マイクロプレ−トを暗箱(図1中の測光セル収
容室6)内に移して遮光状態とし、A液を加えたウエル
とB液を加えたウエルの夫々に対して、0.25N水酸
化ナトリウム液を各50μlずつ添加して発光反応させ
ると共に、発光反応が開始してから1秒、2秒および3
秒後の発光によるフォトン数を、ユニバ−サルカウンタ
(浜松ホトニクス)によりカウントして積算値を求め
た。 (i) 第1免疫反応 マイクロプレ−トのウエルに反応用緩衝液100μlを
加えた後、よく攪拌した磁性粒子浮遊液10μl、検量
線用標準液10μlを加え室温で5分間反応させた。
The following are specific experimental examples and results. 1. EXPERIMENTAL EXAMPLE First, an antibody (Mitsubishi Kasei) against β2-microglobulin (β2-MG) was treated with magnetic particles (DYNABEAD) having a particle size of 4.5 μm.
10 μl of 4 × 10 8 magnetic reagents (particle concentration w / v%) immobilized on 4 × 10 8 cells / ml in S.DYNA1 Co., Ltd. were applied to each well of a microplate (Nunc, flat bottom) at various concentrations of β2- M
10 μl of a PBS solution containing G (pH 7.4) and 5 μl each at room temperature.
Allowed to react for minutes. Next, the magnetic particles after the reaction were collected on one inner wall of the well by applying a magnet to the side of the well for 15 seconds, and washed twice with a buffer solution to obtain the first magnetic particles.
A second B / F separation was performed. Next, similarly, 100 μl of an anti-immunoglobulin antibody labeled with acridinium derivative-I (Dojindo) was injected, reacted at room temperature for 5 minutes, and then washed. A 0.1 N nitric acid solution containing about 0.6% hydrogen peroxide solution (A) and the same nitric acid solution containing no hydrogen peroxide solution (B) were dispensed into separate wells by 50 μl each. The microplate was moved into a dark box (photometry cell storage chamber 6 in FIG. 1) to be shielded from light, and 0.25 N sodium hydroxide was added to each of the wells to which solution A was added and the wells to which solution B was added. The luminescence reaction was performed by adding 50 μl of each solution, and 1 second, 2 seconds and 3 seconds after the luminescence reaction started.
The number of photons due to light emission after 2 seconds was counted by a universal counter (Hamamatsu Photonics) to obtain an integrated value. (i) First immune reaction 100 μl of a reaction buffer was added to the wells of the microplate, and 10 μl of a well-stirred suspension of magnetic particles and 10 μl of a standard solution for a calibration curve were added and reacted at room temperature for 5 minutes.

【0038】なお、攪拌条件を揃えるために試薬等の添
加時のみ検液の吸排を数回繰返すのみとし、反応中は攪
拌なしとした。 (ii)B/F分離 免疫反応終了後、ランタネット系磁石1個をマイクロプ
レ−トウエルの側部に約15秒間押しあてることで磁性
粒子をウエル内の一方の内壁に集めた後検液をマイクロ
ピペットで除去した。
In order to adjust the stirring conditions, only the addition and removal of the test solution was repeated several times only at the time of addition of reagents and the like, and no stirring was performed during the reaction. (ii) B / F separation After the completion of the immune reaction, one lanthanum-based magnet was pressed against the side of the microplate well for about 15 seconds to collect the magnetic particles on one inner wall of the well, and then the test solution was collected. Removed with a micropipette.

【0039】その後、洗浄液250μlを磁性粒子を分
散させるように注入し直ちに磁石を約15秒間押しあて
磁性粒子をウエルの内壁に集め洗浄液をマイクロピペッ
トで除去した。
Thereafter, 250 μl of the washing solution was injected so as to disperse the magnetic particles, and the magnet was immediately pressed for about 15 seconds to collect the magnetic particles on the inner wall of the well, and the washing solution was removed with a micropipette.

【0040】この操作をその後2回繰返すことでB/F
分離とした。 (iii) 第2免疫反応 B/F分離後のウエルに標識抗体100μlを加え、検
液の吸排による攪拌を行った後室温で5分間反応させ
た。 (iv)B/F分離 (ii)項と同様に250μlの洗浄液で3回洗浄すること
でB/F分離とした。 (v) 発光反応 発光試薬A液50μlを加え磁性粒子を均一に分散させ
たウエルをフォトカウンティング用の暗箱にセットし、
そのウエル中に試薬を分注するよう設定された分注ユニ
ット(RD)により発光試薬B液50μlを添加した。 (vi)発光量の計測 ユニバ−サルカウンタ(浜松ホトニクス製)により印加
電圧:1250V、ゲ−ト時間:10ミリ秒、デ−タ
数:512の条件で (v)項のRDと同期して測定をおこ
なった。なお、測定結果は発光の開始時点より3秒間の
積算値として表した。 2.測定結果 3秒間のカウントの積算値を以下の表1及び図4に示
す。
By repeating this operation twice thereafter, the B / F
Separated. (iii) Second immune reaction 100 μl of the labeled antibody was added to the wells after the B / F separation, and the mixture was stirred for 5 minutes at room temperature after stirring by sucking and discharging the test solution. (iv) B / F separation B / F separation was performed by washing three times with 250 μl of the washing solution in the same manner as in (ii). (v) Luminescence reaction A well in which 50 μl of luminescence reagent A solution was added and magnetic particles were uniformly dispersed was set in a dark box for photocounting,
50 μl of the luminescent reagent B solution was added by a dispensing unit (RD) set to dispense the reagent into the well. (vi) Measurement of the amount of emitted light Using a universal counter (manufactured by Hamamatsu Photonics), under the conditions of an applied voltage of 1250 V, a gate time of 10 ms, and the number of data: 512, synchronized with the RD in the item (v). A measurement was made. The measurement results were expressed as integrated values for 3 seconds from the start of light emission. 2. Measurement Results The integrated value of the count for 3 seconds is shown in Table 1 below and FIG.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】これらの結果より、0ng/ml 標準液でのカ
ウント数が若干大きいことが気になるが、100ng/ml
の標準液までの検量線は反応時間10分で直線性を示す
ことが確認された。
From these results, it is worrisome that the count number in the 0 ng / ml standard solution is slightly large.
It was confirmed that the calibration curve up to the standard solution showed linearity at a reaction time of 10 minutes.

【0044】200ng/ml の標準液が期待されたカウン
ト数よりも低値にでていることにより、この標準液を2
00ng/ml の標準液で倍々希釈して希釈系列を作成しそ
の直線性の検討を行った結果を前掲の表2及び図5に示
した。先の検討よりは改善されているがやはり200ng
/ml が低値に測定されていることが判明した。このこと
より今回の測定条件では200ng/ml 程度の検体では抗
原過剰な状態となっていることが考えられる。
Since the 200 ng / ml standard solution was lower than the expected count, this standard solution was
A dilution series was prepared by doubling the dilution with a standard solution of 00 ng / ml, and the linearity thereof was examined. The results are shown in Table 2 and FIG. 5 described above. It is better than the previous study, but still 200ng
It was found that / ml was measured to be low. From this, it is considered that under the present measurement conditions, a sample of about 200 ng / ml is in an antigen-excess state.

【0045】また、補足資料として、図6に各標準液で
の発光現象の経時変化を示す。このグラフは10ミリ秒
毎に1ミリ秒あたりのカウント数を示したものである。
発光現象まで約1秒を費やしているが、これは試薬B液
を分注しているRDが起動から実際の試薬の分注まで約
1秒を要していることを示すものである。
As a supplementary material, FIG. 6 shows the change over time of the luminescence phenomenon with each standard solution. This graph shows the number of counts per millisecond every 10 milliseconds.
It takes about one second for the light emission phenomenon, which indicates that the RD dispensing the reagent B solution takes about one second from the start to the actual dispensing of the reagent.

【0046】発光現象の経時変化と今までの測定結果よ
り本試薬の測定は発光試薬B液分注から約1秒間のフォ
トカウントの積算値で測定できることが明らかとなっ
た。 3.追加検討 発光物質であるAEは試薬A液添加で磁性粒子表面より
解離し溶液中に溶解するものと考えられるため、試薬A
液添加後磁性粒子を均一に分散した場合(ケ−ス1)
と、磁性粒子を強制的に底面に集めた場合(ケ−ス2)
とではどちらが発光量の計測に有利かについて検討し
た。検討結果を以下の表3に示す。
From the change over time of the luminescence phenomenon and the results of the measurements so far, it has been clarified that the measurement of the present reagent can be performed by the integrated value of the photo count for about 1 second from the dispensing of the luminescence reagent B solution. 3. Additional Consideration Since AE, which is a luminescent substance, is considered to dissociate from the surface of the magnetic particles and dissolve in the solution when reagent A solution is added,
When the magnetic particles are uniformly dispersed after the addition of the liquid (Case 1)
And when magnetic particles are forcibly collected on the bottom surface (Case 2)
The authors examined which is more advantageous for measuring the amount of emitted light. The results of the study are shown in Table 3 below.

【0047】[0047]

【表3】 [Table 3]

【0048】検討の結果、磁性粒子を底面に集めた方が
測定カウント数は10%程度多くなることが判明した。
また、再現性については明確な結果は得られなかった
が、やはり磁性粒子を底面に集めた方が若干良好である
ように思われた。
As a result of the study, it was found that the number of measurement counts increased by about 10% when the magnetic particles were collected on the bottom surface.
Although no clear result was obtained with respect to reproducibility, it seemed that collecting magnetic particles on the bottom surface was slightly better.

【0049】なお、本発明は、要旨を逸脱しない範囲で
種々に変形することが可能である。例えば、本実施例で
は電磁石19が本体4の中に配置されており、磁性粒子
の集磁が本体4の中で行われるが、本発明はこれに限定
されるものではなく、集磁の操作を本体4の外で行って
もよい。つまり、電磁石19はPMT3への雑音源とな
るため、PMT3と電磁石19との距離をできる限り離
したり、両者の間に電磁シ−ルドを設けたりすることが
望ましい。したがって、電磁石19を本体4の外へ配置
して、集磁が本体4の外で行うことにより、雑音をより
低減することができる。
The present invention can be variously modified without departing from the gist. For example, in the present embodiment, the electromagnet 19 is disposed in the main body 4 and the magnetic particles are collected in the main body 4, but the present invention is not limited to this, and the operation of the magnetic collection is not limited to this. May be performed outside the main body 4. That is, since the electromagnet 19 becomes a noise source to the PMT 3, it is desirable to keep the distance between the PMT 3 and the electromagnet 19 as far as possible or to provide an electromagnetic shield between them. Therefore, by arranging the electromagnet 19 outside the main body 4 and performing magnetic flux collection outside the main body 4, noise can be further reduced.

【0050】この場合、第1の分注プロ−ブ20も本体
4の外に配置し、過酸化水素溶液の添加から、その後の
攪拌、及び、磁性粒子の集磁までの作業を本体4の外で
行うとともに、アルカリ溶液の添加操作から後の操作だ
けを本体4の中で行うことが考えられる。
In this case, the first dispensing probe 20 is also disposed outside the main body 4, and the operations from the addition of the hydrogen peroxide solution to the subsequent stirring and the magnetic collection of the magnetic particles are performed on the main body 4. It is conceivable that the operation is performed outside and only the operation after the operation of adding the alkali solution is performed in the main body 4.

【0051】また、本実施例では電磁石19が備えられ
ているが、例えば磁性粒子を重力或いはその他の力を利
用して測光セル17の壁面に集めることができれば、電
磁石19は不要になる。
Although the electromagnet 19 is provided in this embodiment, if the magnetic particles can be collected on the wall surface of the photometric cell 17 using gravity or other force, the electromagnet 19 becomes unnecessary.

【0052】さらに、例えば図7に示すように測光セル
41に曲面部分を形成して攪拌部42を設けてもよい。
つまり、攪拌部42は垂直な側面43に連続しており、
試薬は側面43に沿って分注される。そして、試薬は、
第1の分注プロ−ブ20または第2の分注プロ−ブ21
によって、適宜の角度方向から分注される。このとき、
試薬は、セル41の側面43に沿って注入される。注入
後の試薬は、側面43から曲面44を経て最終的に底部
45に到達することにより、既に収容されているB/F
分離後の固相粒子を効率よく巻き込んで接触の機会を増
やすので、攪拌棒22を用いることなく、充分な攪拌効
果が得られる。このことは、特に図1のような遮蔽構造
内での部品点数を減らす点で非常に好ましい。また、振
動による攪拌と異なり、測光セル41の位置決め構造も
簡単になるから測光装置全体が小型化する。
Further, as shown in FIG. 7, for example, a curved portion may be formed in the photometric cell 41 and a stirring section 42 may be provided.
That is, the stirring part 42 is continuous with the vertical side surface 43,
The reagent is dispensed along side 43. And the reagent is
First dispensing probe 20 or second dispensing probe 21
Is dispensed from an appropriate angle direction. At this time,
The reagent is injected along the side surface 43 of the cell 41. The reagent after the injection reaches the bottom portion 45 from the side surface 43 via the curved surface 44 and finally reaches the B / F already contained.
Since the solid phase particles after separation are efficiently involved and the chance of contact is increased, a sufficient stirring effect can be obtained without using the stirring rod 22. This is particularly preferable in that the number of parts in the shielding structure as shown in FIG. 1 is reduced. Also, unlike stirring by vibration, the positioning structure of the photometric cell 41 is simplified, so that the entire photometric device is reduced in size.

【0053】[0053]

【発明の効果】以上説明したように請求項1の発明は、
不溶性物質を用いて得られた特異親和性結合複合物に、
B/F分離の後に第1試薬を添加して不溶性物質に結合
した被発光誘発物質を解離させ、被発光誘発物質に第2
試薬を添加し被発光誘発物質を化学発光させて光量を検
出する光学的特異親和性測定方法において、被発光誘発
物質を解離させたのち、浮遊状態にある不溶性物質を非
浮遊状態とし、不溶性物質と被発光誘発物質とを分離し
て被発光誘発物質を化学発光させる。
As described above, the first aspect of the present invention is:
The specific affinity binding complex obtained using the insoluble substance,
After the B / F separation, the first reagent is added to dissociate the luminescence-inducing substance bound to the insoluble substance, and the second reagent is added to the luminescence-inducing substance.
In an optical specific affinity measurement method in which a reagent is added and chemiluminescence is caused by the luminescence-inducing substance to detect the amount of light, after the luminescence-inducing substance is dissociated, the insoluble substance in a floating state is changed to a non-floating state, and the insoluble substance is removed. And the luminescence inducing substance are separated from each other to cause the luminescence inducing substance to emit chemiluminescence.

【0054】また、請求項3の発明は、不溶性物質を用
いて得られた特異親和性結合複合物に、B/F分離の後
に第1試薬を添加して不溶性物質に結合した被発光誘発
物質を解離させ、被発光誘発物質に第2試薬を添加し被
発光誘発物質を化学発光させて光量を検出する特異親和
測定装置において、被発光誘発物質と解離して浮遊状
態にある不溶性物質を非浮遊状態とし、不溶性物質と被
発光誘発物質とを分離する不溶性物質分離手段を設け
た。そして、これらの発明によれば、発光光量を正確に
検出することができ、測定精度を向上できるという効果
がある。
Further, the invention of claim 3 relates to a luminescence-inducing substance which is obtained by adding a first reagent to a specific affinity binding complex obtained using an insoluble substance after B / F separation and binding to the insoluble substance. were dissociated, for detecting the amount of light added to the light emission inducing substance of the second reagent is a chemiluminescent onto light emission inducing substance specific affinity
The insolubility measuring device is provided with an insoluble substance separating means for dissociating the insoluble substance in a floating state by dissociation from the luminescence inducing substance, and separating the insoluble substance from the luminescence inducing substance. According to these inventions, the amount of emitted light can be accurately detected, and the measurement accuracy can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の要部を示す構成図。FIG. 1 is a configuration diagram showing a main part of an embodiment of the present invention.

【図2】発光反応部を示す断面図。FIG. 2 is a cross-sectional view showing a light emitting reaction section.

【図3】本発明の一実施例の免疫測定方法を示すフロ−
チャ−ト。
FIG. 3 is a flowchart showing an immunoassay method according to one embodiment of the present invention.
Chart.

【図4】実験結果を示すグラフ。FIG. 4 is a graph showing experimental results.

【図5】実験結果を示すグラフ。FIG. 5 is a graph showing experimental results.

【図6】実験結果を示すグラフ。FIG. 6 is a graph showing experimental results.

【図7】測光セルの変形例を示すもので、(a)は正面
図、(b)は側面図。
7A and 7B show a modified example of the photometric cell, wherein FIG. 7A is a front view and FIG. 7B is a side view.

【符号の説明】[Explanation of symbols]

1…免疫測定装置、3…光電子倍増管、13…信号処理
装置、17…測光セル、19…電磁石(不溶性物質分離
手段、集磁手段)、22…攪拌棒、25…過酸化水素溶
液(第1試薬)、26…アルカリ溶液(第2試薬)。
DESCRIPTION OF SYMBOLS 1 ... Immunoassay device, 3 ... Photomultiplier tube, 13 ... Signal processing device, 17 ... Photometry cell, 19 ... Electromagnet (insoluble substance separation means, magnetism collection means), 22 ... Stirring bar, 25 ... Hydrogen peroxide solution (No. 1 reagent), 26 ... alkaline solution (second reagent).

フロントページの続き (56)参考文献 特開 平5−255264(JP,A) 特開 平4−301764(JP,A) 特開 平7−12731(JP,A) 特開 平2−245662(JP,A) 特開 平5−18971(JP,A) 特開 平5−18970(JP,A) 特開 平4−102062(JP,A) 特開 昭61−41966(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 33/543 G01N 33/532 G01N 21/75 - 21/83 Continuation of the front page (56) References JP-A-5-255264 (JP, A) JP-A-4-301764 (JP, A) JP-A-7-12731 (JP, A) JP-A-2-245662 (JP) JP-A-5-18971 (JP, A) JP-A-5-18970 (JP, A) JP-A-4-102062 (JP, A) JP-A-61-41966 (JP, A) (58) Field surveyed (Int.Cl. 7 , DB name) G01N 33/543 G01N 33/532 G01N 21/75-21/83

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 不溶性物質を用いて得られた特異親和性
結合複合物に、B/F分離の後に第1試薬を添加して上
記不溶性物質に結合した被発光誘発物質を解離させ、上
記被発光誘発物質に第2試薬を添加し上記被発光誘発物
質を化学発光させて光量を検出する光学的特異親和性
定方法において、上記被発光誘発物質を解離させたの
ち、浮遊状態にある上記不溶性物質を非浮遊状態とし、
上記不溶性物質と上記被発光誘発物質とを分離して上記
被発光誘発物質を化学発光させることを特徴とする光学
特異親和性測定方法。
A first reagent is added to a specific affinity binding complex obtained using an insoluble substance after B / F separation to dissociate a luminescence inducing substance bound to the insoluble substance, In the optical specific affinity measurement method in which the second reagent is added to the luminescence inducing substance and the luminescence inducing substance is chemiluminescent to detect the amount of light, the luminescence inducing substance is dissociated and then floated. The insoluble substance in the state is in a non-floating state,
An optical specific affinity measurement method, comprising separating the insoluble substance and the luminescence inducing substance and causing the luminescence inducing substance to chemiluminescent.
【請求項2】 上記不溶性物質が磁力によって非浮遊状
態とされることを特徴とする前記請求項1記載の光学的
特異親和性測定方法。
2. The optical device according to claim 1, wherein the insoluble substance is brought into a non-floating state by a magnetic force.
Specific affinity measurement method.
【請求項3】 不溶性物質を用いて得られた特異親和性
結合複合物に、B/F分離の後に第1試薬を添加して上
記不溶性物質に結合した被発光誘発物質を解離させ、上
記被発光誘発物質に第2試薬を添加し上記被発光誘発物
質を化学発光させて光量を検出する特異親和性測定装置
において、上記被発光誘発物質と解離して浮遊状態にあ
る上記不溶性物質を非浮遊状態とし、上記不溶性物質と
上記被発光誘発物質とを分離する不溶性物質分離手段を
設けたことを特徴とする特異親和性測定装置。
3. A B-F separation and a first reagent are added to the specific affinity binding complex obtained using the insoluble substance to dissociate the luminescence inducing substance bound to the insoluble substance, In a specific affinity measuring apparatus for detecting the amount of light by adding a second reagent to the luminescence-inducing substance and causing the luminescence-inducing substance to emit chemiluminescence, the insoluble substance dissociated from the luminescence-inducing substance and in a floating state is not suspended. A specific affinity measuring device, wherein the apparatus is in a state, and provided with an insoluble substance separating means for separating the insoluble substance and the luminescence inducing substance.
【請求項4】 上記不溶性物質が応磁化物質であり、上
記不溶性物質分離手段が上記不溶性物質を磁力を利用し
て非浮遊化する集磁手段であることを特徴とする前記請
求項3記載の特異親和性測定装置。
4. The apparatus according to claim 3, wherein the insoluble substance is a magnetizable substance, and the insoluble substance separating means is a magnetic flux collecting means for making the insoluble substance non-floating using a magnetic force. Specific affinity measurement device.
JP30519293A 1993-12-06 1993-12-06 Optical specific affinity measuring method and specific affinity measuring device used therein Expired - Lifetime JP3353978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30519293A JP3353978B2 (en) 1993-12-06 1993-12-06 Optical specific affinity measuring method and specific affinity measuring device used therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30519293A JP3353978B2 (en) 1993-12-06 1993-12-06 Optical specific affinity measuring method and specific affinity measuring device used therein

Publications (2)

Publication Number Publication Date
JPH07159407A JPH07159407A (en) 1995-06-23
JP3353978B2 true JP3353978B2 (en) 2002-12-09

Family

ID=17942163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30519293A Expired - Lifetime JP3353978B2 (en) 1993-12-06 1993-12-06 Optical specific affinity measuring method and specific affinity measuring device used therein

Country Status (1)

Country Link
JP (1) JP3353978B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202254A (en) * 2000-10-30 2002-07-19 Dkk Toa Corp Light measuring method and device therefor
US7667184B2 (en) 2004-04-30 2010-02-23 Percision System Science Co., Ltd. Optical information reader
JP2008180537A (en) * 2007-01-23 2008-08-07 Olympus Corp Analysis method and analyzer
CN112268896A (en) * 2020-09-04 2021-01-26 中国能源建设集团安徽省电力设计院有限公司 Device and method for detecting concentration of trace hydrogen peroxide in surface water by adopting chemiluminescence reagent

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI842992A0 (en) * 1984-07-26 1984-07-26 Labsystems Oy IMMUNOLOGISKT DEFINITIONSFOERFARANDE.
JPH02245662A (en) * 1989-03-18 1990-10-01 Jeol Ltd Automatic immnoassay apparatus
JPH04102062A (en) * 1990-08-22 1992-04-03 Hitachi Ltd Method for measuring particle immunity
DE4041080A1 (en) * 1990-12-21 1992-06-25 Behringwerke Ag METHOD FOR DETERMINING AN ANALYT
JPH0518971A (en) * 1991-07-10 1993-01-26 Tdk Corp Antigen/antibody measuring method utilizing chemiluminescence
JPH0518970A (en) * 1991-07-10 1993-01-26 Tdk Corp Antigen/antibody measuring method utilizing chemiluminescence
JPH05255264A (en) * 1992-03-13 1993-10-05 Sanyo Chem Ind Ltd Production of labeling agent and labeled ligand
AU679008B2 (en) * 1993-05-06 1997-06-19 Chiron Diagnostics Corporation Mixed luminescent conjugate test assays

Also Published As

Publication number Publication date
JPH07159407A (en) 1995-06-23

Similar Documents

Publication Publication Date Title
US5993740A (en) Immunoassay method and analyzer using magnetic particles
JP3521144B2 (en) Automatic continuous random access analysis system and its components
EP1775574B1 (en) Method for automatic determination of sample
US9310286B2 (en) Patient sample classification based upon low angle light scattering
JP3053112B2 (en) Method and apparatus for an improved luminescence assay using particle concentration and chemiluminescence detection
JP2002502035A (en) Sample analysis using electrochemiluminescence binding reaction test
JP2020529585A (en) How to monitor the detection behavior of a sample in a liquid sample
EP1194781B1 (en) Method for conducting chemiluminescent binding assay
CN116106297A (en) Electrochemiluminescence method and analysis system for detecting analytes in liquid samples
JP2014153178A (en) Automatic analyzer
CA2294020C (en) Dual injector for chemiluminescence immunoanalyzing system
EP0488152A2 (en) Method for immunoassay and apparatus therefor
JP3353978B2 (en) Optical specific affinity measuring method and specific affinity measuring device used therein
US8741218B2 (en) Automatic analyzer
JP3670383B2 (en) Analysis apparatus and analysis method
JP3423803B2 (en) Method and apparatus for immunoassay utilizing magnetic particles
EP1024365B1 (en) Method and apparatus for conducting a stat immunoassay analysis in a capsule chemistry analysis system
JP4615342B2 (en) Stirring method, cell, measuring device using the same, and measuring method
JPH0829424A (en) Immunological analyzing method and its device
JP3423795B2 (en) Sample analyzer
CN214895325U (en) Homogeneous immunoassay's instant detecting system
WO2023176398A1 (en) Test device
GB2086042A (en) Process for Carrying Out Analytical Determinations by Means of Chemiluminescence, and the Use of the Process for Immunoassay
JPH05249114A (en) Method and instrument for immunological measurement
Soini et al. Time-resolved fluoroimmunoassay

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100927

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100927

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100927

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100927

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100927

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100927

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100927

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110927

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110927

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120927

Year of fee payment: 10