JP3170649B2 - Method for managing magnetic powder liquid in magnetic particle flaw detection and artificial defect sensor device used in the method - Google Patents

Method for managing magnetic powder liquid in magnetic particle flaw detection and artificial defect sensor device used in the method

Info

Publication number
JP3170649B2
JP3170649B2 JP05695492A JP5695492A JP3170649B2 JP 3170649 B2 JP3170649 B2 JP 3170649B2 JP 05695492 A JP05695492 A JP 05695492A JP 5695492 A JP5695492 A JP 5695492A JP 3170649 B2 JP3170649 B2 JP 3170649B2
Authority
JP
Japan
Prior art keywords
magnetic powder
fluorescent
output
magnetic
flaw detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05695492A
Other languages
Japanese (ja)
Other versions
JPH05215724A (en
Inventor
眞男 加藤
正躬 本山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marktec Corp
Original Assignee
Marktec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marktec Corp filed Critical Marktec Corp
Priority to JP05695492A priority Critical patent/JP3170649B2/en
Publication of JPH05215724A publication Critical patent/JPH05215724A/en
Application granted granted Critical
Publication of JP3170649B2 publication Critical patent/JP3170649B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【産業上の利用分野】本発明は、磁粉探傷法における磁
粉液の管理方法および該方法に用いる人工欠陥センサー
装置に関し、角ビレットの如き鋼材の生産現場において
汎用されている磁粉探傷法の実施に当って磁粉液の探傷
機能を常にほぼ同一レベルに保持させることができる新
規技術手段を提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for managing a magnetic powder solution in a magnetic particle flaw detection method and an artificial defect sensor device used in the method, and relates to an implementation of the magnetic particle flaw detection method widely used in a steel material production site such as a square billet. It is an object of the present invention to provide a new technical means that can always keep the flaw detection function of the magnetic powder liquid at substantially the same level.

【0001】[0001]

【従来の技術】周知の通り、非破壊検査法の一種に、J
IS G0565−1974に規格化されている磁粉探
傷法がある。この方法は、磁性体からなる被検査物(例
えば、角ビレットや丸ビレット)の表面又は表面下の比
較的浅い部分に微細な欠陥部(例えば、割れやピンホー
ル)が存在する場合に該被検査物に電流を流し磁化する
と欠陥部に磁束の偏流が生じ空中への漏洩が起こる現象
を利用したものであり、現在、鋼材の生産現場等におい
て汎用されている磁粉探傷法の具体的態様は、次の通り
である。
2. Description of the Related Art As is well known, one of the nondestructive inspection methods is J
There is a magnetic particle flaw detection method standardized in IS G0565-1974. This method is used when a minute defect (for example, a crack or a pinhole) is present on the surface of a test object made of a magnetic material (for example, a square billet or a round billet) or a relatively shallow portion below the surface. When a current is applied to a test object and magnetized, a magnetic flux drifts at the defect and leakage into the air occurs, and the specific form of the magnetic particle flaw detection method that is currently widely used in steel material production sites and the like is as follows. Is as follows.

【0002】すなわち、各粒子の表面に蛍光物質(例え
ば、蛍光染料)を樹脂バインダーによって付着させた鉄
粉やステンレススチール粉−以下、「蛍光磁粉」という
−を水に分散(通常、水1l当り、蛍光磁粉 0.5〜3g
程度が分散されている)して調製した磁粉液が充填され
ている磁粉液タンクを用意し、この磁粉液タンクに充填
されている蛍光磁粉を分散させた磁粉液を回収・再散布
が可能な状態で、流れ作業的に連続して移送されてくる
磁化された被検査物(例えば、角ビレット)の表面に散
布して接触させることにより、該被検査物の欠陥部に蛍
光磁粉を集合・付着させて蛍光磁粉模様を形成し、紫外
線灯(一般に、ブラックライトと呼ばれている)の照射
下において、被検査物表面を観察し、紫外光によって励
起された蛍光模様の存在によって欠陥部を検知するとい
う態様−以下、この態様を採る磁粉探傷法を「連続磁粉
探傷法」という−である。
That is, iron powder or stainless steel powder in which a fluorescent substance (for example, a fluorescent dye) is adhered to the surface of each particle with a resin binder-hereinafter referred to as "fluorescent magnetic powder"-is dispersed in water (usually per liter of water). , Fluorescent magnetic powder 0.5-3g
A magnetic powder liquid tank filled with the prepared magnetic powder liquid is prepared, and the magnetic powder liquid in which the fluorescent magnetic powder filled in the magnetic powder liquid is dispersed can be collected and redistributed. In this state, the fluorescent magnetic powder is gathered at a defective portion of the inspection object by being scattered and brought into contact with the surface of the magnetized inspection object (for example, a square billet) which is continuously transferred in a flow operation. Attached to form a fluorescent magnetic powder pattern, and observed the surface of the inspection object under irradiation of an ultraviolet lamp (generally called a black light), and detected a defective part by the presence of the fluorescent pattern excited by ultraviolet light. A mode of detection—hereinafter, a magnetic particle flaw detection method that employs this mode is referred to as a “continuous magnetic particle flaw detection method”.

【0003】連続磁粉探傷法が実施されるに際し、当業
界においては、磁粉液の管理が、次の理由によって最重
要視されている。すなわち、被検査物表面に散布して接
触させた磁粉液中の蛍光磁粉は該被検査物に欠陥部が存
在する場合には、これに付着して磁粉液の循環系外に持
出されてしまうため、不可避的に磁粉液タンク内の磁粉
液の蛍光磁粉量(濃度)の変化が起こる。なお、被検査
物一ケ当りに付着して持出される蛍光磁粉量はごくわず
かな量ではあるが、流れ作業的に連続して探傷が行われ
ると被検査物の量が増加するに従って持出される蛍光磁
粉量も多くなり、磁粉液タンク内の磁粉液の蛍光磁粉量
(濃度)が大きく変化してしまうのであり、また、磁粉
液の循環経路に沈着してしまって磁粉液タンクに戻らな
い蛍光磁粉もある。
[0003] In the practice of the continuous magnetic particle flaw detection method, the management of the magnetic particle liquid is regarded as the most important in the art for the following reasons. That is, if there is a defect in the inspection object, the fluorescent magnetic powder in the magnetic particle liquid sprayed and brought into contact with the surface of the inspection object adheres to the defect and is taken out of the circulation system of the magnetic particle liquid. Therefore, the amount (concentration) of the fluorescent magnetic powder in the magnetic powder liquid in the magnetic powder tank inevitably changes. Although the amount of fluorescent magnetic powder attached and taken out per inspection object is very small, it can be removed as the amount of inspection object increases if flaw detection is performed continuously in a flow operation. The amount of fluorescent magnetic powder to be used also increases, and the amount (concentration) of the fluorescent magnetic powder in the magnetic powder liquid in the magnetic powder liquid tank greatly changes. In addition, the magnetic powder is deposited in the circulation path of the magnetic powder and does not return to the magnetic powder tank. There is also fluorescent magnetic powder.

【0004】さらに、磁粉液を回収・再散布しながら連
続して施用していると、磁粉液中に粒子表面から蛍光物
質が剥離・脱落してしまった粒子が発生し、また、被検
査物が角ビレットや丸ビレットである場合にはその表面
から脱落するスケール等が磁粉液の循環系内に持込まれ
るため、不可避的に磁粉液タンク内の磁粉液は蛍光物質
が剥離・脱落した粒子およびスケール等−以下、これら
を「非蛍光磁性粉体」という−と蛍光磁粉とが混在した
状態となる。
Furthermore, if the magnetic powder is continuously applied while being collected and re-sprayed, particles are generated in the magnetic powder from which the fluorescent substance has been peeled off or dropped off from the particle surface. Is a square billet or a round billet, scales that fall off from the surface of the billet are carried into the circulation system of the magnetic powder liquid. The scale and the like-hereinafter, these are referred to as "non-fluorescent magnetic powder"-and the fluorescent magnetic powder are mixed.

【0005】連続磁粉探傷法を流れ作業的に連続して実
施している間に、磁粉液タンク内の磁粉液の蛍光磁粉量
(濃度)が大きく変化したり、磁粉液が非蛍光磁性粉体
と蛍光磁粉とが混在した状態のものになったりすると、
被検査物表面の欠陥部に集合・付着する蛍光磁粉の量も
変化してしまうので、探傷結果にバラツキが生じ、探傷
精度が低下してしまうことになる。
[0005] While the continuous magnetic particle flaw detection method is continuously performed in a flow operation, the amount (concentration) of the fluorescent magnetic powder in the magnetic powder liquid in the magnetic powder liquid tank changes greatly, or the magnetic powder liquid becomes non-fluorescent magnetic powder. And fluorescent magnetic powder are mixed,
Since the amount of the fluorescent magnetic powder that collects and adheres to the defect on the surface of the inspection object also changes, the flaw detection results vary, and the flaw detection accuracy decreases.

【0006】従って、当業界においては、連続磁粉探傷
法を実施するに際しては、使用中の磁粉液の探傷機能を
常にほぼ同一レベルに保持するための管理が最重要視さ
れているのである。
[0006] Therefore, in the art, when performing the continuous magnetic particle flaw detection method, it is of the utmost importance that the control for maintaining the flaw detection function of the magnetic powder liquid in use at almost the same level is the most important.

【0007】従来、上記した磁粉液の管理に当って採ら
れている技術的手段を大別すると、 A.磁粉液中の蛍光磁粉の量(濃度)を測定する手段と
B.磁粉液中の蛍光磁粉の輝度を測定する手段とに分類
できる。Aに属するものの代表例は、A−1.磁粉液タ
ンク内の磁粉液を一定間隔の時間を置いてサンプリング
し、その蛍光磁粉量(濃度)をMIL−STD−194
9A規格に従って沈澱管を用いて測定し、量(濃度)が
低下していると新しい蛍光磁粉を磁粉液タンクに追加投
入するというものである。なお、この手段による場合に
は、沈澱管を用いるので測定に時間がかかる(通常、1
回の測定に約30分間を必要とする)ことに鑑み、A−
2.コイル内にサンプリングした磁粉液を充填した管体
を挿入して該コイルのインピーダンスの電気出力変化に
より一定容積中における蛍光磁粉の量(濃度)を測定す
る装置が市販(例えば、磁粉濃度計MC−3B型:商品
名:日本電磁測器株式会社)されている。
Conventionally, technical means employed for managing the above-mentioned magnetic powder liquid are roughly classified into the following. A means for measuring the amount (concentration) of the fluorescent magnetic powder in the magnetic powder liquid; Means for measuring the brightness of the fluorescent magnetic powder in the magnetic powder liquid can be classified. Representative examples of those belonging to A are A-1. The magnetic powder in the magnetic powder tank is sampled at regular intervals, and the amount (concentration) of the fluorescent magnetic powder is determined by MIL-STD-194.
It is measured using a sedimentation tube according to the 9A standard. If the amount (concentration) is low, new fluorescent magnetic powder is added to the magnetic powder liquid tank. In this case, it takes a long time to perform the measurement because a precipitation tube is used.
It takes about 30 minutes for each measurement.)
2. There is a commercially available device that inserts a tube filled with a sampled magnetic powder solution into a coil and measures the amount (concentration) of the fluorescent magnetic powder in a certain volume by changing the electrical output of the impedance of the coil. 3B type: trade name: Nippon Electromagnetic Instruments Co., Ltd.)

【0008】Bに属するものとしては、古くは、B−
1.磁粉液タンク内の磁粉液を一定間隔の時間を置いて
サンプリングし、この磁粉液を漏洩磁束を生ぜしめるた
めのマグネット装置を有し、且つ人工傷が表面に施され
ているテストブロックの表面に接触させて該人工傷に蛍
光磁粉を集合・付着させ、紫外線灯の照射下において、
蛍光磁粉の付着によって示されている人工傷の長さを規
定スケールを用いて測定するとともに付着状態を目視で
観察することによって蛍光磁粉の輝度、疲労状態、着磁
能力を判断するという手段があり、また、B−2.磁粉
液タンク内の磁粉液を一定間隔の時間を置いてサンプリ
ングし、この磁粉液を電磁石を備えた検査液槽に投入
し、先ず、電磁石を励磁しないで、紫外線灯を照射して
光電変換器を用いて検査液槽内の検査液(磁粉液)の蛍
光輝度を測定し、次に、電磁石を励磁して当該検査液中
の鉄粉核を持つ有効磁粉(本発明における蛍光磁粉)を
検査液槽の一方に吸引した状態で紫外線灯を照射して光
電変換器を用いて検査液槽内の検査液の蛍光輝度を測定
し、両測定値の差を求めるという手段が提案(特開昭51
-73488号公報、特開昭52−120885号公報)されており、
また、B−3.循環使用中の磁粉液を、モニターライン
にバイパスさせ、モニターラインに設置した人工漏洩磁
束により蛍光磁粉が付着可能な状態にある非鉄材よりな
る磁粉付着溝に接触させて、当該付着溝に蛍光磁粉を集
合・付着させ、紫外線灯の照射下において、その蛍光輝
度を受光装置と電気信号変換発信装置とを用いて測定す
るという手段も提案(特開昭52-24573号公報)されて
り、さらに、AとBとを組み合せたものとして、蛍光磁
粉液を循環させる配管中に紫外線及び蛍光を透過させる
材料(ガラスやアクリル樹脂)からなる劣化判定管を介
装し、該判定管の磁粉液通流方向上流側の周囲に紫外線
ライトを配置すると共に、当該判定管の磁粉液通流方向
下流側の周囲にコイルを巻回し、該紫外線ライトを照射
して循環使用中の蛍光磁粉液の蛍光量を測定した後、次
いで、該コイルのリアクタンスを検出して蛍光磁粉及び
蛍光塗料が剥離した単なる磁粉から成る磁粉量を算出
し、該磁粉量と該蛍光量との差に基づいて磁粉液の劣化
度を判定するという手段が提案(特開昭63-238552 号公
報)されている。
[0008] As a member belonging to B,
1. The magnetic powder liquid in the magnetic powder liquid tank is sampled at regular intervals, and the magnetic powder liquid is provided with a magnet device for generating a leakage magnetic flux, and is provided on the surface of the test block on which artificial flaws are applied. The fluorescent magnetic powder is collected and adhered to the artificial wound by contact, and under irradiation of an ultraviolet lamp,
There is a means to measure the length of the artificial wound indicated by the adhesion of the fluorescent magnetic powder using a prescribed scale and visually observe the adhesion state to determine the brightness, fatigue state, and magnetizing ability of the fluorescent magnetic powder. , And B-2. The magnetic powder liquid in the magnetic powder liquid tank is sampled at regular intervals, and the magnetic powder liquid is put into an inspection liquid tank provided with an electromagnet. Is used to measure the fluorescent brightness of the test liquid (magnetic powder liquid) in the test liquid tank, and then excites the electromagnet to inspect the effective magnetic powder (iron magnetic powder in the present invention) having iron powder nuclei in the test liquid. A method has been proposed in which an ultraviolet lamp is irradiated while sucking one of the liquid tanks, and the fluorescent brightness of the test liquid in the test liquid tank is measured using a photoelectric converter, and the difference between the two measured values is determined (Japanese Patent Laid-Open No. 51
-73488, JP-A-52-120885).
Also , B-3. The magnetic powder liquid being circulated is bypassed to the monitor line, and is contacted with the magnetic powder attaching groove made of a non-ferrous material in a state where the fluorescent magnetic powder can be attached by artificial leakage magnetic flux installed on the monitor line, and the fluorescent magnetic powder is attached to the attaching groove. A method has also been proposed (see Japanese Patent Application Laid-Open No. 52-24573) in which the fluorescent brightness is measured using a light receiving device and an electric signal conversion transmitting device under the irradiation of an ultraviolet lamp .
In addition, the combination of A and B
Ultraviolet and fluorescent light are transmitted through the piping for circulating powder and liquid
Through a deterioration judgment tube made of material (glass or acrylic resin)
Around the upstream side of the determination tube in the direction of flow of the magnetic powder liquid.
Arrange the lights and the flow direction of the magnetic liquid
Wind the coil around the downstream side and irradiate the ultraviolet light
After measuring the amount of fluorescence of the fluorescent magnetic powder solution during circulating use,
Then, the reactance of the coil is detected and the fluorescent magnetic powder and
Calculate the amount of magnetic powder consisting of simple magnetic powder from which the fluorescent paint has peeled off
Then, based on the difference between the amount of the magnetic powder and the amount of the fluorescent light,
A method of judging the degree is proposed (JP-A-63-238552)
Information) has been.

【0009】[0009]

【発明が解決しようとする課題】連続磁粉探傷法を実施
するに際し、前記各手段を採る場合には、次の通りの問
題点がある。すなわち、A−1、A−2の手段にあって
は、磁粉液中の蛍光磁粉と非蛍光磁性粉体との合計量が
検出されてしまうという問題がある(前出特開昭51-734
88号公報参照)。
When the above-mentioned means are employed in carrying out the continuous magnetic particle flaw detection method, there are the following problems. That is, in the means of A-1 and A-2, there is a problem that the total amount of the fluorescent magnetic powder and the non-fluorescent magnetic powder in the magnetic powder liquid is detected (see Japanese Patent Laid-Open No. Sho 51-734).
No. 88).

【0010】また、B−1、B−2の手段にあっては、
磁粉液タンク内の磁粉液をサンプリングし、この磁粉液
を、B−1ではテストブロック、B−2では検査液槽を
用いて測定するので、大変手間がかかるとともに、循環
使用中の磁粉液を直接、且つ連続的に測定することがで
きないという問題がある。さらに、B−1の手段にあっ
ては検査者に高度な熟練が要求されるという問題もあ
り、B−2の手段において検査液槽の一方に吸引される
ものは蛍光磁粉と非蛍光磁性体粉との混合物であるた
め、測定した蛍光輝度値が基準値(磁粉液の探傷機能を
保証する値)よりも小さい場合に、その原因が該磁粉液
の蛍光磁粉が循環系外に持出されたためなのか、或い
は、当該磁粉液中の蛍光磁粉に対する非蛍光磁性粉体の
比が増加したためなのかを判別できないという問題があ
る。
In the means B-1 and B-2,
The magnetic powder liquid in the magnetic powder liquid tank is sampled, and this magnetic powder liquid is measured using a test block in B-1 and a test liquid tank in B-2. There is a problem that measurement cannot be performed directly and continuously. Further, in the means of B-1, there is also a problem that a high level of skill is required of the inspector. In the means of B-2, the one sucked into one of the test solution tanks is a fluorescent magnetic powder and a non-fluorescent magnetic substance. If the measured fluorescent luminance value is smaller than the reference value (a value that guarantees the flaw detection function of the magnetic powder solution) because of the mixture with the powder, the cause is that the fluorescent magnetic powder of the magnetic powder solution is taken out of the circulation system. There is a problem that it is not possible to determine whether it is because of the increase or the ratio of the non-fluorescent magnetic powder to the fluorescent magnetic powder in the magnetic powder liquid has increased.

【0011】また、B−3の手段は、循環使用中の磁粉
液を直接、且つ連続的に測定することはできるが、この
手段において磁粉付着溝に集合・付着するものは蛍光磁
粉と非蛍光磁性粉体との混在物であるため、B−2の手
段と同様に、測定した蛍光輝度値が基準値よりも小さい
場合に、その原因が該磁粉液の蛍光磁粉が循環系外に持
出されたためなのか、或いは、当該磁粉液中の蛍光磁粉
に対する非蛍光磁性粉体の比が増加したためなのかを判
別できないという問題がある。
The means of B-3 can directly and continuously measure the magnetic powder liquid in circulation use. As in the case of B-2, when the measured fluorescent luminance value is smaller than the reference value, the cause is that the fluorescent magnetic powder of the magnetic powder liquid is taken out of the circulation system, as in the means of B-2. There is a problem in that it is not possible to determine whether this is due to the increase in the ratio of the non-fluorescent magnetic powder to the fluorescent magnetic powder in the magnetic powder liquid.

【0012】上記の判別ができない場合には、磁粉液の
探傷機能を常にほぼ同一レベルに保持することが難しい
だけではなく、高価な蛍光磁粉をむだ使いしてしまうこ
とにもなる。何故なら、使用中の磁粉液の蛍光磁粉量が
循環系外に持出されたことが原因であるときには、磁粉
液タンクに一定量の新しい蛍光磁粉を追加投入すれば基
準値に回復させることができる。ところが、磁粉液中の
蛍光磁粉に対する非蛍光磁性粉体の比が増加したことが
原因であるときには、磁粉液タンクに新しい蛍光磁粉を
追加投入しても基準値に回復させることができなくな
り、使用中の磁粉液全部を交換する必要が生じる場合が
あり、この場合には追加投入した蛍光磁粉がむだになっ
てしまうのである。詳言すると、蛍光磁粉はその表面に
樹脂バインダーによって蛍光物質が付着されているため
に非蛍光磁性粉体よりも磁気感度が低いので、蛍光磁粉
と非蛍光磁性粉体とが混在した状態にあっては、前者よ
りも後者が優先的に欠陥部に集合・付着するから、後者
の量が増加するにつれて前者の付着個数が減少し、ま
た、付着した前者が後者によって覆われてしまうため
に、後者の量がある限界を越えると使用中の磁粉液全部
を交換しない限り、基準値を満たすことができなくなる
のである。なお、当業界ではこの現象を「磁粉液の疲
労」と呼んでいる。この磁粉液の疲労状態、換言すれば
磁粉液の劣化度は、AとBとを組み合せた前記特開昭63
-238552 号公報記載の手段によって判定できるが、当該
手段を角ビレットや丸ビレットなどの鋼材を対象とする
連続磁粉探傷法に適用する場合には、被検査物である鋼
材表面から脱落して磁粉液に混入するスケールの存在に
よって蛍光量が正確に決定できないので信頼性に欠ける
という問題点がある。
If the above determination cannot be made, it is not only difficult to always maintain the flaw detection function of the magnetic powder solution at substantially the same level, but also wasteful use of expensive fluorescent magnetic powder. If the reason is that the amount of fluorescent magnetic powder in the magnetic powder liquid being used is taken out of the circulation system, it can be restored to the reference value by adding a certain amount of new fluorescent magnetic powder to the magnetic powder liquid tank. it can. However, when the cause is that the ratio of non-fluorescent magnetic powder to fluorescent magnetic powder in the magnetic powder liquid has increased, it is not possible to restore the reference value even if new fluorescent magnetic powder is added to the magnetic powder liquid tank. In some cases, it is necessary to replace the entire magnetic powder liquid, and in this case, the additionally supplied fluorescent magnetic powder is wasted. More specifically, since the fluorescent magnetic powder has a lower magnetic sensitivity than the non-fluorescent magnetic powder because the fluorescent substance is attached to the surface thereof by the resin binder, the fluorescent magnetic powder and the non-fluorescent magnetic powder are mixed. In other words, since the latter preferentially gathers and adheres to the defective part over the former, the number of the former adhered decreases as the amount of the latter increases, and the former adhered is covered by the latter, If the amount of the latter exceeds a certain limit, the reference value cannot be satisfied unless all the magnetic powder liquid in use is replaced. In the art, this phenomenon is called “fatigue of the magnetic powder solution”. The state of fatigue of this magnetic powder liquid, in other words
The degree of deterioration of the magnetic powder solution is determined by the combination of A and B described in
Judgment by the means described in JP-238552
Measures steel materials such as square billets and round billets
When applied to the continuous magnetic particle flaw detection method, the steel
Due to the presence of scale that falls off the material surface and mixes with the magnetic powder
Lack of reliability because the amount of fluorescence cannot be determined accurately
There is a problem.

【0013】本発明者は、前述した従来技術に内在する
諸問題点を解決することを技術的課題として、研究を重
ねた結果、同一測定試料に対して同時に前記A手段と前
記B手段とを採る必要があることを知り、その具現化の
ために数多くの実験・試作を重ねた結果、当該課題を達
成したものである。
The inventor of the present invention has made a technical study to solve the above-mentioned various problems inherent in the prior art, and as a result of repeated studies, the A means and the B means have been simultaneously applied to the same measurement sample. We knew that we needed to take it, and through many experiments and trial productions to realize it, we achieved this task.

【0014】[0014]

【課題を解決するための手段】すなわち、本発明は、
検査物である磁化された鋼材の表面に、磁粉液タンクに
充填されている蛍光磁粉を分散させた磁粉液を接触さ
せ、当該被検査物表面の欠陥部に蛍光磁粉を集合・付着
させることによって欠陥部を探傷する連続磁粉探傷法に
おいて循環使用中の磁粉液を、巾30〜 100μm のギャッ
プが表面に形成されたフェライトコアにコイルを巻いて
なる電磁石,紫外線灯および光電素子からなる人工欠陥
センサー装置の前記電磁石の表面に接触させて前記ギャ
ップに蛍光磁粉,蛍光物質が剥離・脱落した粒子および
スケールを含む磁性粉体を集合・付着させ、当該ギャッ
プに付着している蛍光磁粉,蛍光物質が剥離・脱落した
粒子およびスケールを含む磁性粉体を対象として、その
付着量を前記電磁石のコイルのインピーダンスの電気出
力変化によって測定するとともに、同時にその蛍光輝度
を前記光電素子の電気出力変化によって測定し、両測定
値を用いて、前記磁粉液の探傷機能が常にほぼ同一レベ
ルに保持されるように制御することからなる鋼材を対象
とする連続磁粉探傷法における磁粉液の管理方法および
巾30〜 100μmのギャップが表面に形成されたフェライ
トコアにコイルを巻いてなる蛍光磁粉,蛍光物質が剥離
・脱落した粒子およびスケールを含む磁性粉体を集合・
付着させるための電磁石,前記コイルのインピーダンス
の電気出力変化を検出するための出力端子,前記ギャッ
プに付着する蛍光磁粉,蛍光物質が剥離・脱落した粒子
およびスケールを含む磁性粉体の蛍光を励起するための
紫外線灯,前記ギャップに付着する蛍光磁粉,蛍光物質
が剥離・脱落した粒子およびスケールを含む磁性粉体の
蛍光輝度を電気出力に変換するための光電素子および前
記光電素子の電気出力変化を検出するための出力端子か
ら構成されており、前記ギャップに付着する蛍光磁粉,
蛍光物質が剥離・脱落した粒子およびスケールを含む磁
性粉体の付着量とその蛍光輝度とを同時に測定できる鋼
材を対象とする連続磁粉探傷法における磁粉液の管理方
法に用いる人工欠陥センサー装置である。
Means for Solving the Problems That is, the present invention is the
The surface of the magnetized steel material to be inspected is brought into contact with the magnetic powder liquid in which the fluorescent magnetic powder filled in the magnetic powder liquid tank is dispersed, and the fluorescent magnetic powder is collected and adhered to the defect on the surface of the inspection object. A continuous magnetic particle flaw detection method for flaw detection is performed by wrapping a magnetic powder liquid being circulated in a coil around a ferrite core having a gap of 30 to 100 μm formed on the surface.
A fluorescent magnetic powder , particles from which a fluorescent substance has been peeled off or fallen off in the gap by contacting the surface of the electromagnet of the artificial defect sensor device comprising an electromagnet, an ultraviolet lamp and a photoelectric element
The magnetic powder containing the scale is collected and adhered, and the fluorescent magnetic powder and fluorescent substance adhering to the gap are separated and dropped.
For the magnetic powder containing particles and scale , the amount of adhesion is measured by the change in the electric output of the impedance of the coil of the electromagnet, and at the same time, the fluorescence luminance is measured by the change in the electric output of the photoelectric element. A steel material that is controlled so that the flaw detection function of the magnetic powder solution is always maintained at substantially the same level by using
Successive magnetic particle method fluorescence gap management method and width. 30 to 100 [mu] m magnetic particle solution is by winding a coil on a ferrite core formed on the surface of the magnetic particle, a fluorescent substance is peeled off and
・ Assemble magnetic powder including dropped particles and scale
An electromagnet for attaching, an output terminal for detecting a change in electric output of impedance of the coil, a fluorescent magnetic powder adhering to the gap, and a particle from which a fluorescent substance has been separated or dropped
UV lamp for exciting the fluorescence of magnetic powder including scale and scale , fluorescent magnetic powder attached to the gap , fluorescent substance
There are an output terminal for detecting an electrical change in the output of the photoelectric element and the photoelectric element for converting the fluorescence intensity of the magnetic powder comprising particles and scale and peeling and dropping into an electrical output, said gap Attached fluorescent magnetic powder,
Magnets containing particles and scales from which phosphors have detached or fallen
That can simultaneously measure the amount of adherent powder and its fluorescent brightness
This is an artificial defect sensor device used in a method for managing a magnetic powder solution in a continuous magnetic particle flaw detection method for a material .

【0015】本発明の構成をより詳しく説明すれば次の
通りである。先ず、本発明においては、連続磁粉探傷法
において循環使用中の磁粉液を、常法に従ってモニター
ラインにバイパスさせ、該モニターラインに人工欠陥セ
ンサー装置を設置してそのギャップが形成された電磁石
の表面に当該磁粉液を接触させる。この場合、モニター
ラインには所定時間毎に作動するサンプル弁(例えば電
磁弁)を設け、この弁を作動させて、一定時間毎に一定
量の磁粉液が電磁石の表面上に流れるようにすることが
好ましい。
The structure of the present invention will be described in more detail as follows. First, in the present invention, in the continuous magnetic particle flaw detection method, the magnetic particle liquid being circulated is bypassed to a monitor line according to a conventional method, and an artificial defect sensor device is installed on the monitor line to form a surface of the electromagnet having the gap formed therein. To contact the magnetic powder solution. In this case, the monitor line is provided with a sample valve (for example, an electromagnetic valve) that operates every predetermined time, and this valve is operated so that a constant amount of magnetic powder liquid flows on the surface of the electromagnet every predetermined time. Is preferred.

【0016】人工欠陥センサー装置の具体的な構成は図
1に示す通りであり、フェライトコア(材質は、市販の
VTRのヘッドに用いられているものと同種のもの)1
の平滑な表面2に巾30〜100 μmの直線状ギャップ3が
形成されていて、コア1にはコイル4が巻線されて電磁
石を構成しており、コイル4はコア1の励磁とインピー
ダンスの電気出力変化を検出するための出力端子とを兼
ねていて、その端子41は、常法に従って励磁電源(図示
せず)とインピーダンス測定器(図示せず)とに接続さ
れる。コア1の表面付近には、紫外線灯(市販のブラッ
クライト)5と光電素子(市販品)6が配置されてお
り、光電素子の出力端子61は、常法に従って光電増巾器
(図示せず)に接続される。なお、通常、この人工欠陥
センサー装置は暗箱に収納して設置する。
The specific structure of the artificial defect sensor device is as shown in FIG. 1, and a ferrite core (the material is the same as that used in a commercially available VTR head) 1
A linear gap 3 having a width of 30 to 100 μm is formed on a smooth surface 2 of the coil, and a coil 4 is wound around the core 1 to form an electromagnet. The terminal 41 also serves as an output terminal for detecting a change in electric output, and the terminal 41 is connected to an excitation power supply (not shown) and an impedance measuring instrument (not shown) in a conventional manner. An ultraviolet lamp (commercially available black light) 5 and a photoelectric device (commercially available) 6 are arranged near the surface of the core 1. The output terminal 61 of the photoelectric device is connected to a photoelectric amplifier (not shown) according to a conventional method. ). Usually, this artificial defect sensor device is housed in a dark box and installed.

【0017】さて、コア1が励磁されると、その表面に
形成されているギャップ3は人工欠陥となり漏洩磁束が
生じるので、接触させた磁粉液中の蛍光磁粉を含む磁性
粉体が、換言すれば蛍光磁粉と非蛍光磁性粉体との混合
物がギャップ3に集合・付着する。ギャップ3に蛍光磁
粉を含む磁性粉体が付着すると、ギャップのある電磁石
の磁路が付着した磁性粉体により閉じられる形になるの
で、コイル4のインピーダンスが付着する磁性粉体の量
に応じて変化するから、コイル4のインピーダンスの電
気出力変化によってその付着量が測定できる。なお、こ
の付着量は磁粉液に存在している蛍光磁粉を含む磁性粉
体の量にほぼ比例する。また、コア1の励磁と同時に紫
外線灯5から紫外線がギャップ3に向けて照射される
と、ギャップ3に付着している磁性粉体に含まれている
蛍光磁粉が励起されて蛍光を発し、その蛍光輝度は磁性
粉体中の蛍光磁粉の量に応じて変化するから、蛍光を捕
捉する光電素子6の電気出力変化によって蛍光輝度が測
定できる。この場合、光電素子6による蛍光の捕捉は図
示のように直接でもよいが、光ファイバーを用いて光電
素子に導くこともできる。なお、この蛍光輝度は磁粉液
に存在している蛍光磁粉の量にほぼ比例する。なお、磁
粉液中に存在している非磁性体物(例えば、剥離した蛍
光染料や樹脂バインダー等)はギャップに集合・付着し
ないから測定値に影響はない。
When the core 1 is excited, the gap 3 formed on the surface of the core 1 becomes an artificial defect and generates a leakage magnetic flux. Therefore, the magnetic powder containing the fluorescent magnetic powder in the magnetic powder liquid in contact with the core 3 is in other words. For example, a mixture of the fluorescent magnetic powder and the non-fluorescent magnetic powder gathers and adheres to the gap 3. When the magnetic powder including the fluorescent magnetic powder adheres to the gap 3, the magnetic path of the electromagnet having the gap is closed by the adhered magnetic powder, so that the impedance of the coil 4 depends on the amount of the adhered magnetic powder. Therefore, the amount of adhesion can be measured by a change in the electrical output of the impedance of the coil 4. The amount of the adhesion is substantially proportional to the amount of the magnetic powder containing the fluorescent magnetic powder present in the magnetic powder liquid. Further, when ultraviolet rays are emitted from the ultraviolet lamp 5 toward the gap 3 simultaneously with the excitation of the core 1, the fluorescent magnetic powder contained in the magnetic powder attached to the gap 3 is excited and emits fluorescence. Since the fluorescent luminance changes according to the amount of the fluorescent magnetic powder in the magnetic powder, the fluorescent luminance can be measured by a change in the electric output of the photoelectric element 6 that captures the fluorescent light. In this case, the capture of the fluorescence by the photoelectric element 6 may be performed directly as shown in the figure, but may be guided to the photoelectric element using an optical fiber. Note that the fluorescent luminance is substantially proportional to the amount of fluorescent magnetic powder present in the magnetic powder liquid. It should be noted that the measured value is not affected because non-magnetic substances (for example, peeled-off fluorescent dyes and resin binders) existing in the magnetic powder liquid do not aggregate or adhere to the gap.

【0018】上記の測定は、一定間隔の時間を置いて周
期的に行われるが、その都度、コア1の表面を洗浄して
ギャップ3に付着している蛍光磁粉を含む磁性粉体は洗
浄される。また、上記の測定に当ってのコア1の励磁や
紫外線灯5の照射等の諸条件は、できるだけ本発明を適
用する連続磁粉探傷ラインにおける条件に近似したもの
を選定する。唯、ギャップ3の巾をあまりに狭くすると
電気出力変化が測定しずらくなり、また、洗浄に手間が
かかるので、約30〜100 μmの範囲から選定すべきであ
り、好ましい巾は約50〜60μmである。
The above measurement is performed periodically at regular intervals, and each time the surface of the core 1 is cleaned, the magnetic powder containing the fluorescent magnetic powder attached to the gap 3 is cleaned. You. The conditions such as the excitation of the core 1 and the irradiation of the ultraviolet lamp 5 in the above measurement are selected as close as possible to the conditions in the continuous magnetic particle flaw detection line to which the present invention is applied. However, if the width of the gap 3 is too small, the change in the electric output becomes difficult to measure, and the cleaning takes time. Therefore, the width should be selected from the range of about 30 to 100 μm, and the preferable width is about 50 to 60 μm. It is.

【0019】次に、本発明においては、前記の通りにし
て、同一測定試料について同時にその付着量と蛍光輝度
とを測定し、両測定値を用いて前記磁粉液の探傷機能が
常にほぼ同一レベルに保持されるように制御する。この
場合、制御機器自体は周知の各種機器が用いられる。磁
粉液を制御するための具体的な態様は図2に示す通りで
あり、前記構成の人工欠陥センサー装置における電磁石
(図1中のコア1とコイル4とで構成されている)の出
力端子(図1中の41)はインピーダンス測定器7に接続
され、同じく光電素子の出力端子(図1中の61)は光電
増巾器8に接続されており、インピーダンス測定器7の
出力と光電増巾器8の出力とは、常法に従って演算器9
に入力され、演算器9の出力は、常法に従って制御器10
に入力されている。なお、制御器10からは、前記磁粉液
の探傷機能が常にほぼ同一レベルに保持されるように制
御するために必要な各種制御信号が出力される。
Next, in the present invention, as described above, the adhesion amount and the fluorescence luminance of the same measurement sample are measured simultaneously, and the flaw detection function of the magnetic powder solution is almost always at the same level using both the measured values. Is controlled to be held at In this case, various known devices are used as the control device itself. The specific mode for controlling the magnetic powder solution is as shown in FIG. 2, and the output terminal of the electromagnet (consisting of the core 1 and the coil 4 in FIG. 1) in the artificial defect sensor device having the above-described configuration. 1) is connected to the impedance measuring device 7, and the output terminal of the photoelectric element (61 in FIG. 1) is also connected to the photoelectric amplifier 8, so that the output of the impedance measuring device 7 and the photoelectric amplifier are connected. The output of the calculator 8 is defined as
The output of the arithmetic unit 9 is supplied to the controller 10 in accordance with a conventional method.
Has been entered. Note that the controller 10 outputs various control signals necessary for controlling the flaw detection function of the magnetic powder solution to be always maintained at substantially the same level.

【0020】さて、インピーダンス測定器7からの出力
は蛍光磁粉を含む磁性粉体の付着量の測定値を示すもの
(以下「付着量出力値」という)であり、光電増巾器8
からの出力は当該蛍光磁粉を含む磁性粉体の蛍光輝度の
測定値を示すもの(以下「輝度出力値」という)であ
る。付着量出力値は前記磁粉液に存在している蛍光磁粉
を含む磁性粉体の量にほぼ比例した値であり、輝度出力
値は当該磁粉液に存在している蛍光磁粉の量にほぼ比例
した値であるから、両出力値を演算器9に入力して演算
すれば、前記磁粉液に存在する蛍光磁粉量と非蛍光磁性
粉体量との関係を求めることができ、その結果に応じ
て、当該磁粉液の探傷機能が常に同一レベルに保持され
るように制御するために必要な各種制御信号を制御器10
から出力させることができる。
The output from the impedance measuring device 7 indicates the measured value of the amount of magnetic powder containing fluorescent magnetic powder (hereinafter referred to as the "attached amount output value").
Is a value indicating the measured value of the fluorescent luminance of the magnetic powder containing the fluorescent magnetic powder (hereinafter referred to as “luminance output value”). The adhesion amount output value is a value substantially proportional to the amount of the magnetic powder containing the fluorescent magnetic powder present in the magnetic powder liquid, and the luminance output value is substantially proportional to the amount of the fluorescent magnetic powder present in the magnetic powder liquid. Since both output values are input to the calculator 9 and calculated, the relationship between the amount of fluorescent magnetic powder and the amount of non-fluorescent magnetic powder present in the magnetic powder liquid can be obtained, and according to the result, The controller 10 sends various control signals necessary to control the flaw detection function of the magnetic powder liquid so as to be always maintained at the same level.
Can be output.

【0021】演算内容および制御信号内容は次の通りで
ある。 A:輝度出力値(測定値),B:付着量出力値(測定
値),Be:蛍光磁粉量,Bi:非蛍光磁性粉体量,
m:蛍光磁粉の種類等によって定まる常数とすれば、B
e=mA又はA=1/m Be・・・式1で示す通り輝度出
力値と蛍光磁粉量とは比例関係にあり、B=Be+Bi
・・・式2で示す通り付着しているものは蛍光磁粉と非
蛍光磁性粉体との混合物であって、B=mA+Bi又は
Bi=B−mA・・・式3によってBiを演算して求め
ることができる。このBiの値は磁粉液の疲労度を示す
ものといえる。 Ao:蛍光輝度管理値,Bo:蛍光磁粉量管理値.Bi
o:演算出力管理値として、演算の結果と磁粉液の状態
を表1に示す。
The content of the operation and the content of the control signal are as follows. A: luminance output value (measured value), B: adhesion amount output value (measured value), Be: fluorescent magnetic powder amount, Bi: non-fluorescent magnetic powder amount,
m: If it is a constant determined by the type of fluorescent magnetic powder, B
e = mA or A = 1 / m Be... As shown in equation 1, the luminance output value and the amount of fluorescent magnetic powder are in a proportional relationship, and B = Be + Bi.
.. Attached as shown in equation 2 is a mixture of fluorescent magnetic powder and non-fluorescent magnetic powder, and B = mA + Bi or Bi = B-mA. be able to. It can be said that the value of Bi indicates the degree of fatigue of the magnetic powder solution. Ao: fluorescent brightness control value, Bo: fluorescent magnetic powder amount control value. Bi
o: Table 1 shows the result of the calculation and the state of the magnetic powder solution as the calculation output management value.

【0022】[0022]

【表1】 [Table 1]

【0023】蛍光磁粉不足の場合には新しい蛍光磁粉を
追加投入するための制御信号を出力し、蛍光磁粉過剰の
場合には水を補給するための制御信号を出力し、疲労の
場合には全磁粉液を交換するための制御信号を出力す
る。なお、制御器10から前記サンプル弁を作動させるた
めの制御信号を出力させることもできる。上記の制御器
10から出力される蛍光磁粉を追加投入するための制御信
号および水を補給するための制御信号は本発明を適用す
る連続磁粉探傷ラインに設置されている蛍光磁粉投入器
および給水弁をそれぞれ作動させ、また、全磁粉液を交
換するための制御信号は探傷作業従事者の注意をうなが
すためのランプを点灯させる。
When the fluorescent magnetic powder is insufficient, a control signal for adding new fluorescent magnetic powder is output. When the fluorescent magnetic powder is excessive, a control signal for replenishing water is output. A control signal for replacing the magnetic powder liquid is output. Note that a control signal for operating the sample valve may be output from the controller 10. The above controller
The control signal for additionally charging the fluorescent magnetic powder output from 10 and the control signal for replenishing water respectively operate the fluorescent magnetic powder charging device and the water supply valve installed in the continuous magnetic particle flaw detection line to which the present invention is applied. In addition, a control signal for replacing all the magnetic powder liquid turns on a lamp to draw the attention of a flaw detection worker.

【0024】[0024]

【作用】本発明では、鋼材を対象とする連続磁粉探傷法
において循環使用中の磁粉液に存在している蛍光磁粉
非蛍光磁性粉体とを測定試料として、同時にその付着量
と蛍光輝度とを測定し、得られる輝度出力値Aと付着量
出力値Bとを用いて、次の作用によって、当該磁粉液の
探傷機能が常にほぼ同一レベルに保持されるように制御
する。
According to the present invention, the fluorescent magnetic particles present in the magnetic particle solution in recycled in a continuous magnetic particle method to target steel
Using the non-fluorescent magnetic powder as a measurement sample, the adhesion amount and the fluorescence luminance are measured at the same time, and using the obtained luminance output value A and adhesion amount output value B, the flaw detection of the magnetic powder liquid is performed by the following operation. Control is performed so that functions are always maintained at almost the same level.

【0025】すなわち、図3は、縦軸に輝度出力値Aお
よび付着量出力値Bをとり、横軸に磁粉液の蛍光磁粉量
(濃度)Dをとって、前記人工欠陥センサー装置からの
実際の出力を示したもので、線Aが輝度出力で線Bが付
着量出力であり、図4は、信号処理により輝度出力と付
着量出力の零点を一致させるとともに感度調整により図
3の線Aと線Bとの傾斜を一致させたものである。先
ず、図4において、検査者の管理目標値とする蛍光磁粉
量をD0 点とすると、その時の輝度はA0 点であり、循
環使用中のある時点において測定した輝度がA1 点にな
ったとすると、その時の蛍光磁粉量(濃度)はD1 点で
あるから、磁粉液タンクの容積から新しい蛍光磁粉をど
れだけ追加投入すれば良いかが解る。従って、A0 とA
1 の測定によって必要量の新しい蛍光磁粉の投入するこ
とにより磁粉液の探傷機能を常にほぼ同一レベルに保持
することが可能となるのである。
That is, in FIG. 3, the ordinate represents the luminance output value A and the adhesion amount output value B, and the abscissa represents the fluorescent magnetic powder amount (concentration) D of the magnetic powder solution. In FIG. 4, line A is the luminance output and line B is the adhesion amount output. FIG. 4 shows that the luminance output and the adhesion amount output are matched with the zero point by signal processing, and the sensitivity of the line A in FIG. And the line B with the same inclination. First, in FIG. 4, assuming that the amount of fluorescent magnetic powder to be the management target value of the inspector is point D 0 , the luminance at that time is point A 0 , and the luminance measured at a certain point during cyclic use is point A 1. when the fluorescent magnetic powder amount at that time (concentration) from a point D, seen either from the volume of the magnetic particle solution tank may be how much additionally introduced a new fluorescence magnetic powder. Therefore, A 0 and A
By injecting a required amount of new fluorescent magnetic powder by the measurement of 1 , it is possible to always maintain the flaw detection function of the magnetic powder liquid at almost the same level.

【0026】次に、図4において、線Aと線Bとを、そ
れぞれ磁粉が未使用状態である時の輝度出力と付着量出
力とし、点線A′と点線B′とを、それぞれ当該磁粉液
が使用されて疲労した状態にある時の輝度出力と付着量
出力を示すものとして考察すると、磁粉液の蛍光磁粉量
が単に減少した場合には輝度出力と付着量出力とは同じ
比率で減少するから二つの直線は重なった状態である
が、輝度出力が非蛍光磁性粉体量の増加によって減少し
た場合には線Bは線Aに重ならなくなり、斜線で示した
如き変化を示す。点線A′と点線B′とを磁粉液の疲労
限界直線とすれば、疲労は輝度出力Aと付着量出力Bの
比で表わすことができ、未使用状態の磁粉液をB/Aと
すればB/A=1であり、またB′/A′>1であり、
その値は検査者の管理値によって定めることができる。
従って、疲労による全磁粉液の交換時期を適格にチェッ
クすることが可能となるのである。
Next, in FIG. 4, lines A and B are the luminance output and the adhesion amount output when the magnetic powder is not in use, respectively, and the dotted lines A 'and B' are respectively Is considered to indicate the luminance output and the adhesion amount output in the state of fatigue when used, if the amount of the fluorescent magnetic powder of the magnetic powder liquid simply decreases, the luminance output and the adhesion amount output decrease at the same ratio. Although the two straight lines overlap each other, when the luminance output decreases due to the increase in the amount of the non-fluorescent magnetic powder, the line B does not overlap the line A and shows a change as indicated by oblique lines. If the dotted line A 'and the dotted line B' are the fatigue limit line of the magnetic powder solution, the fatigue can be represented by the ratio of the luminance output A to the adhesion amount output B. If the unused magnetic powder solution is B / A, B / A = 1, and B '/ A'> 1,
The value can be determined by the control value of the inspector.
Therefore, it is possible to appropriately check the replacement time of the entire magnetic powder solution due to fatigue.

【0027】[0027]

【実施例】本発明の実施例を次に示す。 実施例 長方形(60mm×15mm)の平滑な表面を備えておりその長
手方向に対し直交する方向に巾50μmの直線状ギャップ
が形成されたフェライトコアに、コイルを巻いて電磁石
を構成し、当該コイルの端子を励磁電源(交流)とイン
ピーダンス測定器とに接続するとともに、当該フェライ
トコアの表面近傍にブラックライトと光電素子とを配置
し、当該光電素子の端子を光電増巾器に接続して人工欠
陥センサー装置を構成する。上記電磁石,ブラックライ
トおよび光電素子は暗箱に収納し、インピーダンス測定
器の出力と光 電増巾器の出力を演算器まで導いて入力
するとともに、演算器の出力を制御器に入力する(図2
参照)。
Embodiments of the present invention will be described below. EXAMPLE An electromagnet is formed by winding a coil around a ferrite core having a rectangular (60 mm × 15 mm) smooth surface and a linear gap having a width of 50 μm formed in a direction orthogonal to the longitudinal direction thereof. Are connected to an excitation power supply (AC) and an impedance measuring instrument, and a black light and a photoelectric element are arranged near the surface of the ferrite core, and the terminal of the photoelectric element is connected to a photoelectric amplifier to be artificial. Construct a defect sensor device. The electromagnet, the black light and the photoelectric element are housed in a dark box, and the output of the impedance measuring device and the output of the photomultiplier are guided to the arithmetic unit and input, and the output of the arithmetic unit is input to the controller (FIG. 2).
reference).

【0028】連続磁粉探傷法を、角ビレットを被検査物
とし、蛍光磁粉LY4700(商品名:マークテック株
式会社・製)を水1lに対して 0.5gの割合で分散させ
て調製した磁粉液を用いて実施し、循環使用中の当該磁
粉液をモニターラインにバイパスさせ、該モニターライ
ンに上記人工欠陥センサー装置の電磁石,ブラックライ
トおよび光電素子を設置して、磁粉液の測定を行う。な
お、サンプリングする磁粉液は1回当り1デシリットル
とした。上記演算器による演算内容は、前出表1に示し
たものと同内容であり、上記制御器から出力させる制御
信号内容並びに該信号による制御作動も前記制御信号並
びに作動と同じである。上記人工欠陥センサー装置によ
る測定を1時間置きに行って磁粉液管理を行った結果、
磁粉液の探傷機能を常にほぼ同一レベルに保持すること
ができ、また、全磁粉液の交換時期を確実に知ることが
できた。
In the continuous magnetic particle flaw detection method, a magnetic powder solution prepared by dispersing a fluorescent magnetic powder LY4700 (trade name: Marktec Co., Ltd.) at a ratio of 0.5 g per liter of water using square billet as an inspection object was used. The magnetic powder solution during circulation is bypassed to the monitor line, and the electromagnet, the black light and the photoelectric element of the artificial defect sensor device are installed on the monitor line to measure the magnetic powder solution. The magnetic powder liquid to be sampled was 1 deciliter each time. The content of the operation by the computing unit is the same as that shown in Table 1 above, and the content of the control signal output from the controller and the control operation by the signal are the same as the control signal and the operation. As a result of performing the magnetic powder liquid management by performing the measurement with the artificial defect sensor device every one hour,
The flaw detection function of the magnetic powder solution could always be maintained at substantially the same level, and the timing for replacing all the magnetic powder solutions could be reliably known.

【0029】[0029]

【発明の効果】本発明は、前記の通りの構成を採ってい
るので、鋼材を対象とする連続磁粉探傷法において循環
使用中の磁粉液を直接、且つ連続的に測定でき、しか
も、同一測定試料について、同時にその付着量と蛍光輝
度とが測定できる。そして、得られた両測定値を用いて
当該磁粉液に存在する蛍光磁粉量と非蛍光磁性粉体量と
の関係を求めることができるので、従来技術では不可能
であった蛍光輝度の低下原因の判別、詳言すれば、蛍光
磁粉が循環系外に持出されたためなのか、或いは、蛍光
磁粉に対する非蛍光磁性粉体の比が増加したためなのか
の判別ができる。
As described above, the present invention employs the above-described structure, so that the magnetic powder liquid in circulation can be directly and continuously measured in the continuous magnetic particle flaw detection method for steel , and the same measurement can be performed. For the sample, the attached amount and the fluorescence luminance can be measured simultaneously. Then, since the relationship between the amount of the fluorescent magnetic powder and the amount of the non-fluorescent magnetic powder present in the magnetic powder liquid can be obtained by using both the obtained measurement values, the cause of the decrease in the fluorescence luminance which was impossible in the related art. More specifically, it is possible to determine whether the reason is that the fluorescent magnetic powder has been taken out of the circulation system or that the ratio of the non-fluorescent magnetic powder to the fluorescent magnetic powder has increased.

【0030】また、本発明においては、前記両測定値が
ともに電気出力信号として得られるので、これを用いて
各種制御信号を出力させることができるから、磁粉液の
自動管理が可能となる。
Further, in the present invention, since both of the measured values are obtained as electric output signals, various control signals can be output by using these signals, so that the automatic management of the magnetic powder liquid becomes possible.

【0031】さらに、本発明における人工欠陥センサー
装置は、対象とする連続磁粉探傷ラインにおける欠陥検
出条件に近似した条件によって作動させることができる
ので、信頼性の高い測定値を得ることができる。
Further, since the artificial defect sensor device according to the present invention can be operated under conditions similar to the defect detection conditions in the target continuous magnetic particle flaw detection line, highly reliable measured values can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る人工欠陥センサー装置の構成を示
した概念説明図である。
FIG. 1 is a conceptual explanatory view showing a configuration of an artificial defect sensor device according to the present invention.

【図2】本発明の実施態様を示したブロック説明図であ
る。
FIG. 2 is an explanatory block diagram showing an embodiment of the present invention.

【図3】本発明における輝度出力および付着量出力と磁
粉液の蛍光磁粉量との関係を示したグラフである。
FIG. 3 is a graph showing a relationship between a luminance output and an attached amount output and a fluorescent magnetic powder amount of a magnetic powder solution in the present invention.

【図4】本発明における輝度出力および付着量出力と磁
粉液の蛍光磁粉量との関係を示したグラフである。
FIG. 4 is a graph showing a relationship between a luminance output and an attached amount output and a fluorescent magnetic powder amount of a magnetic powder solution in the present invention.

【符号の説明】[Explanation of symbols]

1 フェライトコア 2 平滑な表面 3 直線状ギャップ 4 コイル 5 紫外線灯 6 光電素子 7 インピーダンス測定器 8 光電増巾器 9 演算器 10 制御器 A 輝度出力 B 付着量出力 DESCRIPTION OF SYMBOLS 1 Ferrite core 2 Smooth surface 3 Linear gap 4 Coil 5 Ultraviolet lamp 6 Photoelectric element 7 Impedance measuring device 8 Photoelectric amplifier 9 Computing unit 10 Controller A Luminance output B Adhesion amount output

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 27/72 - 27/90 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) G01N 27/72-27/90

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被検査物である磁化された鋼材の表面
に、磁粉液タンクに充填されている蛍光磁粉を分散させ
た磁粉液を接触させ、当該被検査物表面の欠陥部に蛍光
磁粉を集合・付着させることによって欠陥部を探傷する
連続磁粉探傷法において循環使用中の磁粉液を、巾30〜
100μm のギャップが表面に形成されたフェライトコア
にコイルを巻いてなる電磁石,紫外線灯および光電素子
からなる人工欠陥センサー装置の前記電磁石の表面に接
触させて前記ギャップに蛍光磁粉,蛍光物質が剥離・脱
落した粒子およびスケールを含む磁性粉体を集合・付着
させ、当該ギャップに付着している蛍光磁粉,蛍光物質
が剥離・脱落した粒子およびスケールを含む磁性粉体を
対象として、その付着量を前記電磁石のコイルのインピ
ーダンスの電気出力変化によって測定するとともに、同
時にその蛍光輝度を前記光電素子の電気出力変化によっ
て測定し、両測定値を用いて、前記磁粉液の探傷機能が
常にほぼ同一レベルに保持されるように制御することを
特徴とする鋼材を対象とする連続磁粉探傷法における磁
粉液の管理方法。
1. A magnetic powder liquid in which fluorescent magnetic powder filled in a magnetic powder liquid tank is dispersed is brought into contact with the surface of a magnetized steel material as an object to be inspected, and the fluorescent magnetic powder is brought into contact with a defect on the surface of the object to be inspected. the magnetic particle solution in the recycled in a continuous magnetic particle method for flaw detection of defective portions by the set-deposited, width 30
Ferrite core with 100μm gap formed on the surface
A magnetic powder and a fluorescent substance are separated from the gap by contacting the surface of the electromagnet of the artificial defect sensor device comprising an electromagnet wound with a coil , an ultraviolet lamp, and a photoelectric element.
Fluorescent magnetic powder and fluorescent substance attached to the gap by assembling and attaching magnetic powder including dropped particles and scale
For magnetic powders containing particles and scales that have detached and fallen off, the amount of adhesion is measured by the change in the electrical output of the impedance of the coil of the electromagnet, and at the same time, the fluorescence brightness is measured by the change in the electrical output of the photoelectric element. A method for managing a magnetic powder in a continuous magnetic particle test for a steel material, wherein the control is performed so that the flaw detection function of the magnetic powder is always maintained at substantially the same level using both measured values.
【請求項2】 巾30〜 100μmのギャップが表面に形成
されたフェライトコアにコイルを巻いてなる蛍光磁粉
蛍光物質が剥離・脱落した粒子およびスケールを含む磁
性粉体を集合・付着させるための電磁石,前記コイルの
インピーダンスの電気出力変化を検出するための出力端
子,前記ギャップに付着する蛍光磁粉,蛍光物質が剥離
・脱落した粒子およびスケールを含む磁性粉体の蛍光を
励起するための紫外線灯,前記ギャップに付着する蛍光
磁粉,蛍光物質が剥離・脱落した粒子およびスケール
含む磁性粉体の蛍光輝度を電気出力に変換するための光
電素子および前記光電素子の電気出力変化を検出するた
めの出力端子から構成されており、前記ギャップに付着
する蛍光磁粉,蛍光物質が剥離・脱落した粒子およびス
ケールを含む磁性粉体の付着量とその蛍光輝度とを同時
に測定できることを特徴とする鋼材を対象とする連続磁
粉探傷法における磁粉液の管理方法に用いる人工欠陥セ
ンサー装置。
2. A fluorescent magnetic powder gap width. 30 to 100 [mu] m is formed by winding a coil on a ferrite core formed on the surface,
An electromagnet for assembling and adhering magnetic powder containing particles and scale from which the fluorescent substance has been peeled off or dropped, an output terminal for detecting a change in the electrical output of the impedance of the coil, a fluorescent magnetic powder adhering to the gap, and a fluorescent substance Is peeling
An ultraviolet lamp for exciting the fluorescence of the magnetic powder containing the dropped particles and the scale , the fluorescent magnetic powder attached to the gap, and the fluorescent output of the magnetic powder containing the separated particles and the scale of the fluorescent substance are electrically output. It is an output terminal for detecting an electrical change in the output of the photoelectric element and the photoelectric element for converting, attached to the gap
Fluorescent particles, particles and particles from
Simultaneous application of the amount of magnetic powder containing kale and its fluorescent brightness
An artificial defect sensor device used in a method for managing a magnetic powder solution in a continuous magnetic particle flaw detection method for a steel material characterized by being capable of being measured at a high speed.
JP05695492A 1992-02-06 1992-02-06 Method for managing magnetic powder liquid in magnetic particle flaw detection and artificial defect sensor device used in the method Expired - Fee Related JP3170649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05695492A JP3170649B2 (en) 1992-02-06 1992-02-06 Method for managing magnetic powder liquid in magnetic particle flaw detection and artificial defect sensor device used in the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05695492A JP3170649B2 (en) 1992-02-06 1992-02-06 Method for managing magnetic powder liquid in magnetic particle flaw detection and artificial defect sensor device used in the method

Publications (2)

Publication Number Publication Date
JPH05215724A JPH05215724A (en) 1993-08-24
JP3170649B2 true JP3170649B2 (en) 2001-05-28

Family

ID=13041942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05695492A Expired - Fee Related JP3170649B2 (en) 1992-02-06 1992-02-06 Method for managing magnetic powder liquid in magnetic particle flaw detection and artificial defect sensor device used in the method

Country Status (1)

Country Link
JP (1) JP3170649B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007024058A1 (en) * 2007-05-22 2008-11-27 Illinois Tool Works Inc., Glenview Apparatus and method for test equipment control
JP4871404B2 (en) * 2010-05-07 2012-02-08 マークテック株式会社 Method and apparatus for measuring component concentration in test liquid used for wet fluorescent magnetic particle testing
CN108051497B (en) * 2018-02-11 2024-01-26 西安科技大学 Three-dimensional magnetic field scanning system and method for rock mass fracture distribution detection

Also Published As

Publication number Publication date
JPH05215724A (en) 1993-08-24

Similar Documents

Publication Publication Date Title
Raj et al. Practical non-destructive testing
JP2000074832A (en) Oil contamination degree measuring device
ATE368224T1 (en) METHOD AND APPARATUS FOR IMPROVED LUMINESCENCE TESTS
CN102884417B (en) The assay method of the constituent concentration in the inspection liquid used in the test of wet type fluorescent magnetic particle flaw detection and determinator
EP0534951A1 (en) Measuring apparatus.
CN1882834B (en) Fluid monitoring apparatus and method
ES530246A0 (en) A METHOD FOR DETECTING AND MEASURING, IN A CAST METAL SAMPLE, SUSPENDED PARTICLES SIZE GREATER THAN ONE DEFAULT
TW201534729A (en) Method of inspecting microorganisms
JP3170649B2 (en) Method for managing magnetic powder liquid in magnetic particle flaw detection and artificial defect sensor device used in the method
US20100142753A1 (en) device and method for monitoring a magnetic powder
JP2005351910A (en) Defect inspection method and its apparatus
IT9021358A1 (en) FIELD INTENSITY INDICATOR IN MAGNETOSCOPIC INSPECTION.
JP6603265B2 (en) Concentration measuring method of fluorescent magnetic powder liquid, concentration measuring apparatus of fluorescent magnetic powder liquid
JP2970944B2 (en) Magnetic powder liquid analyzer
CN108226065A (en) A kind of high-precision DEK multiparameter water quality analyzers
JPS62147357A (en) Control and controlling apparatus for magnetic powder liquid
US8922642B2 (en) Device and method for controlling test material
DE10203738B4 (en) Measuring device and method for measuring the flux density distribution in a band-shaped, superconducting sample
JPS62277553A (en) Measuring method for magnetic powder concentration
CN106872915B (en) Particle content monitoring method during flaw detection
JPS63238552A (en) Method for determining degree of deterioration of fluorescent magnetic powder liquid
WO1996013718A1 (en) Installation for checking a suspension of fluorescing material
JPH09113674A (en) Remote inspection device and its inspection method
JPS62147358A (en) Magnetic flaw detector
JPS6326572A (en) Method for deciding magnetic powder liquid

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010213

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080323

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090323

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090323

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees