JP4871404B2 - Method and apparatus for measuring component concentration in test liquid used for wet fluorescent magnetic particle testing - Google Patents

Method and apparatus for measuring component concentration in test liquid used for wet fluorescent magnetic particle testing Download PDF

Info

Publication number
JP4871404B2
JP4871404B2 JP2010107561A JP2010107561A JP4871404B2 JP 4871404 B2 JP4871404 B2 JP 4871404B2 JP 2010107561 A JP2010107561 A JP 2010107561A JP 2010107561 A JP2010107561 A JP 2010107561A JP 4871404 B2 JP4871404 B2 JP 4871404B2
Authority
JP
Japan
Prior art keywords
test
fluorescent magnetic
test liquid
measuring
flaw detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010107561A
Other languages
Japanese (ja)
Other versions
JP2011237227A (en
Inventor
謙二 松本
貴司 藤本
慶亮 小松
俊治 逢坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marktec Corp
Original Assignee
Marktec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marktec Corp filed Critical Marktec Corp
Priority to JP2010107561A priority Critical patent/JP4871404B2/en
Priority to PCT/JP2010/071864 priority patent/WO2011138843A1/en
Priority to CN201080066652.5A priority patent/CN102884417B/en
Publication of JP2011237227A publication Critical patent/JP2011237227A/en
Application granted granted Critical
Publication of JP4871404B2 publication Critical patent/JP4871404B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

本発明は、被検査体の磁化した金属の表面に、少なくとも蛍光磁粉と、分散剤とを混合してなる検査液を接触させ、表面の傷部に蛍光磁粉を集合および付着させることによって、傷部を探傷する湿式蛍光磁粉探傷試験に用いる検査液に関し、より詳細には、検査液における成分濃度の測定方法および測定装置に関する。   In the present invention, the surface of the magnetized metal of the object to be inspected is brought into contact with a test liquid obtained by mixing at least the fluorescent magnetic powder and the dispersant, and the fluorescent magnetic powder is collected and adhered to the scratched surface. The present invention relates to a test liquid used in a wet fluorescent magnetic particle flaw detection test for flaw detection, and more particularly to a method and an apparatus for measuring a component concentration in a test liquid.

湿式蛍光磁粉探傷試験は、JIS−Z−2320に規格化されたもので、湿式蛍光磁粉探傷試験装置において、自動車のシャフトなどの鋼製部品や、ビレットなどの鋼材である被検査体を磁化し、それら金属表面にヒビなどの傷部を有する場合には、その傷部に生じさせた磁極に、磁粉などからなる検査液を付着させて傷部を探傷する、例えば特許文献1〜2に記載のような周知の非破壊検査法である。本試験に用いる検査液は、例えば、蛍光磁粉や分散材、防錆材などの各成分を所定の濃度で混合させたものであり、検査液タンク内からポンプで取出し、被検査体に接触させて探傷試験を行った検査液は、検査液タンクに戻された後、再度探傷試験に使用して、循環利用されている。そして、従来、この検査液の濃度は、一般的に、検査液タンク内などにおいてよく撹拌して、混濁させた検査液を沈殿管にサンプリングし、30分間静置させた後、沈殿管底部に沈殿した沈殿物の容積を求めることで、蛍光磁粉の濃度(含有量)として測定していた。   The wet fluorescent magnetic particle test is standardized to JIS-Z-2320. In the wet fluorescent magnetic particle test system, steel parts such as automobile shafts and steel objects such as billets are magnetized. In the case where there are scratches such as cracks on the metal surface, the scratch is detected by attaching a test liquid made of magnetic powder or the like to the magnetic pole generated in the scratches. This is a well-known nondestructive inspection method. The test liquid used in this test is, for example, a mixture of each component such as fluorescent magnetic powder, dispersion material, and rust preventive material at a predetermined concentration, taken out from the test liquid tank with a pump, and brought into contact with the object to be inspected. The inspection liquid that has been subjected to the flaw detection test is returned to the inspection liquid tank and then used again for the flaw detection test and recycled. Conventionally, the concentration of the test solution is generally stirred well in the test solution tank, and the turbid test solution is sampled in a settling tube and allowed to stand for 30 minutes. By measuring the volume of the precipitated precipitate, the concentration (content) of the fluorescent magnetic powder was measured.

特開2009−109424号公報JP 2009-109424 A 特開2007−303824号公報JP 2007-303824 A

しかし、上記のような湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法では、サンプリングの状況により、濃度測定値にばらつきを生じる問題があった。そのため、例えば、擬似欠陥に付着した蛍光体の明るさを指針として測定する方法(特開平7−113787)や、その明るさをCCDで読み取り、画像処理することで測定する方法(特開2009−75098)が提案されているが、擬似欠陥を有した試験片の磁化状態や検査液の散布状態などにより測定結果のばらつきは避けられない。また、上述したサンプリング操作は煩わしく、作業性が悪いという問題もあった。   However, in the method of measuring the component concentration of the test liquid used in the wet fluorescent magnetic particle flaw detection test as described above, there is a problem that the concentration measurement value varies depending on the sampling situation. Therefore, for example, a method of measuring the brightness of a phosphor adhering to a pseudo defect as a guide (Japanese Patent Laid-Open No. 7-113787) or a method of measuring the brightness by reading the image with a CCD and processing the image (Japanese Patent Laid-Open No. 2009-). 75098) has been proposed, but variations in the measurement results are unavoidable due to the magnetization state of the test piece having the pseudo defect, the spraying state of the test solution, and the like. Further, the sampling operation described above is troublesome and there is a problem that workability is poor.

さらに、上述してきた検査液の成分濃度の測定方法では、蛍光磁粉の濃度しか測定することができない。ところで、検査液中における蛍光磁粉の濃度は、探傷の視認性を左右するとともに、分散剤の濃度は、検査液の被検査体への濡れ性を左右する。分散剤の評価方法としては、特開平8−128993に開示した、表面あらさ標準片の標準面と透明板体の一面とが所要間隔を置いて対面している状態で固定し、当該両面が垂直になる姿勢で設置した測定装置にて、その下端部を試料に浸漬して前記間隔を毛細管現象によって上昇する試料の上昇値を測定し、当該測定値によって当該検査液中の分散剤の濡れ性を評価するものがあるが、分散剤自体の濃度を測定するものではなく、また、分散剤の評価のためだけに別途測定装置を設けなければならず、コスト高となるとともに作業効率が悪いという問題もあった。   Furthermore, only the concentration of the fluorescent magnetic powder can be measured by the method for measuring the component concentration of the test liquid described above. By the way, the concentration of the fluorescent magnetic powder in the test solution affects the visibility of the flaw detection, and the concentration of the dispersant determines the wettability of the test solution to the object to be inspected. As a method for evaluating the dispersant, the standard surface of the surface roughness standard piece and one surface of the transparent plate, which are disclosed in JP-A-8-128993, are fixed in a state where they face each other at a required interval, and the both surfaces are vertical. In a measuring device installed in a posture, the lower end of the sample is immersed in the sample, and the rising value of the sample rising by capillary action is measured, and the wettability of the dispersant in the test liquid is measured by the measured value. However, it does not measure the concentration of the dispersant itself, and a separate measuring device must be provided only for the evaluation of the dispersant, which increases costs and reduces work efficiency. There was also a problem.

従って、この発明の目的は、検査液中の分散剤および蛍光磁粉の濃度を簡単な方法で同時に測定でき、かつそれら濃度を瞬時かつ高精度に測定可能とした、測定精度および作業性を向上させた湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法および測定装置を提供するものである。   Therefore, an object of the present invention is to improve the measurement accuracy and workability, which can simultaneously measure the concentration of the dispersant and the fluorescent magnetic powder in the test solution by a simple method and can measure the concentration instantaneously and with high accuracy. The present invention provides a method and an apparatus for measuring the component concentration of a test liquid used in a wet fluorescent magnetic particle flaw detection test.

このため、請求項1に記載の発明は、被検査体の磁化した金属の表面に、少なくとも蛍光磁粉と、分散剤とを混合してなる検査液を接触させ、前記表面の傷部に前記蛍光磁粉を集合および付着させることによって、前記傷部を探傷する湿式蛍光磁粉探傷試験に用いる前記検査液の成分濃度測定方法であって、該成分濃度測定方法は、前記検査液を透明かつ攪拌手段を有する測定具に導入し、紫外線LEDランプ1個だけからなる光源の光を、前記測定具の一側方から前記検査液に照射して得られた透過光および励起して発光した可視光を用い、前記透過光を検出する紫外線検出器の検出値に基づいて、前記分散剤の濃度を測定すると同時に、前記励起して発光した可視光を検出する蛍光輝度検出器の検出値に基づいて、前記蛍光磁粉の濃度を測定することを特徴とする。 For this reason, in the invention described in claim 1, the surface of the magnetized metal of the object to be inspected is brought into contact with a test solution obtained by mixing at least fluorescent magnetic powder and a dispersing agent, and the fluorescence is applied to the scratch on the surface. A method for measuring the concentration of a component of the test liquid used in a wet fluorescent magnetic particle flaw detection test for flaw detection by collecting and adhering magnetic powder, the component concentration measuring method comprising: Using the transmitted light obtained by irradiating the test solution from one side of the measuring tool with the light of the light source that is introduced into the measuring tool having only one ultraviolet LED lamp and the visible light that is excited and emitted The concentration of the dispersing agent is measured based on the detection value of the ultraviolet detector that detects the transmitted light, and at the same time, based on the detection value of the fluorescence luminance detector that detects the visible light that is excited and emitted. The concentration of fluorescent magnetic powder Characterized in that it constant.

請求項に記載の発明は、請求項1に記載の湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定方法において、前記紫外線検出器は、前記測定具を挟んで前記光源の対向位置に設置することを特徴とする。 A second aspect of the present invention is the method of measuring a concentration of a test liquid used in the wet fluorescent magnetic particle flaw detection test according to the first aspect, wherein the ultraviolet detector is placed at a position facing the light source with the measuring tool in between. It is characterized by doing.

請求項に記載の発明は、請求項1に記載の湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定方法において、前記蛍光輝度検出器は、前記測定具の周囲であって、前記測定具の正面中心位置から、前記光源による照射光の照射方向に対して、正負90度の範囲内に設置したことを特徴とする。 A third aspect of the present invention is the method of measuring a concentration of a test liquid component used in the wet fluorescent magnetic particle flaw detection test according to the first aspect, wherein the fluorescent luminance detector is around the measuring tool, and the measuring tool It is characterized in that it is installed within a range of 90 degrees positive and negative with respect to the irradiation direction of the irradiation light from the light source from the front center position.

請求項4に記載の発明は、被検査体の磁化した金属の表面に、少なくとも蛍光磁粉と、分散剤とを混合してなる検査液を接触させ、前記金属表面の傷部に前記蛍光磁粉を集合および付着させることによって、前記傷部を探傷する湿式蛍光磁粉探傷試験に用いる前記検査液の成分濃度測定装置であって、該成分濃度測定装置は、前記検査液を導入する測定具と、該測定具内の前記検査液に紫外線を照射する光源の1個だけからなる紫外線LEDランプと、前記紫外線照射により前記検査液から得られた透過光を検出する紫外線検出器と、前記紫外線照射により前記検査液から得られた励起して発光した可視光を検出する蛍光輝度検出器と、前記紫外線検出器および前記蛍光輝度検出器の各検出値に基づいて、それぞれ前記分散剤の濃度と同時に前記蛍光磁粉の濃度を算出する情報処理部とを備えることを特徴とする。 According to a fourth aspect of the present invention, an inspection liquid obtained by mixing at least fluorescent magnetic powder and a dispersing agent is brought into contact with the magnetized metal surface of an object to be inspected, and the fluorescent magnetic powder is applied to a scratch on the metal surface. A component concentration measuring device for the test liquid used in a wet fluorescent magnetic particle flaw detection test for flaw detection by assembling and adhering, the component concentration measuring device comprising: a measuring tool for introducing the test solution; and An ultraviolet LED lamp comprising only one light source for irradiating the inspection liquid in the measuring tool with ultraviolet light, an ultraviolet detector for detecting transmitted light obtained from the inspection liquid by the ultraviolet irradiation, and a fluorescence intensity detector for detecting visible light emitted by exciting obtained from the test solution, based on the respective detected values of the UV detector and the fluorescence intensity detector, at the same time the concentration of each of the dispersing agent Characterized in that it comprises an information processing unit that calculates a concentration of the serial fluorescent magnetic particles.

請求項に記載の発明は、請求項に記載の湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定装置において、前記測定具は、フッ素樹脂からなることを特徴とする。 According to a fifth aspect of the present invention, in the test liquid component concentration measuring apparatus used for the wet fluorescent magnetic particle flaw detection test according to the fourth aspect , the measuring tool is made of a fluororesin.

請求項に記載の発明は、請求項に記載の湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定装置において、前記測定具は、暗箱体内に設置するとともに、前記紫外線LEDランプと、前記紫外線検出器と、前記蛍光輝度検出器とは、前記暗箱体内に備えることを特徴とする。 The invention according to claim 6 is the component concentration measuring apparatus for the test liquid used in the wet fluorescent magnetic particle flaw detection test according to claim 4 , wherein the measuring tool is installed in a dark box, and the ultraviolet LED lamp, The ultraviolet detector and the fluorescence luminance detector are provided in the dark box.

請求項に記載の発明は、少なくとも蛍光磁粉および分散剤を混合してなる検査液を貯留する検査液タンクと、該検査液タンク内の前記検査液を循環手段で取り出すとともに、前記検査液タンク内に還流させる移送手段と、該移送手段内の前記検査液を、被検査体の磁化した金属の表面に接触させて、前記表面の傷部の探傷を行う探傷部とを備える湿式蛍光磁粉探傷試験装置であって、前記移送手段は、前記検査液の成分濃度を測定する、請求項4〜6に記載の成分濃度測定装置を備え、前記移送手段が、前記探傷部に前記検査液を圧送する試験用配管であって、該試験用配管に、前記成分濃度測定装置の前記測定具を接続したことを特徴とする。 The invention according to claim 7 is a test liquid tank for storing a test liquid formed by mixing at least a fluorescent magnetic powder and a dispersing agent, and taking out the test liquid in the test liquid tank by a circulation means, and the test liquid tank A wet fluorescent magnetic particle flaw detector comprising: a transfer means for refluxing; and a flaw detection section for contacting the surface of the object to be magnetized with the inspection liquid in the transfer means to detect a flaw on the surface. It is a test apparatus, Comprising : The said transfer means is equipped with the component density | concentration measuring apparatus of Claims 4-6 which measures the component density | concentration of the said test liquid, The said transfer means pumps the said test liquid to the said flaw detection part. The test pipe is characterized in that the measuring instrument of the component concentration measuring device is connected to the test pipe.

請求項に記載の発明は、少なくとも蛍光磁粉および分散剤を混合してなる検査液を貯留する検査液タンクと、該検査液タンク内の前記検査液を循環手段で取り出すとともに、前記検査液タンク内に還流させる移送手段と、該移送手段内の前記検査液を、被検査体の磁化した金属の表面に接触させて、前記表面の傷部の探傷を行う探傷部とを備える湿式蛍光磁粉探傷試験装置であって、前記移送手段は、前記検査液の成分濃度を測定する、請求項4〜6に記載の成分濃度測定装置を備え、前記移送手段が、前記検査液タンク内に接続した測定用配管であって、該測定用配管に、前記成分濃度測定装置の前記測定具を接続したことを特徴とする。 According to an eighth aspect of the present invention, there is provided a test liquid tank for storing a test liquid formed by mixing at least a fluorescent magnetic powder and a dispersing agent, the test liquid in the test liquid tank being taken out by a circulation means, and the test liquid tank. A wet fluorescent magnetic particle flaw detector comprising: a transfer means for refluxing; and a flaw detection section for contacting the surface of the object to be magnetized with the inspection liquid in the transfer means to detect a flaw on the surface. It is a test apparatus, Comprising : The said transfer means is equipped with the component density | concentration measuring apparatus of Claims 4-6 which measures the component density | concentration of the said test liquid, The said transfer means is the measurement connected to the said test liquid tank A measuring pipe of the component concentration measuring apparatus is connected to the measuring pipe.

請求項1に記載の発明によれば、被検査体の磁化した金属の表面に、少なくとも蛍光磁粉と、分散剤とを混合してなる検査液を接触させ、表面の傷部に蛍光磁粉を集合および付着させることによって、傷部を探傷する湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定方法であって、この成分濃度測定方法は、検査液を透明な測定具に導入し、光源の光を、測定具の一側方から検査液に照射して得られた透過光および励起して発光した可視光を用い、透過光を検出する検出器の検出値に基づいて、分散剤の濃度を測定するとともに、励起して発光した可視光を検出する検出器の検出値に基づいて、蛍光磁粉の濃度を測定するので、従来では測定できなかった検査液中における分散剤の濃度を容易に測定することができる。 According to the first aspect of the present invention, the test liquid formed by mixing at least the fluorescent magnetic powder and the dispersing agent is brought into contact with the magnetized metal surface of the object to be inspected, and the fluorescent magnetic powder is collected at the scratched surface. And a method for measuring the component concentration of a test liquid used in a wet fluorescent magnetic particle flaw detection test for flaw detection by attaching the test solution to the transparent measuring instrument by introducing the test solution into a transparent measuring instrument. Using the transmitted light obtained by irradiating the test solution from one side of the measuring instrument and the visible light excited and emitted , the concentration of the dispersant is determined based on the detection value of the detector that detects the transmitted light. In addition to measuring, the concentration of fluorescent magnetic powder is measured based on the detection value of a detector that detects visible light that is excited and emitted, so it is easy to measure the concentration of a dispersant in a test solution that could not be measured in the past can do.

さらには、この検査液中の分散剤および蛍光磁粉の濃度を、光学的方法を用いた簡単な構成で同時に測定でき、それら濃度を瞬時かつ高精度に測定することができる。従って、測定精度および作業性を向上させた湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法を提供することができる。   Furthermore, the concentration of the dispersant and the fluorescent magnetic powder in the test solution can be simultaneously measured with a simple configuration using an optical method, and the concentrations can be measured instantaneously and with high accuracy. Therefore, it is possible to provide a method for measuring the component concentration of the test liquid used in the wet fluorescent magnetic particle flaw detection test with improved measurement accuracy and workability.

また、光源は、紫外線LEDランプであるので、検査液に吸光および励起発光させる光源ランプの使用寿命が長くなり、コストダウンを図ることができる。従って、生産性を向上させた、湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法を提供することができる。 Further , since the light source is an ultraviolet LED lamp, the service life of the light source lamp that absorbs and excites the test solution is prolonged, and the cost can be reduced. Therefore, it is possible to provide a method for measuring the component concentration of the test liquid used in the wet fluorescent magnetic particle flaw detection test with improved productivity.

また、透過光を検出する検出器は、紫外線検出器であるとともに、可視光を検出する検出器は、蛍光輝度検出器であるので、紫外線検出器による透過度(吸光度)と蛍光磁粉濃度との相関関係および蛍光輝度検出器による蛍光輝度と分散剤濃度との相関関係に基づいて、検査液中における蛍光磁粉および分散剤の濃度を正確かつ簡単に測定することができる。従って、測定精度および作業性を向上させた湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法を提供することができる。 In addition , the detector that detects transmitted light is an ultraviolet detector, and the detector that detects visible light is a fluorescence luminance detector. Therefore, the transmittance (absorbance) of the ultraviolet detector and the concentration of the fluorescent magnetic powder are determined. Based on the correlation and the correlation between the fluorescence brightness by the fluorescence brightness detector and the concentration of the dispersant, the concentration of the fluorescent magnetic powder and the dispersant in the test liquid can be measured accurately and easily. Therefore, it is possible to provide a method for measuring the component concentration of the test liquid used in the wet fluorescent magnetic particle flaw detection test with improved measurement accuracy and workability.

請求項に記載の発明によれば、紫外線検出器は、測定具を挟んで光源の対向位置に設置するので、紫外線LEDランプから検査液に入射し、液中を略直進的に透過した紫外線の透過光について、その検査液への吸光度を安定的に測定することができる。従って、簡単な構成で測定精度を向上させた、湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法を提供することができる。 According to the second aspect of the present invention, since the ultraviolet detector is installed at a position facing the light source across the measuring tool, the ultraviolet light that has entered the test liquid from the ultraviolet LED lamp and has passed through the liquid almost linearly. As for the transmitted light, the absorbance to the test solution can be stably measured. Therefore, it is possible to provide a method for measuring the component concentration of the test liquid used in the wet fluorescent magnetic particle flaw detection test with a simple configuration and improved measurement accuracy.

請求項に記載の発明によれば、蛍光輝度検出器は、測定具の周囲であって、測定具の正面中心位置から、光源による照射光の照射方向に対して、正負90度の範囲内に設置したので、検査液の蛍光磁粉濃度に応じて蛍光輝度の値も上下することから、蛍光輝度検出器を、蛍光磁粉濃度によらず、最も測定に適した位置もしくは、どの蛍光磁粉濃度においても正確に蛍光輝度を測定可能とする位置に設置することができる。従って、測定精度を向上させた、湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法を提供することができる。 According to the third aspect of the present invention, the fluorescence luminance detector is around the measuring tool and within a range of 90 degrees from the front center position of the measuring tool to the irradiation direction of the irradiation light from the light source. Since the value of the fluorescence brightness also rises and falls according to the concentration of the fluorescent magnetic powder in the test solution, the fluorescence brightness detector is placed at the most suitable position for measurement or at any fluorescent magnetic powder concentration, regardless of the fluorescent magnetic powder concentration. Also, it can be installed at a position where the fluorescence luminance can be measured accurately. Therefore, it is possible to provide a method for measuring the component concentration of the test liquid used in the wet fluorescent magnetic particle flaw detection test with improved measurement accuracy.

請求項4に記載の発明によれば、被検査体の磁化した金属の表面に、少なくとも蛍光磁粉と、分散剤とを混合してなる検査液を接触させ、金属表面の傷部に蛍光磁粉を集合および付着させることによって、傷部を探傷する湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定装置であって、この成分濃度測定装置は、検査液を導入する測定具と、この測定具内の検査液に紫外線を照射する光源の1個だけからなる紫外線LEDランプと、紫外線照射により検査液から得られた透過光を検出する紫外線検出器と、紫外線照射により検査液から得られた励起して発光した可視光を検出する蛍光輝度検出器と、紫外線検出器および蛍光輝度検出器の各検出値に基づいて、それぞれ分散剤の濃度と同時に蛍光磁粉の濃度を算出する情報処理部とを備えるので、従来では測定できなかった検査液中における分散剤の濃度を、成分濃度測定装置によって容易に測定できる。 According to the fourth aspect of the present invention, the test liquid obtained by mixing at least the fluorescent magnetic powder and the dispersant is brought into contact with the magnetized metal surface of the object to be inspected, and the fluorescent magnetic powder is applied to the scratch on the metal surface. A component concentration measuring device for a test liquid used in a wet fluorescent magnetic particle flaw detection test for flaw detection by collecting and adhering to a wound part, the component concentration measuring device comprising: a measuring tool for introducing a test liquid; An ultraviolet LED lamp consisting of only one light source for irradiating the test liquid with ultraviolet light, an ultraviolet detector for detecting transmitted light obtained from the test liquid by ultraviolet irradiation, and an excitation obtained from the test liquid by ultraviolet irradiation. a fluorescence intensity detector for detecting visible light emitted Te, based on the respective detected values of the UV detector and the fluorescence intensity detector, and a processing unit for calculating the concentration at the same time as the concentration of the fluorescent magnetic particle dispersant, respectively Since the concentration of the dispersant in the traditional inspection solution which could not be measured, it can be readily determined by constituent concentration measuring apparatus.

また、この成分濃度測定装置により、検査液中の分散剤および蛍光磁粉の濃度を同時および瞬時、かつ高精度に測定することができる。さらに本成分濃度測定装置は、設置場所を限定せず、探傷試験装置に組込んだり、成分濃度測定装置を測定ユニットとして携帯可能とし、サンプリングした検査液の成分濃度を、任意の場所で測定することができる。従って、測定精度および作業性を向上させた湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定装置を提供することができる。   In addition, the concentration of the dispersant and the fluorescent magnetic powder in the test liquid can be measured simultaneously, instantaneously and with high accuracy by this component concentration measuring apparatus. Furthermore, this component concentration measuring device is not limited to the installation location, but can be incorporated into a flaw detection test device, or the component concentration measuring device can be carried as a measurement unit, and the component concentration of a sampled test solution can be measured at an arbitrary location. be able to. Therefore, it is possible to provide an apparatus for measuring the component concentration of the test liquid used in the wet fluorescent magnetic particle flaw detection test with improved measurement accuracy and workability.

請求項に記載の発明によれば、測定具は、フッ素樹脂からなるので、摩擦係数が小さい測定具内面への検査液中の蛍光磁粉の付着を減らし、測定具内の清掃作業などメンテナンス頻度を低下させるとともに、長期間安定した計測を行うことができる。従って、測定精度および作業性を向上させた湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定装置を提供することができる。 According to the invention described in claim 5 , since the measuring tool is made of fluororesin, the frequency of maintenance such as cleaning work in the measuring tool is reduced by reducing the adhesion of fluorescent magnetic powder in the test liquid to the inner surface of the measuring tool having a small friction coefficient. In addition, the measurement can be performed stably for a long time. Therefore, it is possible to provide an apparatus for measuring the component concentration of the test liquid used in the wet fluorescent magnetic particle flaw detection test with improved measurement accuracy and workability.

請求項に記載の発明によれば、測定具は、暗箱体内に設置するとともに、紫外線LEDランプと、紫外線検出器と、蛍光輝度検出器とは、暗箱体内に備えるので、暗室内において検査液への紫外線の透過光および蛍光輝度を正確に測定することができる。従って、測定精度を向上させた湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定装置を提供することができる。 According to the sixth aspect of the present invention, the measuring tool is installed in the dark box, and the ultraviolet LED lamp, the ultraviolet detector, and the fluorescence luminance detector are provided in the dark box. It is possible to accurately measure the transmitted light of ultraviolet rays and the fluorescence brightness. Therefore, it is possible to provide an apparatus for measuring the component concentration of the test liquid used in the wet fluorescent magnetic particle flaw detection test with improved measurement accuracy.

請求項に記載の発明によれば、少なくとも蛍光磁粉および分散剤を混合してなる検査液を貯留する検査液タンクと、この検査液タンク内の検査液を循環手段で取り出すとともに、検査液タンク内に還流させる移送手段と、この移送手段内の検査液を、被検査体の磁化した金属の表面に接触させて、表面の傷部の探傷を行う探傷部とを備える湿式蛍光磁粉探傷試験装置であって、移送手段は、検査液の成分濃度を測定する、請求項4〜6に記載の成分濃度測定装置を備え、移送手段が、探傷部に検査液を圧送する試験用配管であって、この試験用配管に、成分濃度測定装置の測定具を接続したので、成分濃度測定装置が湿式蛍光磁粉探傷試験装置と一体に構成され、従来のように検査液をサンプリングして探傷試験装置とは別の場所で成分濃度測定を行う必要がない。 According to the seventh aspect of the present invention, a test liquid tank for storing a test liquid formed by mixing at least the fluorescent magnetic powder and the dispersant, and taking out the test liquid in the test liquid tank by the circulation means, and the test liquid tank Wet fluorescent magnetic particle flaw detection tester comprising a transfer means for refluxing and a flaw detection section for contacting the surface of the magnetized metal of the object to be inspected with the inspection liquid in the transfer means to detect flaws on the surface The transfer means includes the component concentration measuring device according to claim 4 for measuring the component concentration of the test liquid, and the transfer means is a test pipe for pumping the test liquid to the flaw detection unit. Since the measuring instrument of the component concentration measuring device is connected to this test pipe, the component concentration measuring device is configured integrally with the wet fluorescent magnetic particle flaw detection testing device, and the testing liquid is sampled by sampling the inspection liquid as in the conventional case. Is concentrated in another place It is not necessary to perform the measurement.

つまり、検査液タンクから探傷部へ移送途中である検査液の成分濃度を、散布装置での散布直前に探傷試験の一環としてオンラインで瞬時に測定することができる。従って、作業性を向上させた湿式蛍光磁粉探傷試験装置を提供することができる。   That is, the component concentration of the test liquid being transferred from the test liquid tank to the flaw detection unit can be instantaneously measured online as part of the flaw detection test immediately before spraying with the spraying device. Accordingly, it is possible to provide a wet fluorescent magnetic particle flaw detection test apparatus with improved workability.

請求項に記載の発明によれば、少なくとも蛍光磁粉および分散剤を混合してなる検査液を貯留する検査液タンクと、この検査液タンク内の検査液を循環手段で取り出すとともに、検査液タンク内に還流させる移送手段と、この移送手段内の検査液を、被検査体の磁化した金属の表面に接触させて、表面の傷部の探傷を行う探傷部とを備える湿式蛍光磁粉探傷試験装置であって、移送手段は、検査液の成分濃度を測定する、請求項4〜6に記載の成分濃度測定装置を備え、移送手段が、検査液タンク内に接続した測定用配管であって、この測定用配管に、成分濃度測定装置の測定具を接続したので、成分濃度測定装置が湿式蛍光磁粉探傷試験装置と一体に構成され、従来のように検査液をサンプリングして探傷試験装置とは別の場所で成分濃度測定を行う必要がない。 According to the eighth aspect of the present invention, a test liquid tank for storing a test liquid formed by mixing at least the fluorescent magnetic powder and the dispersant, the test liquid in the test liquid tank is taken out by the circulation means, and the test liquid tank Wet fluorescent magnetic particle flaw detection tester comprising a transfer means for refluxing and a flaw detection section for contacting the surface of the magnetized metal of the object to be inspected with the inspection liquid in the transfer means to detect flaws on the surface The transfer means comprises the component concentration measuring device according to claim 4 to measure the component concentration of the test liquid, and the transfer means is a measurement pipe connected to the test liquid tank, Since the measuring instrument of the component concentration measuring device is connected to this measurement pipe, the component concentration measuring device is configured integrally with the wet fluorescent magnetic particle flaw detection test device, and the flaw detection test device is sampled by sampling the inspection liquid as in the past. Concentration of ingredients in another place It is not necessary to perform the measurement.

つまり、検査液タンクから測定用配管を介して検査液タンクに循環途中である検査液の成分濃度を、探傷試験の一環としてオンラインで瞬時に測定することができる。従って、作業性を向上させた湿式蛍光磁粉探傷試験装置を提供することができる。   In other words, the component concentration of the test liquid that is circulating from the test liquid tank to the test liquid tank via the measurement pipe can be instantaneously measured online as part of the flaw detection test. Accordingly, it is possible to provide a wet fluorescent magnetic particle flaw detection test apparatus with improved workability.

本発明の一例を示す、湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定装置を示す斜視図である。It is a perspective view which shows the component density | concentration measuring apparatus of the test liquid used for a wet fluorescent magnetic particle flaw detection test which shows an example of this invention. 成分濃度測定装置の平面図である。It is a top view of a component concentration measuring apparatus. 成分濃度測定装置の正面図である。It is a front view of a component concentration measuring apparatus. 測定具の一例を示す斜視図である。It is a perspective view which shows an example of a measuring tool. 測定具に対する光源および検出器の設置位置を示す測定具周辺の正面模式図である。It is a front schematic diagram of the measurement tool periphery which shows the installation position of the light source and detector with respect to a measurement tool. 成分濃度測定装置のブロック制御図である。It is a block control diagram of a component concentration measuring device. 検査液の撹拌手段を備える成分濃度測定装置の一例を示した平面図である。It is the top view which showed an example of the component density | concentration measuring apparatus provided with the stirring means of a test solution. 湿式蛍光磁粉探傷試験装置の一例を示した全体模式図である。It is the whole schematic diagram which showed an example of the wet fluorescent magnetic particle flaw detection test apparatus. 探傷部の拡大模式図である。It is an expansion schematic diagram of a flaw detection part. 湿式蛍光磁粉探傷試験装置に備える成分濃度測定装置の一例を示した斜視図である。It is the perspective view which showed an example of the component density | concentration measuring apparatus with which a wet fluorescent magnetic particle test apparatus is equipped. 測定用配管に成分濃度測定装置を取付けた例を示す、湿式蛍光磁粉探傷試験装置の全体模式図である。It is the whole schematic diagram of the wet fluorescent magnetic particle flaw detection test apparatus which shows the example which attached the component density | concentration measuring apparatus to the piping for a measurement.

以下、図面を参照しつつ、この発明を実施するための最良の形態について詳述する。図1は本発明の一例を示した、湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定装置を示す斜視図、図2は成分濃度測定装置の平面図、図3は成分濃度測定装置の正面図である。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view showing a component concentration measuring device for a test liquid used in a wet fluorescent magnetic particle flaw detection test, showing an example of the present invention, FIG. 2 is a plan view of the component concentration measuring device, and FIG. 3 is a front view of the component concentration measuring device. FIG.

まず、周知のとおり湿式蛍光磁粉探傷試験に用いる検査液は、蛍光磁粉と、分散剤と、必要に応じて防錆剤とを混合させてなるものである。そして、それら成分の詳細は、例えば上述した特開2009−109424号公報や、特開2009−109424号公報などに記載されているように、まず蛍光磁粉としては、例えば、市販の磁粉(四三酸化鉄粒子や純鉄粒子などの導磁性粒子に酢酸セルローズ系合成樹脂やビニルブチラール系合成樹脂などの合成樹脂バインダーを用いてルモゲンイエロー50790:商品名:BASF社製やフエスタA:商品名:Swada社製などの蛍光顔料を付着させてなるメジアン径3〜70μm:体積基準分布表示−以下、同じ−で真比重2〜5g/cm3の粉末;以下「蛍光磁粉」という)を用いることができる。 First, as is well known, the inspection liquid used in the wet fluorescent magnetic particle flaw detection test is a mixture of fluorescent magnetic powder, a dispersant, and, if necessary, a rust inhibitor. Details of these components are described in, for example, the above-mentioned Japanese Patent Application Laid-Open No. 2009-109424 and Japanese Patent Application Laid-Open No. 2009-109424. Lumogen Yellow 50790 using a synthetic resin binder such as cellulose acetate-based synthetic resin or vinyl butyral-based synthetic resin for magnetically conductive particles such as iron oxide particles and pure iron particles: Brand name: BASF Co., Ltd. It is possible to use a median diameter of 3 to 70 μm to which fluorescent pigments such as those manufactured by Swada Co., Ltd. are attached, a volume reference distribution display—hereinafter, the same—with a true specific gravity of 2-5 g / cm 3 ; hereinafter referred to as “fluorescent magnetic powder”) it can.

また、分散剤は、例えば、ポリオキシアルキレンアリルフェニルエーテル型非イオン系界面活性剤および陰イオン活性剤を用いることができる。なお、防錆剤としては、例えば亜硝酸ナトリウムなどを用いることができる。なお、蛍光磁粉や分散剤、防錆剤は上述した成分に限定されない。   Moreover, a polyoxyalkylene allyl phenyl ether type nonionic surfactant and an anionic surfactant can be used for a dispersing agent, for example. In addition, as a rust preventive agent, sodium nitrite etc. can be used, for example. In addition, fluorescent magnetic powder, a dispersing agent, and a rust preventive agent are not limited to the component mentioned above.

そして、湿式蛍光磁粉探傷試験では、上記のような成分で調製した検査液を、自動車のシャフトなどの鋼製部品や、ビレットなどの鋼材である被検査体に接触させ、当該被検査体の表面傷部(検査物の表面乃至表面近傍に存在する微細なワレやピンホール)に当該検査液に分散している当該磁粉を集合させて形成した磁粉模様によって表面傷部を探傷する周知の技術である。   In the wet fluorescent magnetic particle flaw detection test, the inspection liquid prepared with the above components is brought into contact with a steel part such as a shaft of an automobile or an inspection object that is a steel material such as a billet. This is a well-known technique for flaw detection of a surface flaw by a magnetic powder pattern formed by collecting the magnetic powder dispersed in the inspection liquid on a flaw (a fine crack or pinhole existing on or near the surface of the inspection object). is there.

この検査液の成分濃度は、探傷試験の精度に影響を及ぼすものであり、上述したように、特に、検査液中における蛍光磁粉の濃度は、探傷の視認性を左右するとともに、分散剤の濃度は、検査液の被検査体への濡れ性を左右するものであり、被検査体に応じて、各検査液にはそれぞれ好ましい成分濃度を有するものである。   The component concentration of the test liquid affects the accuracy of the flaw detection test. As described above, the concentration of the fluorescent magnetic powder in the test liquid affects the visibility of the flaw detection and the concentration of the dispersant. Affects the wettability of the test liquid to the test object, and each test liquid has a preferable component concentration depending on the test object.

このような検査液を用いて行なう、後述する湿式蛍光磁粉探傷試験装置において、検査液タンク内からポンプで取出し、被検査体に接触させて探傷試験を行った検査液は、検査液タンクに戻された後、再度探傷試験に使用して循環利用されるため、その検査液の成分濃度が刻々と変動することから、高精度で被検査体の探傷試験を行うには、検査液の成分濃度を常時確認する必要性がある。   In a wet fluorescent magnetic particle flaw detection test apparatus, which will be described later, performed using such a test liquid, the test liquid taken out from the test liquid tank with a pump and brought into contact with the object to be inspected and subjected to the flaw detection test is returned to the test liquid tank. After that, the component concentration of the inspection liquid fluctuates every moment because it is used again for the flaw detection test, so that the component concentration of the inspection liquid can be used to conduct a flaw detection test on the inspection object with high accuracy. There is a need to constantly check.

そこで、本願発明者は、検査液中の各成分濃度が、照射光による吸光度や照度に関係することに着目し、検査液中の分散剤および蛍光磁粉の濃度を簡単な方法で同時に測定でき、かつそれら濃度を瞬時かつ高精度に測定可能とした、測定精度および作業性を向上させた湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法および測定装置を開発した。   Therefore, the inventor of the present application pays attention to the fact that each component concentration in the test solution is related to the absorbance and illuminance by the irradiation light, and can simultaneously measure the concentration of the dispersant and the fluorescent magnetic powder in the test solution by a simple method, In addition, we have developed a method and apparatus for measuring the component concentration of the test liquid used in the wet fluorescent magnetic particle flaw detection test with improved measurement accuracy and workability, which makes it possible to measure these concentrations instantaneously and with high accuracy.

まず、蛍光磁粉は、紫外線を照射されることにより、その蛍光顔料などの蛍光物質が励起して発光するため、この発光した可視光を蛍光輝度(照度)として周知の蛍光輝度検出器(蛍光輝度検出器)により検出することで、蛍光磁粉の存在を確認することができる。そこで、蛍光磁粉の濃度を変えて作成した各検査液(水中に蛍光磁粉および分散剤を混合させて作成)に光源から紫外線を照射して、それら蛍光輝度を蛍光輝度検出器で検出すると、下表(表1)のような関係が得られた。   First, when the fluorescent magnetic powder is irradiated with ultraviolet rays, a fluorescent substance such as a fluorescent pigment is excited to emit light, and thus the visible light thus emitted is used as a fluorescent luminance (illuminance). The presence of fluorescent magnetic powder can be confirmed by detecting with a detector. Therefore, when each test solution prepared by changing the concentration of fluorescent magnetic powder (prepared by mixing fluorescent magnetic powder and dispersant in water) is irradiated with ultraviolet light from a light source and the fluorescence luminance is detected by a fluorescence luminance detector, The relationship shown in the table (Table 1) was obtained.

Figure 0004871404

測定条件
蛍光磁粉:LY−20(マークテック株式会社製)
蛍光磁粉濃度(g/L):0、0.2、0.3、0.5、0.75、1.0、1.25
1.5、2.0
分散剤:EC−4(マークテック株式会社製)
分散剤濃度:0.5%
測定具:フッ素加工チューブ(直径6mm)
光源:汎用の紫外線LEDランプを使用
蛍光輝度検出器:汎用の検出器を使用 測定具の正面中心位置から、光源による照射光 の照射方向に対して45度に位置に設置
Figure 0004871404

Measurement conditions Fluorescent magnetic powder: LY-20 (manufactured by Marktec Corporation)
Fluorescent magnetic powder concentration (g / L): 0, 0.2, 0.3, 0.5, 0.75, 1.0, 1.25
1.5, 2.0
Dispersant: EC-4 (manufactured by Marktec Corporation)
Dispersant concentration: 0.5%
Measuring tool: Fluorine processing tube (diameter 6mm)
Light source: Uses a general-purpose UV LED lamp Fluorescence luminance detector: Uses a general-purpose detector Installed at 45 degrees from the front center position of the measuring tool to the irradiation direction of the light emitted from the light source

この表1に示すように、検査液中における蛍光磁粉濃度と、蛍光輝度との間には相関関係があり、蛍光磁粉濃度の上昇により蛍光輝度も上昇することが分かった。従って、紫外線を検査液に照射し、検査液から得られた可視光(励起して発光した可視光)を蛍光輝度検出器により蛍光輝度として検出することで、上表などから得られた検量線に基づいて検査液中の蛍光磁粉の濃度を算出することができる。   As shown in Table 1, it was found that there is a correlation between the fluorescent magnetic powder concentration in the test solution and the fluorescent luminance, and the fluorescent luminance is increased as the fluorescent magnetic powder concentration is increased. Therefore, a calibration curve obtained from the above table is obtained by irradiating the test solution with ultraviolet light and detecting the visible light (visible light emitted by excitation) from the test solution as the fluorescence brightness by the fluorescence brightness detector. Based on the above, the concentration of the fluorescent magnetic powder in the test solution can be calculated.

次に、検査液に紫外線を照射すると、検査液に入射した紫外線は、検査液中を通過し、入射方向とは逆方向から透過して液外に放射される。このとき、光のエネルギーは、透過や反射によって伝達され、光の透過は通常、次式1のように吸光濃度として表される。
吸光濃度=−LOG10(放射光束/入射光束)・・・・・式1
そこで、分散剤の濃度を変化させて作成した各検査液(水中に蛍光磁粉および分散剤を混合させて作成)に光源から紫外線を照射し、これら検査液から放射された紫外線の透過光を、周知の紫外線検出器により検出すると、下表(表2)のような関係が得られた。
Next, when the test liquid is irradiated with ultraviolet light, the ultraviolet light incident on the test liquid passes through the test liquid, and is transmitted from the direction opposite to the incident direction and emitted outside the liquid. At this time, the energy of light is transmitted by transmission or reflection, and the transmission of light is usually expressed as an absorbance concentration as in the following equation 1.
Absorbance density = -LOG 10 (Radiation flux / incident flux) ... Equation 1
Therefore, each test solution prepared by changing the concentration of the dispersant (prepared by mixing fluorescent magnetic powder and dispersant in water) is irradiated with ultraviolet rays from a light source, and the transmitted UV light emitted from these test solutions is When detected by a known ultraviolet detector, the relationship shown in the following table (Table 2) was obtained.

Figure 0004871404

測定条件
蛍光磁粉:LY−20(マークテック株式会社製)
蛍光磁粉濃度(g/L):0.5
分散剤:EC−4(マークテック株式会社製)
分散剤濃度(%):0.5、1.0、1.5、2.0、3.0、4.0
測定具:フッ素加工チューブ(直径6mm)
光源:汎用の紫外線LEDランプを使用
紫外線検出器:汎用の検出器を使用 測定具を挟んで光源と対向位置に設置
Figure 0004871404

Measurement conditions Fluorescent magnetic powder: LY-20 (manufactured by Marktec Corporation)
Fluorescent magnetic powder concentration (g / L): 0.5
Dispersant: EC-4 (manufactured by Marktec Corporation)
Dispersant concentration (%): 0.5, 1.0, 1.5, 2.0, 3.0, 4.0
Measuring tool: Fluorine processing tube (diameter 6mm)
Light source: A general-purpose UV LED lamp is used. UV detector: A general-purpose detector is used.

この表2に示すように、検査液中における分散剤濃度と、紫外線吸光濃度との間には相関関係があり、分散剤濃度の上昇により紫外線吸光濃度も上昇することが分かった。従って、検査液に紫外線を照射し、この検査液から得られた紫外線の透過光を紫外線検出器により紫外線透過度として検出することで、表2などから得られた検量線に基づいて検査液中の分散剤の濃度を算出することができる。   As shown in Table 2, it was found that there is a correlation between the dispersant concentration in the test solution and the ultraviolet light absorption concentration, and the ultraviolet light absorption concentration increases as the dispersant concentration increases. Accordingly, by irradiating the test solution with ultraviolet light, and detecting the transmitted light of the ultraviolet ray obtained from the test solution as the ultraviolet transmittance by the ultraviolet detector, the test solution contains the test solution based on the calibration curve obtained from Table 2 and the like. The concentration of the dispersant can be calculated.

なお、表2のように、分散剤の濃度を変化させて作成した各検査液に、表1と同様にして、光源から紫外線を照射し、蛍光輝度検出器でそれら蛍光輝度を測定したが、どの分散剤濃度においても蛍光輝度に変化が見られないことから、分散剤濃度の測定には蛍光輝度検出器を使用できないことが分かった。従って、上述したように、検査液中における蛍光磁粉の濃度には蛍光輝度検出器を用い、分散剤の濃度には紫外線検出器を用いてそれぞれ測定することとした。   As shown in Table 2, each test solution prepared by changing the concentration of the dispersant was irradiated with ultraviolet rays from a light source in the same manner as in Table 1, and the fluorescence brightness was measured with a fluorescence brightness detector. Since no change in the fluorescence brightness was observed at any dispersant concentration, it was found that a fluorescence brightness detector could not be used to measure the dispersant concentration. Therefore, as described above, a fluorescence luminance detector is used for the concentration of the fluorescent magnetic powder in the test solution, and an ultraviolet detector is used for the concentration of the dispersant.

次に、これら検査液中における蛍光磁粉および分散剤の濃度を測定する装置について説明する。図1は本発明の一例を示す、湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定装置を示す斜視図、図2は成分濃度測定装置の平面図、図3は成分濃度測定装置の正面図、図4は測定具の一例を示す斜視図、図5は測定具に対する光源および検出器の設置位置を示す測定具周辺の正面模式図、図6は成分濃度測定装置のブロック制御図である。   Next, an apparatus for measuring the concentration of the fluorescent magnetic powder and the dispersant in these test solutions will be described. FIG. 1 is a perspective view showing a component concentration measuring device for a test liquid used in a wet fluorescent magnetic particle flaw detection test, showing an example of the present invention, FIG. 2 is a plan view of the component concentration measuring device, and FIG. 3 is a front view of the component concentration measuring device. 4 is a perspective view showing an example of the measuring tool, FIG. 5 is a schematic front view of the periphery of the measuring tool showing the installation positions of the light source and the detector with respect to the measuring tool, and FIG. 6 is a block control diagram of the component concentration measuring apparatus.

まず、検査液の成分濃度測定装置1としては、例えば、図1〜3に示すように、暗箱2と、この暗箱体2内に設置した測定具3と、さらには暗箱体2内に取付けられた光源4および検出器5,6とから構成されるものである。以下の説明では、成分濃度測定装置1を、設置場所を自由とし、後述する検査液タンク22内からサンプリングした検査液の成分濃度を測定できる測定装置ユニットとして説明する。   First, as the component concentration measuring apparatus 1 for the test liquid, for example, as shown in FIGS. 1 to 3, the dark box 2, the measuring tool 3 installed in the dark box 2, and the dark box 2 are attached. And a light source 4 and detectors 5 and 6. In the following description, the component concentration measuring apparatus 1 will be described as a measuring apparatus unit that can measure the component concentration of the test liquid sampled from the test liquid tank 22 to be described later, with the installation location being free.

まず、暗箱体2は、例えば、正面視略台形の形状(限定しない)を有し、材質は特に限定されないが、プラスチックなどの合成樹脂またはアルミなどの金属からなる、内部を暗室とした箱材である。また、暗箱体2における正面および背面の中央近傍を結ぶ直線上には、円形(限定しない、後述する測定具3の外形に応じた形状とする)の穴部7が設けられている。さらに暗箱体2における天面の左右肩部には、左右の一方または双方(図例では双方)の外側端部を外方に向けて下降傾斜させた傾斜部8を形成する。なお、この暗箱体2には、例えば図3に示すような把持部16を天面などに設けてもよい。   First, the dark box 2 has, for example, a substantially trapezoidal shape (not limited) when viewed from the front, and the material is not particularly limited. The box 2 is made of a synthetic resin such as plastic or a metal such as aluminum, and has a dark room inside. It is. Further, a circular hole portion 7 (not limited to a shape corresponding to the outer shape of the measuring tool 3 described later) is provided on a straight line connecting the vicinity of the center of the front surface and the back surface of the dark box body 2. Further, the left and right shoulders of the top surface of the dark box body 2 are formed with inclined portions 8 in which the outer end portions of one or both of the left and right sides (both in the illustrated example) are inclined downward. The dark box body 2 may be provided with a gripping portion 16 as shown in FIG.

次に、測定具3は、図4に示すように、上述した暗箱体2の穴部7に貫設可能とし、暗箱体2の前後方向に略等しい長さを有する、側面部が透明な円筒形状(限定しない)のものであり、その材質は、測定具3内面の摩擦係数を小さくできるフッ素樹脂から構成されている。なお、円筒部の直径は、例えば6mm程度(限定されない)とされる。なお、測定具3の材質は上述したフッ素樹脂が好ましいが、測定具3内面の摩擦係数を小さくできる材質であれば適宜用いることができる。   Next, as shown in FIG. 4, the measuring tool 3 can be penetrated into the hole 7 of the dark box body 2 described above, and has a length substantially equal to the front-rear direction of the dark box body 2 and has a transparent side portion. It has a shape (not limited), and the material thereof is made of a fluororesin that can reduce the friction coefficient of the inner surface of the measuring tool 3. In addition, the diameter of a cylindrical part shall be about 6 mm (it is not limited), for example. The material of the measuring tool 3 is preferably the above-described fluororesin, but any material that can reduce the friction coefficient of the inner surface of the measuring tool 3 can be used as appropriate.

また、測定具3は、例えば、基端部(図4の手前側)は、本体から図示しない螺旋溝などで着脱自在とした鍔部9を備える蓋体10を有しており、この蓋体10および測定具3の先端部11(図4の奥側)に遮光板の貼付や着色などをすることにより、測定具3を暗箱体2の穴部7に貫設設置した際に、暗箱体2内に周囲から光が入らないように遮光している。   In addition, the measuring tool 3 has, for example, a lid 10 provided with a flange 9 that is detachable from the main body through a spiral groove (not shown) at the base end (front side in FIG. 4). When the measuring tool 3 is installed in the hole 7 of the dark box body 2 by attaching or coloring a light shielding plate to the tip part 10 (the back side in FIG. 4) of the measuring tool 3 and the dark box body, 2 is shielded from light from the surroundings.

次に、この暗箱体2の左右一方の側面(図1中では手前に示した左側面)中央近傍には、光源4としての紫外線LED(Light Emitting Diode)ランプ12が暗箱体2の内側暗室内を照射方向として取付けられている。   Next, an ultraviolet LED (Light Emitting Diode) lamp 12 serving as a light source 4 is provided in the vicinity of the center of the left and right side surfaces of the dark box body 2 (the left side face shown in FIG. 1). Is attached as the irradiation direction.

また、暗箱体2の左右他方の内側面(図1中では奥に示した右側面)中央近傍であって、暗箱体2に装着した状態での測定具3を挟んだ紫外線LEDランプ12の取付位置に対向する位置には、紫外線検出器5が設置される。この紫外線検出器5では、紫外線LEDランプ12から照射され、測定具3内の検査液を通過して得られた紫外線の透過度が検出される。なお、この紫外線検出器5は周知の技術であるため、詳細な説明は省略する。   Further, the UV LED lamp 12 is mounted in the vicinity of the center of the other inner side surface (the right side surface shown in the back in FIG. 1) of the dark box body 2 and sandwiching the measuring tool 3 attached to the dark box body 2. An ultraviolet detector 5 is installed at a position opposite to the position. In the ultraviolet detector 5, the transmittance of the ultraviolet rays irradiated from the ultraviolet LED lamp 12 and obtained by passing through the test solution in the measuring tool 3 is detected. Since the ultraviolet detector 5 is a well-known technique, a detailed description thereof is omitted.

さらに、例えば、暗箱体2の紫外線LEDランプ12が設置されている側(図1中では手前に示した左上面傾斜)の傾斜部8における中央近傍の内面には、蛍光輝度検出器6が取付けられる。この蛍光輝度検出器6では、紫外線を測定具3内の検査液に照射し、検査液から得られた可視光(励起して発光した可視光)の蛍光輝度が検出される。なお、この蛍光輝度検出器6も周知の技術であるため、詳細な説明は省略する。   Further, for example, a fluorescent luminance detector 6 is attached to the inner surface in the vicinity of the center of the inclined portion 8 on the side where the ultraviolet LED lamp 12 of the dark box 2 is installed (the upper left inclined surface shown in FIG. 1). It is done. In this fluorescence luminance detector 6, ultraviolet rays are irradiated onto the test solution in the measuring tool 3, and the fluorescence luminance of visible light (visible light that has been excited and emitted) obtained from the test solution is detected. Since the fluorescence luminance detector 6 is also a well-known technique, detailed description thereof is omitted.

光源4および測定具3に対するこれら検出器5,6の設置位置は、図5に示すように、まず、紫外線検出器5は、上述したように測定具3を介して紫外線LEDランプ12の対向位置に設置されるが、この紫外線LEDランプ12の紫外線照射方向(測定具3内の検査液中への入射方向)の延長線上から正負適宜角度範囲内であって、好ましくは延長線上における暗箱体2の内側面に設置する。   As shown in FIG. 5, the installation positions of the detectors 5 and 6 with respect to the light source 4 and the measuring tool 3 are as follows. First, the ultraviolet detector 5 is positioned opposite to the ultraviolet LED lamp 12 via the measuring tool 3 as described above. However, it is within an appropriate angle range from the extended line of the ultraviolet LED lamp 12 in the ultraviolet irradiation direction (incident direction into the test solution in the measuring instrument 3), and preferably in the dark box body 2 on the extended line. Install on the inner side of the.

また、蛍光輝度検出器6は、紫外線LEDランプ12側の測定具3の周囲であって、測定具3の正面中心位置cから、紫外線LEDランプ12による照射光の照射方向に対して、正負90度の範囲内であって、例えば40度〜50度、好ましくは45度となる暗箱体2における傾斜部8内面に設置する。なお、蛍光輝度検出器6は、広範な濃度の蛍光磁粉の蛍光輝度値を正確に測定し得る位置として、実験データに基づき、前記45度が適切な角度の1つとして挙げられる。   Further, the fluorescence luminance detector 6 is around the measuring tool 3 on the ultraviolet LED lamp 12 side, and from the front center position c of the measuring tool 3, the positive and negative 90 relative to the irradiation direction of the irradiation light by the ultraviolet LED lamp 12. It is within a range of degrees, for example, 40 degrees to 50 degrees, preferably 45 degrees, and is installed on the inner surface of the inclined portion 8 in the dark box 2. Note that the fluorescence luminance detector 6 is one of the appropriate angles based on experimental data as a position where the fluorescence luminance values of a wide range of concentrations of fluorescent magnetic powder can be accurately measured.

また、上記正負90度の範囲とあるのは、紫外線LEDランプ12から照射される紫外線の照射中心線に対する、図5中における測定具3の上端および下端への照射角度が等しく、正負どちらの角度位置に設置しても蛍光輝度検出器6から略等しい検出値が得られるためであり、本実施例では図5中の照射中心線の上側である+45度に設置した。   Further, the range of the positive and negative 90 degrees is that the irradiation angles to the upper end and the lower end of the measuring tool 3 in FIG. 5 with respect to the irradiation center line of the ultraviolet rays emitted from the ultraviolet LED lamp 12 are equal, and either the positive or negative angle. This is because substantially the same detection value can be obtained from the fluorescence luminance detector 6 even if it is installed at the position, and in this embodiment, it is installed at +45 degrees above the irradiation center line in FIG.

さらに、図6に示すように、これら検出器5,6は、暗箱体2内に設置されたコントローラ13内の情報処理部14などに接続されており、この情報処理部14には、上述した表1〜2のような蛍光輝度に対する蛍光磁粉濃度および紫外線吸光濃度に対する分散剤濃度の検量線データを予め入力しておく。   Further, as shown in FIG. 6, these detectors 5 and 6 are connected to an information processing unit 14 in the controller 13 installed in the dark box body 2. Calibration curve data of the fluorescent magnetic powder concentration with respect to the fluorescence luminance and the dispersant concentration with respect to the ultraviolet absorption concentration as shown in Tables 1 and 2 are input in advance.

そして、このコントローラ13は、例えば、暗箱体2の傾斜部8面上に設けた、蛍光磁粉濃度や分散剤濃度を表示(デジタル表示など)させる、液晶などの表示パネルとしての表示部15に接続させる。なお、表示部15は、暗箱体2以外に、暗箱体2とは別体の表示装置や、後述する湿式蛍光磁粉探傷試験装置21内に設置してもよい。   And this controller 13 is connected to the display part 15 as a display panel, such as a liquid crystal display, which is provided on the inclined part 8 surface of the dark box 2 and displays the fluorescent magnetic powder concentration and the dispersant concentration (for example, digital display). Let In addition to the dark box 2, the display unit 15 may be installed in a display device separate from the dark box 2 or in a wet fluorescent magnetic particle testing apparatus 21 described later.

また、この成分濃度測定装置1には、検査液の撹拌手段を設置することができる。図7は検査液の撹拌手段を備える成分濃度測定装置の一例を示した平面図である。この図7に示すように、例えば、暗箱体2の背面側(装着させた測定具3の先端側)外側部には、駆動モータ16を設置する。この場合、測定具3の先端部には、モータ軸17に嵌合可能とする凹部18が取付けられており、測定具3を暗箱体2に装着した際、凹部18をモータ軸17に嵌合させ、駆動モータ16の回転駆動によりモータ軸17を介して測定具3が暗箱体2の前後方向を軸芯として回転する。   Further, the component concentration measuring apparatus 1 can be provided with a test solution stirring means. FIG. 7 is a plan view showing an example of a component concentration measuring apparatus having a test solution stirring means. As shown in FIG. 7, for example, a drive motor 16 is installed on the outer side of the back side of the dark box body 2 (the tip side of the mounted measuring tool 3). In this case, a recess 18 that can be fitted to the motor shaft 17 is attached to the tip of the measuring tool 3. When the measuring tool 3 is mounted on the dark box body 2, the recess 18 is fitted to the motor shaft 17. The measuring tool 3 is rotated about the front-rear direction of the dark box body 2 through the motor shaft 17 by the rotational drive of the drive motor 16.

このような構成にすることで、検査液を装填し、暗箱体2に装着した測定具3を、駆動モータ16により回転させ、測定具3内の検査液を撹拌することにより、検査液中の成分を検査液中でより均質に混合させて、それら濃度をより正確に測定することができる。なお、撹拌手段は上述に限定されることなく、適宜周知の技術も用いてもよい。   With such a configuration, the test solution loaded in the dark box body 2 is rotated by the drive motor 16 and the test solution in the measurement device 3 is stirred to load the test solution in the test solution 3. The components can be mixed more homogeneously in the test solution and their concentrations can be measured more accurately. The stirring means is not limited to the above, and a well-known technique may be used as appropriate.

ここで、例えば、後述の湿式蛍光磁粉探傷試験装置21における後述する検査液タンク22内の検査液の成分濃度を測定したい場合には、まず、蓋体10を脱着した測定具3内にサンプリングした検査液を装填し、再び蓋体10を取付けた測定具3を、暗箱体2の穴部7に回転可能に貫設する。このとき、測定具3の先端部は、暗箱体2の背面の穴部7およびモータ軸17に凹部18を嵌合させることで、安定的に支持されるとともに、測定具3の基端部は、蓋体10の鍔部9が暗箱2正面板へのストッパーとなり、暗箱体2に測定具3をずれることなく安定装着させることができる。   Here, for example, when it is desired to measure the component concentration of the test liquid in the test liquid tank 22 described later in the wet fluorescent magnetic particle flaw detection test apparatus 21 described later, first, the sample is sampled in the measuring tool 3 with the lid 10 removed. The measuring tool 3 loaded with the test solution and again attached with the lid 10 is inserted through the hole 7 of the dark box 2 in a rotatable manner. At this time, the distal end of the measuring tool 3 is stably supported by fitting the recess 18 into the hole 7 and the motor shaft 17 on the back surface of the dark box body 2, and the base end of the measuring tool 3 is The flange portion 9 of the lid body 10 serves as a stopper for the front plate of the dark box 2, and the measuring tool 3 can be stably mounted on the dark box body 2 without shifting.

そして、駆動モータ16の動力により、モータ軸17および凹部18を介して測定具3を回転させることで、測定具3内で撹拌されている検査液に、紫外線LEDランプ12を点灯させて紫外線を照射する。   Then, by rotating the measuring tool 3 through the motor shaft 17 and the recess 18 by the power of the drive motor 16, the UV LED lamp 12 is turned on to the test solution stirred in the measuring tool 3 to emit ultraviolet light. Irradiate.

次いで、まず、検査液を透過した透過光である紫外線を紫外線吸光濃度として、紫外線
検出器5で検出し、その検出結果が情報処理部14に送信されるとともに、検査液から得られる、励起して発光した可視光を蛍光輝度として蛍光輝度検出器6で検出し、その検出結果が情報処理部14に送信される。
Next, first, ultraviolet light, which is transmitted light that has passed through the test solution, is detected by the UV detector 5 as the UV light absorption concentration, and the detection result is transmitted to the information processing unit 14 and is excited from the test solution. The visible light emitted in this manner is detected as fluorescence luminance by the fluorescence luminance detector 6, and the detection result is transmitted to the information processing unit 14.

そして、情報処理部14は、上述した予め入力されている検量線データに基づいて、紫外線吸光濃度の値から分散剤濃度および蛍光輝度の値から蛍光磁粉濃度を算出する。そして、コントローラ13は、それら分散剤濃度および蛍光磁粉濃度を表示部15に表示させる。   Then, the information processing unit 14 calculates the fluorescent magnetic powder concentration from the value of the ultraviolet light absorption concentration and the value of the dispersant concentration and the fluorescence luminance, based on the calibration curve data input in advance. Then, the controller 13 causes the display unit 15 to display the dispersant concentration and the fluorescent magnetic powder concentration.

従って、紫外線LEDランプ12の照射から分散剤濃度および蛍光磁粉濃度を表示部15に表示させるまで、その間わずか1秒にも満たない短時間で検査液の成分濃度を測定することができ、しかも、検査液を撹拌させた状態で、その成分濃度を測定できるため、正確な測定値を迅速に得ることができる。   Therefore, the component concentration of the test solution can be measured in a short time of less than 1 second from the irradiation of the ultraviolet LED lamp 12 to the display of the dispersant concentration and the fluorescent magnetic powder concentration on the display unit 15. Since the component concentration can be measured while the test solution is stirred, an accurate measurement value can be obtained quickly.

以上のような構成により、検査液を透明な測定具3に導入し、光源4である紫外線LEDランプ12の光を、測定具3の一側方から検査液に照射して得られた透過光および励起して発光した可視光を用い、透過光を検出する紫外線検出器5の検出値に基づいて、分散剤の濃度を測定するとともに、可視光を検出する蛍光輝度検出器6の検出値に基づいて、蛍光磁粉の濃度を測定するので、従来では測定できなかった検査液中における分散剤の濃
度を、光学的方法を用いた簡単な構成で同時に測定でき、かつそれら濃度を瞬時かつ高精度に測定容易に測定することができる。
With the configuration described above, the transmitted light obtained by introducing the test liquid into the transparent measuring tool 3 and irradiating the test liquid with the light from the ultraviolet LED lamp 12 as the light source 4 from one side of the measuring tool 3. The concentration of the dispersant is measured based on the detection value of the ultraviolet detector 5 that detects the transmitted light using the visible light excited and emitted, and the detection value of the fluorescence luminance detector 6 that detects the visible light is used. Based on this, the concentration of the fluorescent magnetic powder is measured, so the concentration of the dispersant in the test solution that could not be measured in the past can be measured simultaneously with a simple configuration using an optical method, and these concentrations can be measured instantaneously and with high accuracy. It can be measured easily.

また、光源4は、紫外線LEDランプ12であるので、検査液に吸光および励起発光させる光源ランプの使用寿命が長くなり、コストダウンを図ることができる。   Further, since the light source 4 is the ultraviolet LED lamp 12, the service life of the light source lamp that absorbs and excites the test solution is increased, and the cost can be reduced.

また、透過光を検出する検出器は、紫外線検出器5であるとともに、可視光を検出する検出器は、蛍光輝度検出器6であるので、紫外線検出器5による透過度(吸光度)と分散剤濃度との相関関係および蛍光輝度検出器6による蛍光輝度と蛍光磁粉濃度との相関関係に基づいて、検査液中における分散剤および蛍光磁粉の各濃度を正確かつ簡単に測定することができる。 The detector that detects the transmitted light is the ultraviolet ray detector 5 and the detector that detects the visible light is the fluorescence luminance detector 6. Therefore, the transmittance (absorbance) and the dispersing agent by the ultraviolet ray detector 5 are determined. Based on the correlation with the concentration and the correlation between the fluorescence brightness and the fluorescence magnetic powder concentration by the fluorescence brightness detector 6, the concentrations of the dispersant and the fluorescence magnetic powder in the test liquid can be measured accurately and easily.

また、紫外線検出器5は、測定具3を挟んで光源4の対向位置に設置するので、紫外線LEDランプ12から検査液に入射し、液中を略直進的に透過した紫外線の透過光について、その検査液への吸光度を安定的に測定することができる。   Further, since the ultraviolet detector 5 is installed at a position opposite to the light source 4 with the measuring tool 3 in between, the ultraviolet transmitted light that has entered the test solution from the ultraviolet LED lamp 12 and has passed through the solution almost straightly, The absorbance to the test solution can be stably measured.

また、蛍光輝度検出器6は、測定具3の周囲であって、測定具3の正面中心位置cから、光源4による照射光の照射方向に対して、正負90度の範囲内に設置したので、検査液の蛍光磁粉濃度に応じて蛍光輝度の値も上下することから、蛍光輝度検出器を、蛍光磁粉濃度によらず、最も測定に適した位置もしくは、どの蛍光磁粉濃度においても正確に蛍光輝度を測定可能とする位置に設置することができる。   Further, the fluorescence luminance detector 6 is installed around the measuring tool 3 within a range of 90 degrees between the front center position c of the measuring tool 3 and the irradiation direction of the irradiation light from the light source 4. Since the value of the fluorescence brightness also rises and falls according to the fluorescence magnetic powder concentration of the test solution, the fluorescence brightness detector can accurately fluoresce at the most suitable position for measurement or at any fluorescent magnetic powder concentration, regardless of the fluorescence magnetic powder concentration. It can be installed at a position where luminance can be measured.

また、測定具3は、フッ素樹脂からなるので、摩擦係数が小さい測定具内面への検査液中の蛍光磁粉の付着を減らし、測定具3内の清掃作業などメンテナンス頻度を低下させるとともに、長期間安定した計測を行うことができる。   Moreover, since the measuring tool 3 is made of a fluororesin, the adhesion of the fluorescent magnetic powder in the test liquid to the inner surface of the measuring tool having a small friction coefficient is reduced, the frequency of maintenance such as cleaning work in the measuring tool 3 is reduced, and a long period of time. Stable measurement can be performed.

さらに、測定具3は、暗箱体2内に設置するとともに、紫外線LEDランプ12と、紫外線検出器5と、蛍光輝度検出器6とは、暗箱体2内に備えるので、暗室内において検査液への紫外線の透過光および蛍光輝度を正確に測定することができる。   Further, the measuring tool 3 is installed in the dark box body 2, and the ultraviolet LED lamp 12, the ultraviolet detector 5, and the fluorescence luminance detector 6 are provided in the dark box body 2. It is possible to accurately measure the transmitted light and fluorescence brightness of ultraviolet rays.

そして、本成分濃度測定装置1は、設置場所を限定せず、成分濃度測定装置1を測定ユニットとして携帯可能とし、サンプリングした検査液の成分濃度を、任意の場所で測定することができる。なお、成分濃度測定装置1は、上述したような形状に限定されるものではない。   And this component concentration measuring apparatus 1 does not limit an installation place, but can make the component concentration measuring apparatus 1 portable as a measurement unit, and can measure the component density | concentration of the sampled test solution in arbitrary places. In addition, the component concentration measuring apparatus 1 is not limited to the shape as described above.

上記成分濃度測定装置1は、上述した例のように、検査液タンク内からサンプリングした検査液の成分濃度を測定できる測定装置ユニットとして説明したが、この成分濃度測定装置を湿式蛍光磁粉探傷試験装置内に組込んで検査液の濃度測定をすることができる。   Although the said component concentration measuring apparatus 1 demonstrated as a measuring device unit which can measure the component density | concentration of the test liquid sampled from the inside of a test liquid tank like the example mentioned above, this component concentration measuring apparatus is a wet fluorescent magnetic particle flaw detection test apparatus. The concentration of the test solution can be measured by incorporating it in the inside.

以下、図8は湿式蛍光磁粉探傷試験装置の一例を示した全体模式図、図9は探傷部の拡大模式図、図10は湿式蛍光磁粉探傷試験装置に備える成分濃度測定装置の一例を示した斜視図、図11は測定用配管に成分濃度測定装置を取付けた湿式蛍光磁粉探傷試験装置の全体模式図である。   FIG. 8 is an overall schematic view showing an example of a wet fluorescent magnetic particle flaw detection test apparatus, FIG. 9 is an enlarged schematic view of a flaw detection part, and FIG. 10 shows an example of a component concentration measuring apparatus provided in the wet fluorescent magnetic particle flaw detection test apparatus. FIG. 11 is an overall schematic view of a wet fluorescent magnetic particle flaw detection test apparatus in which a component concentration measurement device is attached to a measurement pipe.

湿式蛍光磁粉探傷試験装置21(例えば、商品名:スーパーマグナなど、マークテック株式会社製)は、図8に示すように、検査液を貯留する検査液タンク22と、この検査液タンク22内の検査液を、ポンプなどの循環手段23で取り出すとともに、検査液タンク21内に還流させる配管などの移送手段24と、この移送手段24内の検査液を、被検査体の磁化した金属の表面に接触させて、表面の傷部の探傷を行う探傷部25とから構成される。   As shown in FIG. 8, the wet fluorescent magnetic particle flaw detector 21 (for example, trade name: Super Magna, manufactured by Mark Tech Co., Ltd.) includes a test liquid tank 22 for storing a test liquid, and a test liquid tank 22 in the test liquid tank 22. The inspection liquid is taken out by the circulation means 23 such as a pump, and the transfer means 24 such as a pipe for returning to the inspection liquid tank 21 and the inspection liquid in the transfer means 24 are applied to the magnetized metal surface of the object to be inspected. It is comprised from the flaw detection part 25 which is made to contact and flaw-detects the surface flaw part.

この探傷部25は、図9に示すように、搬送ローラ26aを備え、ベルトコンベア26b上の被検査体を搬送する搬送装置26と、検査液タンク21内から取出した検査液を被検査体上に散布する散布装置27(図示しないが、散布した検査液を回収して検査液タンク内に戻す循環装置を含む)と、貫通コイル28aおよびヨークコイル28bなどからなり、ベルトコンベア26b上の被検査体を磁化する磁化装置28と、紫外線探傷灯29a(ブラックライト)を被検査体に照射して探傷を行う探傷装置29(図示しないが、傷部を検出するCCDカメラなど画像処理装置を含む)とから構成される。   As shown in FIG. 9, the flaw detection unit 25 includes a conveyance roller 26a, and conveys the inspection liquid on the belt conveyor 26b and the inspection liquid taken out from the inspection liquid tank 21 onto the inspection object. A spraying device 27 (not shown, including a circulating device for collecting the sprayed test solution and returning it to the test solution tank), a through coil 28a and a yoke coil 28b, etc. A magnetizing device 28 that magnetizes the body and a flaw detection device 29 that performs flaw detection by irradiating the inspection object with an ultraviolet flaw detection lamp 29a (black light) (not shown, but includes an image processing device such as a CCD camera that detects a flaw) It consists of.

なお、上述した湿式蛍光磁粉探傷試験装置21は、上述してきたように周知の技術であるため、それら詳細な説明は省略する。   In addition, since the wet fluorescent magnetic particle flaw detection test apparatus 21 described above is a known technique as described above, detailed description thereof will be omitted.

そして、本願発明の検査液の成分濃度測定装置1´は、湿式蛍光磁粉探傷試験装置21における検査液タンク21と、探傷部25との間の移送手段24の中途部に設置される。   The test liquid component concentration measuring apparatus 1 ′ of the present invention is installed in the middle of the transfer means 24 between the test liquid tank 21 and the flaw detection part 25 in the wet fluorescent magnetic particle flaw detection test apparatus 21.

この場合、成分濃度測定装置1´は、基本的に成分濃度測定装置1と同様であるが、図10に示すように、暗箱体2の穴部7に貫通させる長さを有する測定具3´とし、この測定具3´の両端部をそれぞれ移送手段24に接続する。このとき、測定具3´の両端部は、移送手段24に、図示しないボルトやネジなどの締結具で着脱自在に連結固定される。   In this case, the component concentration measuring apparatus 1 ′ is basically the same as the component concentration measuring apparatus 1, but as shown in FIG. 10, the measuring tool 3 ′ having a length that penetrates the hole 7 of the dark box body 2 is used. And both ends of the measuring tool 3 ′ are connected to the transfer means 24. At this time, both end portions of the measuring tool 3 ′ are detachably connected and fixed to the transfer means 24 with fasteners such as bolts and screws (not shown).

なお、成分濃度測定装置1´は、測定具3´を挿入する穴部7近傍に、上述したような遮光手段を設けるとともに、成分濃度測定装置1で説明した暗箱体2内の撹拌手段の設置は不要とされる。   The component concentration measuring device 1 ′ is provided with the light shielding means as described above in the vicinity of the hole 7 for inserting the measuring tool 3 ′, and the agitation means in the dark box 2 described in the component concentration measuring device 1 is installed. Is considered unnecessary.

そして、この湿式蛍光磁粉探傷試験装置21で被検査体の探傷試験を行う際、検査液タンク21内に貯留される検査液を、移送手段24内に循環手段23で取り出し、探傷部25に圧送するが、この移送途中において移送手段24内の検査液は、成分濃度測定装置1´の測定具3´内を通過し、再び移送手段24内から探傷部25に到達する。   When the wet fluorescent magnetic particle flaw detection test apparatus 21 performs a flaw detection test on the object to be inspected, the inspection liquid stored in the inspection liquid tank 21 is taken out into the transfer means 24 by the circulation means 23 and is pumped to the flaw detection section 25. However, during this transfer, the inspection liquid in the transfer means 24 passes through the measuring tool 3 ′ of the component concentration measuring device 1 ′ and reaches the flaw detection part 25 from the transfer means 24 again.

この成分濃度測定装置1´内において、上述したように光源4から紫外線LEDランプ12の紫外線を測定具3´内の検査液に照射することで、測定具3´内を通過している検査液の透過光を、紫外線検出器5の検出によりその紫外線吸光濃度から分散剤濃度を測定するとともに、励起して発光した可視光を、蛍光輝度検出器6の検出によりその蛍光輝度から蛍光磁粉濃度を測定することができる。 In this component concentration measuring apparatus 1 ′, the test liquid passing through the measuring tool 3 ′ is irradiated by irradiating the test liquid in the measuring tool 3 ′ with the ultraviolet light of the ultraviolet LED lamp 12 from the light source 4 as described above. The concentration of the dispersing agent is measured from the ultraviolet light absorption density by detecting the ultraviolet light detector 5 with the ultraviolet light detector 5, and the fluorescent magnetic powder concentration is calculated from the fluorescence luminance by detecting the fluorescent light detector 6 by exciting the emitted light. Can be measured.

このような構成にすることで、成分濃度測定装置1´が湿式蛍光磁粉探傷試験装置21と一体に構成され、従来のように検査液をサンプリングして探傷試験装置とは別の場所で成分濃度測定を行う必要がなく、検査液タンク22から探傷部25へ移送途中である検査液の成分濃度を、散布装置27での散布直前に探傷試験の一環としてオンラインで瞬時に測定することができる。   By adopting such a configuration, the component concentration measuring apparatus 1 'is configured integrally with the wet fluorescent magnetic particle flaw detection test apparatus 21, and the component concentration is sampled at a place different from the flaw detection test apparatus by sampling the inspection liquid as in the past. It is not necessary to perform the measurement, and the component concentration of the test liquid being transferred from the test liquid tank 22 to the flaw detection unit 25 can be instantaneously measured online as part of the flaw detection test immediately before spraying with the spraying device 27.

また、成分濃度測定装置1´は、図11に示すように、検査液タンク22に別途設けたポンプなどの循環手段23´を備える、検査液濃度の測定専用配管である移送手段24´の中途部に設置させた湿式蛍光磁粉探傷試験装置21´にすることもできる。   Further, as shown in FIG. 11, the component concentration measuring apparatus 1 ′ includes a circulating means 23 ′ such as a pump provided separately in the test liquid tank 22, and a transfer means 24 ′ that is a dedicated pipe for measuring the test liquid concentration. It can also be set as the wet fluorescent magnetic particle flaw detection test apparatus 21 'installed in the part.

このような構成にすることで、検査液タンク22から測定用配管などの移送手段24´を介して検査液タンク22に戻される循環中の検査液の成分濃度を、探傷試験の一環としてオンラインで瞬時に測定することができる。そして、この場合、検査液の散布経路とは別に、検査液の測定専用経路を設けたため、例えば散布経路に不都合などが生じて、散布が停止しても、測定専用経路で常時検査液の濃度を測定することができる。   With such a configuration, the component concentration of the circulating test liquid returned from the test liquid tank 22 to the test liquid tank 22 via the transfer means 24 'such as a measurement pipe is online as part of the flaw detection test. It can be measured instantaneously. In this case, since a dedicated path for measuring the test liquid is provided separately from the path for spraying the test liquid, the concentration of the test liquid always remains in the dedicated path for measurement even if spraying stops due to inconvenience, for example. Can be measured.

以上詳述したように、被検査体の磁化した金属の表面に、少なくとも蛍光磁粉と、分散剤とを混合してなる検査液を接触させ、表面の傷部に蛍光磁粉を集合および付着させることによって、傷部を探傷する湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法および測定装置では、検査液を透明な測定具3に導入し、光源4の光を、測定具3の一側方から検査液に照射して得られた透過光および励起して発光した可視光を用い、透過光を検出する紫外線検出器5の検出値に基づいて、分散剤の濃度を測定するとともに、励起して発光した可視光を検出する蛍光輝度検出器6の検出値に基づいて、蛍光磁粉の濃度を測定するものである。 As described above in detail, the test liquid formed by mixing at least the fluorescent magnetic powder and the dispersant is brought into contact with the magnetized metal surface of the object to be inspected, and the fluorescent magnetic powder is collected and adhered to the scratched surface. In the method and apparatus for measuring the component concentration of the test liquid used in the wet fluorescent magnetic particle flaw detection test for flaw detection, the test liquid is introduced into the transparent measuring tool 3, and the light from the light source 4 is supplied to the measuring tool 3. Using the transmitted light obtained by irradiating the test solution from the side and the visible light excited and emitted, and measuring the concentration of the dispersant based on the detection value of the ultraviolet detector 5 that detects the transmitted light, The concentration of the fluorescent magnetic powder is measured based on the detection value of the fluorescence luminance detector 6 that detects visible light excited and emitted.

本発明は、上述した被検査体の磁化した金属の表面に、少なくとも蛍光磁粉と、分散剤とを混合してなる検査液を接触させ、表面の傷部に蛍光磁粉を集合および付着させることによって、傷部を探傷する湿式蛍光磁粉探傷試験に用いる検査液の濃度測定に適用することができる。   In the present invention, the surface of the magnetized metal of the object to be inspected is brought into contact with a test liquid formed by mixing at least fluorescent magnetic powder and a dispersing agent, and the fluorescent magnetic powder is collected and adhered to the scratched surface. The present invention can be applied to the concentration measurement of a test solution used in a wet fluorescent magnetic particle flaw detection test for flaw detection.

1,1´ 成分濃度測定装置
2 暗箱体
3,3´ 測定具
4 光源
5 紫外線検出器
6 蛍光輝度検出器
7 穴部
8 傾斜部
12 紫外線LEDランプ
13 コントローラ
14 情報処理部
21 湿式蛍光磁粉探傷試験装置
22 検査液タンク
23,23´ 循環手段
24,24´ 移送手段
c 正面中心位置
DESCRIPTION OF SYMBOLS 1,1 'Component density | concentration measuring apparatus 2 Dark box 3, 3' Measuring tool 4 Light source 5 Ultraviolet detector 6 Fluorescence luminance detector 7 Hole part 8 Inclination part 12 Ultraviolet LED lamp 13 Controller 14 Information processing part 21 Wet fluorescent magnetic particle flaw detection test Device 22 Test solution tank 23, 23 'Circulating means 24, 24' Transfer means c Front center position

Claims (8)

被検査体の磁化した金属の表面に、少なくとも蛍光磁粉と、分散剤とを混合してなる検査液を接触させ、前記表面の傷部に前記蛍光磁粉を集合および付着させることによって、前記傷部を探傷する湿式蛍光磁粉探傷試験に用いる前記検査液の成分濃度測定方法であって、該成分濃度測定方法は、前記検査液を透明かつ攪拌手段を有する測定具に導入し、紫外線LEDランプ1個だけからなる光源の光を、前記測定具の一側方から前記検査液に照射して得られた透過光および励起して発光した可視光を用い、前記透過光を検出する紫外線検出器の検出値に基づいて、前記分散剤の濃度を測定すると同時に、前記励起して発光した可視光を検出する蛍光輝度検出器の検出値に基づいて、前記蛍光磁粉の濃度を測定することを特徴とする湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定方法。 The surface of the magnetized metal of the object to be inspected is brought into contact with an inspection liquid obtained by mixing at least fluorescent magnetic powder and a dispersing agent, and the fluorescent magnetic powder is collected and adhered to the surface of the surface of the inspected portion. A component concentration measurement method for the test liquid used in a wet fluorescent magnetic particle flaw detection test for detecting a test sample, wherein the component concentration measurement method introduces the test solution into a measuring tool that is transparent and has stirring means, and includes one ultraviolet LED lamp. the light of the light source composed of only the use of a measuring instrument visible light from one side and emits light by excitation obtained through light and then irradiating the test solution, the detection of the ultraviolet detector for detecting the transmitted light The concentration of the fluorescent magnetic powder is measured based on a detection value of a fluorescence luminance detector that detects visible light that is excited and emitted at the same time as measuring the concentration of the dispersant based on the value. Wet fluorescent magnetism Component concentration measuring method of the test solution used in the flaw detection test. 前記紫外線検出器は、前記測定具を挟んで前記光源の対向位置に設置することを特徴とする、請求項1に記載の湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定方法。   The method of measuring a component concentration of a test liquid used in a wet fluorescent magnetic particle flaw detection test according to claim 1, wherein the ultraviolet detector is installed at a position facing the light source with the measuring tool interposed therebetween. 前記蛍光輝度検出器は、前記測定具の周囲であって、前記測定具の正面中心位置から、前記光源による照射光の照射方向に対して、正負90度の範囲内に設置したことを特徴とする、請求項1に記載の湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定方法。   The fluorescence luminance detector is disposed around the measuring tool and within a range of 90 degrees between the front center position of the measuring tool and the irradiation direction of the irradiation light from the light source. The component concentration measuring method of the test liquid used for the wet fluorescent magnetic particle flaw detection test according to claim 1. 被検査体の磁化した金属の表面に、少なくとも蛍光磁粉と、分散剤とを混合してなる検査液を接触させ、前記金属表面の傷部に前記蛍光磁粉を集合および付着させることによって、前記傷部を探傷する湿式蛍光磁粉探傷試験に用いる前記検査液の成分濃度測定装置であって、該成分濃度測定装置は、前記検査液を導入する測定具と、該測定具内の前記検査液に紫外線を照射する光源の1個だけからなる紫外線LEDランプと、前記紫外線照射により前記検査液から得られた透過光を検出する紫外線検出器と、前記紫外線照射により前記検査液から得られた励起して発光した可視光を検出する蛍光輝度検出器と、前記紫外線検出器および前記蛍光輝度検出器の各検出値に基づいて、それぞれ前記分散剤の濃度と同時に前記蛍光磁粉の濃度を算出する情報処理部とを備えることを特徴とする湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定装置。 The surface of the magnetized metal of the object to be inspected is brought into contact with an inspection liquid formed by mixing at least fluorescent magnetic powder and a dispersant, and the fluorescent magnetic powder is collected and adhered to the scratched portion of the metal surface. A component concentration measuring apparatus for the test liquid used in a wet fluorescent magnetic particle flaw detection test for flaw detection, wherein the component concentration measuring apparatus includes a measuring tool for introducing the test liquid, and an ultraviolet ray on the test liquid in the measuring tool. An ultraviolet LED lamp comprising only one light source for irradiating the light, an ultraviolet detector for detecting the transmitted light obtained from the test liquid by the ultraviolet irradiation, and an excitation obtained from the test liquid by the ultraviolet irradiation. calculating a fluorescence intensity detector for detecting the emitted visible light, based on each detection value of the UV detector and the fluorescence intensity detector, the concentration at the same time as the concentration of the fluorescent magnetic particles of each of the dispersing agent Test solution of analyte concentration measurement apparatus used in the wet fluorescent magnetic particle inspection, characterized in that it comprises an information processing unit that. 前記測定具は、フッ素樹脂からなることを特徴とする、請求項4に記載の湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定装置。   The said measuring tool consists of fluororesins, The component density | concentration measuring apparatus of the test liquid used for the wet fluorescent magnetic particle flaw detection test of Claim 4 characterized by the above-mentioned. 前記測定具は、暗箱体内に設置するとともに、前記紫外線LEDランプと、前記紫外線検出器と、前記蛍光輝度検出器とは、前記暗箱体内に備えることを特徴とする、請求項4に記載の湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定装置。   5. The wet method according to claim 4, wherein the measuring tool is installed in a dark box, and the ultraviolet LED lamp, the ultraviolet detector, and the fluorescence luminance detector are provided in the dark box. Equipment for measuring component concentration of test liquid used in fluorescent magnetic particle testing. 少なくとも蛍光磁粉および分散剤を混合してなる検査液を貯留する検査液タンクと、該検査液タンク内の前記検査液を循環手段で取り出すとともに、前記検査液タンク内に還流させる移送手段と、該移送手段内の前記検査液を、被検査体の磁化した金属の表面に接触させて、前記表面の傷部の探傷を行う探傷部とを備える湿式蛍光磁粉探傷試験装置であって、前記移送手段は、前記検査液の成分濃度を測定する、請求項4〜6に記載の成分濃度測定装置を備え、前記移送手段が、前記探傷部に前記検査液を圧送する試験用配管であって、該試験用配管に、前記成分濃度測定装置の前記測定具を接続したことを特徴とする湿式蛍光磁粉探傷試験装置。   A test liquid tank for storing a test liquid formed by mixing at least a fluorescent magnetic powder and a dispersing agent, a transfer means for taking out the test liquid in the test liquid tank by a circulation means and refluxing the test liquid in the test liquid tank; A wet fluorescent magnetic particle testing apparatus comprising a flaw detection unit for contacting the surface of a magnetized metal of an object to be inspected with the inspection liquid in the transfer unit to perform a flaw detection on the surface flaw. Comprising the component concentration measuring device according to claim 4 for measuring the component concentration of the test solution, wherein the transfer means is a test pipe for pumping the test solution to the flaw detection unit, A wet fluorescent magnetic particle flaw detection test apparatus, wherein the measurement tool of the component concentration measurement apparatus is connected to a test pipe. 少なくとも蛍光磁粉および分散剤を混合してなる検査液を貯留する検査液タンクと、該検査液タンク内の前記検査液を循環手段で取り出すとともに、前記検査液タンク内に還流させる移送手段と、該移送手段内の前記検査液を、被検査体の磁化した金属の表面に接触させて、前記表面の傷部の探傷を行う探傷部とを備える湿式蛍光磁粉探傷試験装置であって、前記移送手段は、前記検査液の成分濃度を測定する、請求項4〜6に記載の成分濃度測定装置を備え、前記移送手段が、前記検査液タンク内に接続した測定用配管であって、該測定用配管に、前記成分濃度測定装置の前記測定具を接続したことを特徴とする湿式蛍光磁粉探傷試験装置。   A test liquid tank for storing a test liquid formed by mixing at least a fluorescent magnetic powder and a dispersing agent, a transfer means for taking out the test liquid in the test liquid tank by a circulation means and refluxing the test liquid in the test liquid tank; A wet fluorescent magnetic particle testing apparatus comprising a flaw detection unit for contacting the surface of a magnetized metal of an object to be inspected with the inspection liquid in the transfer unit to perform a flaw detection on the surface flaw. Comprising the component concentration measuring device according to claim 4 for measuring the component concentration of the test solution, wherein the transfer means is a measurement pipe connected to the test solution tank, A wet fluorescent magnetic particle testing apparatus characterized in that the measuring instrument of the component concentration measuring apparatus is connected to a pipe.
JP2010107561A 2010-05-07 2010-05-07 Method and apparatus for measuring component concentration in test liquid used for wet fluorescent magnetic particle testing Active JP4871404B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010107561A JP4871404B2 (en) 2010-05-07 2010-05-07 Method and apparatus for measuring component concentration in test liquid used for wet fluorescent magnetic particle testing
PCT/JP2010/071864 WO2011138843A1 (en) 2010-05-07 2010-12-07 Method and apparatus for measuring the concentration of component in inspection liquid used for wet-type fluorescent magnetic particle testing
CN201080066652.5A CN102884417B (en) 2010-05-07 2010-12-07 The assay method of the constituent concentration in the inspection liquid used in the test of wet type fluorescent magnetic particle flaw detection and determinator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010107561A JP4871404B2 (en) 2010-05-07 2010-05-07 Method and apparatus for measuring component concentration in test liquid used for wet fluorescent magnetic particle testing

Publications (2)

Publication Number Publication Date
JP2011237227A JP2011237227A (en) 2011-11-24
JP4871404B2 true JP4871404B2 (en) 2012-02-08

Family

ID=45325385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010107561A Active JP4871404B2 (en) 2010-05-07 2010-05-07 Method and apparatus for measuring component concentration in test liquid used for wet fluorescent magnetic particle testing

Country Status (1)

Country Link
JP (1) JP4871404B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5658091B2 (en) * 2011-05-25 2015-01-21 マークテック株式会社 Measuring method and measuring device for concentration of each component in test liquid used for wet fluorescent magnetic particle flaw detection test
KR101423282B1 (en) * 2012-11-21 2014-07-24 고영석 Hand Cleaning Practice Apparatus
CN104330408A (en) * 2014-10-28 2015-02-04 南京化工特种设备检验检测研究所 Antirust non-fluorescent water-based magnetic suspension and preparation method thereof
JP6742851B2 (en) * 2016-08-02 2020-08-19 マークテック株式会社 Component concentration measuring device and component concentration measuring method
JP6603265B2 (en) * 2017-05-19 2019-11-06 電子磁気工業株式会社 Concentration measuring method of fluorescent magnetic powder liquid, concentration measuring apparatus of fluorescent magnetic powder liquid
CN113092573A (en) * 2021-04-19 2021-07-09 中国特种设备检测研究院 High pressure hydrogen storage container internal surface defect detection device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621750A (en) * 1979-07-24 1981-02-28 Akitoshi Kitano Cutting method of torsion rotor
JPS62147357A (en) * 1985-12-20 1987-07-01 Kawasaki Steel Corp Control and controlling apparatus for magnetic powder liquid
JPS62147358A (en) * 1985-12-20 1987-07-01 Kawasaki Steel Corp Magnetic flaw detector
JP2970944B2 (en) * 1991-01-22 1999-11-02 電子磁気工業株式会社 Magnetic powder liquid analyzer
JP3170649B2 (en) * 1992-02-06 2001-05-28 マークテック株式会社 Method for managing magnetic powder liquid in magnetic particle flaw detection and artificial defect sensor device used in the method
JPH0894582A (en) * 1994-09-22 1996-04-12 Sumitomo Metal Ind Ltd Measuring device for performance of fluorescent magnetic particle liquid
JP3405836B2 (en) * 1994-10-28 2003-05-12 マークテック株式会社 Method for evaluating magnetic particle liquid dispersant used in wet magnetic particle flaw detection test method and measuring instrument used for carrying out the method
JP2000028522A (en) * 1998-07-10 2000-01-28 Horiba Ltd Measurement method for concentration of nonionic surfactant
JP2004157018A (en) * 2002-11-06 2004-06-03 Dkk Toa Corp Sensitivity calibration method of fluorescence detection apparatus and fluorescence detection apparatus
JP4258381B2 (en) * 2003-01-24 2009-04-30 三菱化学株式会社 Polyester production method
JP2009198210A (en) * 2008-02-19 2009-09-03 Suntory Holdings Ltd Fluorescent photometer
JP5051039B2 (en) * 2008-07-23 2012-10-17 株式会社デンソー Pressure sensor
US20110133099A1 (en) * 2008-07-30 2011-06-09 Horiba Advanced Techno, Co., Ltd. Silicon concentration measuring instrument

Also Published As

Publication number Publication date
JP2011237227A (en) 2011-11-24

Similar Documents

Publication Publication Date Title
WO2011138843A1 (en) Method and apparatus for measuring the concentration of component in inspection liquid used for wet-type fluorescent magnetic particle testing
JP4871404B2 (en) Method and apparatus for measuring component concentration in test liquid used for wet fluorescent magnetic particle testing
JP4750221B1 (en) Measuring method and measuring device for concentration of each component in test liquid used for wet fluorescent magnetic particle flaw detection test
JP5531286B2 (en) Magnetic powder concentration measuring apparatus and magnetic powder concentration measuring method
JP5658091B2 (en) Measuring method and measuring device for concentration of each component in test liquid used for wet fluorescent magnetic particle flaw detection test
TWI746719B (en) Device for inspecting microorganism
WO2014192565A1 (en) Microorganism testing method
CN219142584U (en) Magnetic suspension concentration on-line measuring device
US20110304326A1 (en) Magnetic field sensor including magnetic particles
JP2008523377A (en) Analyzes for creating lipid profiles using fluorescence measurements
JP2970944B2 (en) Magnetic powder liquid analyzer
JP2004279045A (en) Magnetic particle inspection device of magnetic pipe and manufacturing method of magnetic pipe
JP6603265B2 (en) Concentration measuring method of fluorescent magnetic powder liquid, concentration measuring apparatus of fluorescent magnetic powder liquid
CN105866157A (en) X fluorescence spectrometer for PM2.5 heavy metal online detection
JP2008523379A (en) Analysis of lipoproteins using phosphor K-37
JP2018072072A (en) Magnetic particle flaw detection device and magnetic particle flaw detection method
CN205562574U (en) Aquatic permanganate index autoanalyzer
RU2806246C1 (en) Method of magnetic powder flaw detection and device implementing it
CN102759516B (en) Oiliness carrier fluid primary fluorescence characteristic test device and method of testing thereof
KR100939259B1 (en) Improved apparatus for maintaining density of magnetic powder
US10241029B2 (en) Method of expanding the measurement range of photometric systems
KR100903633B1 (en) Apparatus for keeping magnetic powder
JP2018100917A (en) Magnetic particle flaw detection device, magnetic particle flaw detection method, and suspension for magnetic particle flaw detection
Singh et al. Non destructive testing of welded metals to enhance the quality of materials
JP3170649B2 (en) Method for managing magnetic powder liquid in magnetic particle flaw detection and artificial defect sensor device used in the method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4871404

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250