JP5658091B2 - Measuring method and measuring device for concentration of each component in test liquid used for wet fluorescent magnetic particle flaw detection test - Google Patents

Measuring method and measuring device for concentration of each component in test liquid used for wet fluorescent magnetic particle flaw detection test Download PDF

Info

Publication number
JP5658091B2
JP5658091B2 JP2011116956A JP2011116956A JP5658091B2 JP 5658091 B2 JP5658091 B2 JP 5658091B2 JP 2011116956 A JP2011116956 A JP 2011116956A JP 2011116956 A JP2011116956 A JP 2011116956A JP 5658091 B2 JP5658091 B2 JP 5658091B2
Authority
JP
Japan
Prior art keywords
test
concentration
test solution
detector
visible light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011116956A
Other languages
Japanese (ja)
Other versions
JP2012247210A (en
Inventor
松本 謙二
謙二 松本
貴司 藤本
貴司 藤本
俊治 逢坂
俊治 逢坂
通充 佐々木
通充 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marktec Corp
Original Assignee
Marktec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marktec Corp filed Critical Marktec Corp
Priority to JP2011116956A priority Critical patent/JP5658091B2/en
Publication of JP2012247210A publication Critical patent/JP2012247210A/en
Application granted granted Critical
Publication of JP5658091B2 publication Critical patent/JP5658091B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

本発明は、被検査体の磁化した金属の表面に、少なくとも蛍光磁粉を混合してなる検査液を接触させ、表面の傷部に蛍光磁粉を集合および付着させることによって、傷部を探傷する湿式蛍光磁粉探傷試験に用いる検査液に関し、より詳細には、検査液における各成分濃度の測定方法および測定装置に関する。   The present invention is a wet method for flaw detection by bringing a test liquid obtained by mixing at least fluorescent magnetic powder into contact with a magnetized metal surface of an object to be inspected, and collecting and adhering the fluorescent magnetic powder to the surface flaw. More particularly, the present invention relates to a method and an apparatus for measuring the concentration of each component in a test liquid.

湿式蛍光磁粉探傷試験は、一般的にビレットなどの鋼材や、自動車のシャフトなどの部品の探傷検査に適用する、JIS−Z−2320に規格化されたものである。これは、被検査体を磁化することにより、被検査体の表層部に傷部を有していれば、この傷部に磁極が発生するため、当該磁極に磁粉を付着させることで傷部を判定する、例えば特許文献1〜2に記載のような周知の非破壊検査法である。この傷部に付着させる磁粉は蛍光磁粉を使用しているため、暗室内で紫外線を照射し、傷部に付着した蛍光磁粉の蛍光体を発光させることで視認性を向上させ、検査を容易にする効果が得られる。検査に適用する検査液は数μm〜数十μmの蛍光磁粉と水もしくは白灯油と所定の分散剤、所定の防錆剤からなるのが一般的である。探傷検査において検査液内の蛍光磁粉の含有量が、傷部の視認性や検出限界などを左右する重要な要素である。検査液中の蛍光磁粉の濃度を測定する一般的な手法は、沈殿管を用いたもの(非破壊検査シリーズ、磁粉探傷試験IIIP82〜83)である。その手法は、よく撹拌し懸濁した検査液を散布ノズルから採取し、沈殿管を30分間静置した後、沈殿管底部に沈殿した沈殿物の容積を求めていた。 The wet fluorescent magnetic particle flaw detection test is standardized by JIS-Z-2320, which is generally applied to flaw detection inspection of steel materials such as billets and parts such as automobile shafts. This is because, by magnetizing the object to be inspected, if the surface layer part of the object to be inspected has a scratched part, a magnetic pole is generated at this scratched part. It is a well-known nondestructive inspection method as described in Patent Documents 1 and 2, for example. Since the magnetic powder to be attached to the scratched part uses fluorescent magnetic powder, the ultraviolet light is irradiated in the dark room, and the phosphor of the fluorescent magnetic powder attached to the damaged part emits light to improve the visibility and facilitate the inspection. Effect is obtained. The inspection liquid applied to the inspection is generally composed of fluorescent magnetic powder of several μm to several tens μm, water or white kerosene, a predetermined dispersant, and a predetermined rust preventive. In the flaw detection inspection, the content of the fluorescent magnetic powder in the inspection liquid is an important factor that affects the visibility and detection limit of the scratched part. A general method for measuring the concentration of the fluorescent magnetic powder in the test solution is a method using a sedimentation tube (non-destructive inspection series, magnetic particle testing IIIP82 to 83). In this method, a well-stirred and suspended test solution was collected from a spray nozzle, and the sedimentation tube was allowed to stand for 30 minutes, and then the volume of sediment deposited on the bottom of the sedimentation tube was determined.

特開2009−109424号公報JP 2009-109424 A 特開2007−303824号公報JP 2007-303824 A

しかし、上記のような湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法では、サンプリングの状況や、スケールおよびゴミなど異物の混入によって沈殿量が多くなっている場合、濃度測定値にばらつきを生じていた。そこで、この問題を解決するために、擬似欠陥に付着した蛍光体の明るさを指針として測定する方法(特開平7―113787)や、その明るさをCCDで読み取り画像処理することで測定する方法(特開2009−75098)、さらには鉄粉の電磁気特性と蛍光輝度を併用して測定する手法(特開平5−215724)が提案されているが、擬似欠陥を有した試験片の磁化状態、散布法などにより測定結果のばらつきは避けられない。また、上述したサンプリング操作は煩わしく、作業性が悪いという問題もあった。   However, in the method for measuring the component concentration of the test liquid used in the wet fluorescent magnetic particle flaw detection test as described above, the concentration measurement value varies when the amount of precipitation increases due to sampling conditions or contamination with foreign matter such as scale and dust. Was produced. Therefore, in order to solve this problem, a method of measuring the brightness of the phosphor adhering to the pseudo defect as a guide (Japanese Patent Laid-Open No. 7-113787) or a method of measuring the brightness by reading the image with a CCD and processing the image. (JP 2009-75098 A), and further, a method (JP-A 5-215724) for measuring the electromagnetic characteristics and fluorescence luminance of iron powder in combination has been proposed, but the magnetization state of the test piece having pseudo defects, Variations in measurement results are unavoidable due to spraying methods. Further, the sampling operation described above is troublesome and there is a problem that workability is poor.

さらに、上述してきた検査液の成分濃度の測定方法では、蛍光磁粉の濃度しか測定することができない。ところで、検査液中における蛍光磁粉の濃度は、探傷の視認性を左右するとともに、分散剤の濃度は、検査液の被検査体への濡れ性を左右する。分散剤の評価方法としては、特開平8−128993に開示した、表面あらさ標準片の標準面と透明板体の一面とが所要間隔を置いて対面している状態で固定し、当該両面が垂直になる姿勢で設置した測定装置にて、その下端部を試料に浸漬して前記間隔を毛細管現象によって上昇する試料の上昇値を測定し、当該測定値によって当該検査液中の分散剤の濡れ性を評価するものがあるが、分散剤自体の濃度を測定するものではなく、また、分散剤の評価のためだけに別途測定装置を設けなければならず、コスト高となるとともに作業効率が悪いという問題もあった。また、検査液の多くは、検査液タンクで調製され、磁化した被検査体に塗布された後、余剰分の検査液は回収し、再び被検査体に散布される。被検査体に対して前工程でショットブラストなどの表面処理を行っている場合、この表面処理で生じた鉄屑などのスケールが被検査体に付着し、このスケールの付着した被検査体に検査液を塗布すると、検査液タンクには余剰分の検査液に混入したスケールも回収されてしまう。このスケールは、酸化鉄などの強磁性体であるため、探傷の際、傷部への蛍光磁粉の付着を阻害し、探傷精度を著しく低下させてしまう。   Furthermore, only the concentration of the fluorescent magnetic powder can be measured by the method for measuring the component concentration of the test liquid described above. By the way, the concentration of the fluorescent magnetic powder in the test solution affects the visibility of the flaw detection, and the concentration of the dispersant determines the wettability of the test solution to the object to be inspected. As a method for evaluating the dispersant, the standard surface of the surface roughness standard piece and one surface of the transparent plate, which are disclosed in JP-A-8-128993, are fixed in a state where they face each other at a required interval, and the both surfaces are vertical. In a measuring device installed in a posture, the lower end of the sample is immersed in the sample, and the rising value of the sample rising by capillary action is measured, and the wettability of the dispersant in the test liquid is measured by the measured value. However, it does not measure the concentration of the dispersant itself, and a separate measuring device must be provided only for the evaluation of the dispersant, which increases costs and reduces work efficiency. There was also a problem. Further, most of the test liquid is prepared in the test liquid tank and applied to the magnetized object to be inspected, and then the surplus test liquid is collected and sprayed on the object to be inspected again. When surface treatment such as shot blasting is performed on the inspected object in the previous process, scales such as iron scrap generated by this surface treatment adhere to the inspected object, and the inspected object to which this scale adheres is inspected. When the liquid is applied, the scale mixed in the excess test liquid is also collected in the test liquid tank. Since this scale is a ferromagnetic material such as iron oxide, during the flaw detection, the adhesion of the fluorescent magnetic powder to the flaw portion is hindered, and the flaw detection accuracy is remarkably lowered.

そこで、本願発明者らは、検査液に含まれる成分の濃度を把握し、探傷精度を向上させるため、特願2010−257667に記載したように、撹拌された検査液を透明な測定具に導入し、この測定具内の検査液に、光源としての紫外線LEDランプおよび赤外線LEDランプを測定具の一側方から照射し、紫外線照射により検査液から得られた透過光を検出する紫外線検出器と、赤外線照射により検査液から得られた透過光を検出する赤外線検出器と、紫外線照射により検査液から得られた励起して発光した可視光を検出する蛍光輝度検出器とによる各検出値(検査液流動状態)および、検査液中の各成分の時間経過に伴う沈降特性の違いによって得られた上記各検出器による検出値(検査液静置状態)から、検査液に含有する蛍光磁粉、分散剤、防錆剤、スケールの各濃度を測定する方法および装置を開発した。   Therefore, the inventors of the present application introduced the stirred test liquid into a transparent measuring instrument as described in Japanese Patent Application No. 2010-257667 in order to grasp the concentration of components contained in the test liquid and improve the flaw detection accuracy. An ultraviolet detector that irradiates the test solution in the measuring instrument with an ultraviolet LED lamp and an infrared LED lamp as a light source from one side of the measuring instrument, and detects transmitted light obtained from the test solution by ultraviolet irradiation; Each detection value (inspection) by an infrared detector that detects transmitted light obtained from a test solution by infrared irradiation and a fluorescence luminance detector that detects visible light excited and emitted from the test solution by ultraviolet irradiation Liquid flow state), and from the detection value (test solution stationary state) obtained by each detector obtained by the difference in sedimentation characteristics of each component in the test solution over time, fluorescent magnetic powder contained in the test solution, Developed powder, rust inhibitors, a method and apparatus for measuring the concentration of the scale.

しかしながら、被試験体である自動車部品などの鋼材は、製造工程における探傷試験の前工程で切削加工が行われる場合が多く、被検査体表面には、切削油や防腐剤など周知の油分が付着し、上述したスケール同様にこれら油分も検査液とともに検査液タンクに回収されていく。そして、このような検査液中への油分の混入量の増加は、検査液内での蛍光磁粉の凝集を促進させ、探傷精度を著しく低下させてしまう。ここで、油分が蛍光磁粉の凝集を発生させる要因としては、油分中で蛍光磁粉の分散が始まるが、この油分により蛍光磁粉が分散途中などでそのまま固まってしまうことや、油分が検査液に含まれる分散剤の分散能力を低下させることなどが挙げられ、この結果、検査液内への油分の混入は検査液の性能を不安定なものとする。   However, steel materials such as automobile parts, which are test objects, are often subjected to cutting work before the flaw detection test in the manufacturing process, and well-known oil components such as cutting oil and preservatives adhere to the surface of the test object. Then, like the scale described above, these oil components are also collected in the inspection liquid tank together with the inspection liquid. Such an increase in the amount of oil mixed in the test solution promotes the aggregation of the fluorescent magnetic powder in the test solution and significantly reduces the flaw detection accuracy. Here, the cause of the aggregation of the fluorescent magnetic powder by the oil component is the start of dispersion of the fluorescent magnetic powder in the oil component. This oil component causes the fluorescent magnetic powder to solidify in the middle of the dispersion or the oil component is included in the test solution. As a result, the mixing of oil into the test liquid makes the performance of the test liquid unstable.

そこで、検査液中に含まれる油分の濃度を把握できれば、検査液の液質管理(交換のタイミングなど)をすることで探傷性能の維持が可能となるが、従来では、検査液中に含まれるこの油分濃度を測定することができず、その結果、検査液中の油分濃度の上昇に伴い、探傷試験の際の傷部の検出性能が低下していても、そのまま探傷試験が続行されることから、探傷試験の性能低下という問題があった。   Therefore, if the concentration of oil contained in the test solution can be grasped, it is possible to maintain the flaw detection performance by controlling the quality of the test solution (such as the timing of replacement), but conventionally it is included in the test solution. This oil concentration cannot be measured, and as a result, the flaw detection test will continue as it is even if the detection performance of the flaws in the flaw detection test has deteriorated due to the increase in the oil concentration in the test solution. Therefore, there was a problem that the performance of the flaw detection test was lowered.

従って、この発明の目的は、検査液に混入した切削油や防腐剤などの油分濃度を測定可能にするとともに、この油分濃度に加え、検査液に含有するスケールや、検査液を構成する蛍光磁粉、分散剤、防錆剤など検査液中の各成分濃度を簡単な方法で同時に測定でき、かつそれらの濃度を瞬時かつ高精度に測定可能とした、探傷試験の際の傷部の検出性能および作業性を向上させた湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法および測定装置を提供するものである。   Accordingly, an object of the present invention is to make it possible to measure the concentration of oil such as cutting oil and preservative mixed in the inspection liquid, and in addition to this oil concentration, the scale contained in the inspection liquid and the fluorescent magnetic powder constituting the inspection liquid The ability to detect flaws in flaw detection tests that can simultaneously measure the concentration of each component in the test solution, such as dispersants and rust preventives, with a simple method, and that allows the concentration to be measured instantaneously and with high accuracy It is an object of the present invention to provide a method and an apparatus for measuring the component concentration of a test liquid used in a wet fluorescent magnetic particle flaw detection test with improved workability.

このため、請求項1に記載の発明は、被検査体の磁化した金属の表面に、少なくとも蛍光磁粉を混合してなる検査液を接触させ、前記表面の傷部に前記蛍光磁粉を集合および付着させることによって、前記傷部を探傷する湿式蛍光磁粉探傷試験に用いる前記検査液の成分濃度測定方法であって、該成分濃度測定方法は、撹拌された前記検査液を測定具に導入し、異なる波長の複数の光源として、紫外線LEDランプ、可視光LEDランプ1個または波長が異なる可視光LEDランプ複数個、および赤外線LEDランプの光を、前記測定具の一側方から前記検査液に照射して得られた透過光および励起して発光した可視光を用い、前記透過光を検出する紫外線検出器、可視光検出器および赤外線検出器と、前記励起して発光した可視光を検出する蛍光輝度検出器との各検出値および前記検査液の各成分の時間経過に伴う沈降特性の違いによって得られる前記各検出器の検出値の変化および前記紫外線LEDランプを除く前記光源のうち、異なる波長の2つの光源に応じた前記検出器による各検出値の差分値から、前記検査液の各成分濃度を測定することを特徴とする。
For this reason, according to the first aspect of the present invention, the test liquid obtained by mixing at least the fluorescent magnetic powder is brought into contact with the surface of the magnetized metal of the object to be inspected, and the fluorescent magnetic powder is assembled and adhered to the scratched portion of the surface. A component concentration measurement method for the test liquid used in a wet fluorescent magnetic particle flaw detection test for flaw detection of the scratched part, wherein the component concentration measurement method is different by introducing the stirred test liquid into a measurement tool. As a plurality of wavelengths of light sources, the test solution is irradiated from one side of the measuring tool with ultraviolet LED lamps, one visible light LED lamp or a plurality of visible light LED lamps having different wavelengths, and infrared LED lamps. The transmitted light and the visible light excited and emitted are used to detect the transmitted light, the ultraviolet detector, the visible light detector and the infrared detector, and the excited and emitted visible light is detected. Change in detection value of each detector obtained by difference in detection value with fluorescence luminance detector and sedimentation characteristics of each component of the test solution with time and the light source excluding the ultraviolet LED lamp are different. Each component concentration of the test solution is measured from a difference value of each detection value by the detector corresponding to two light sources of wavelengths.

請求項2に記載の発明は、請求項1に記載の湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定方法において、前記紫外線検出器、前記可視光検出器および前記赤外線検出器は、前記測定具を挟んで前記光源の対向位置に設置することを特徴とする。   The invention described in claim 2 is the method of measuring a concentration of a test liquid used in the wet fluorescent magnetic particle flaw detection test according to claim 1, wherein the ultraviolet detector, the visible light detector, and the infrared detector are the measurement devices. It is characterized by being installed at a position facing the light source with a tool in between.

請求項3に記載の発明は、請求項1に記載の湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定方法において、前記各成分は、蛍光磁粉と、分散剤と、防錆剤と、スケールと、油分とを含むことを特徴とする。   A third aspect of the present invention is the method for measuring a concentration of a test liquid used in the wet fluorescent magnetic particle flaw detection test according to the first aspect, wherein each of the components includes a fluorescent magnetic powder, a dispersant, a rust inhibitor, and a scale. And an oil component.

請求項4に記載の発明は、被検査体の磁化した金属の表面に、少なくとも蛍光磁粉を混合してなる検査液を接触させ、前記金属表面の傷部に前記蛍光磁粉を集合および付着させることによって、前記傷部を探傷する湿式蛍光磁粉探傷試験に用いる前記検査液の成分濃度測定装置であって、該成分濃度測定装置は、前記検査液を導入する測定具と、前記検査液の流れを制御するポンプと、該測定具内の前記検査液に紫外線を照射する光源の紫外線LEDランプと、該測定具内の前記検査液に可視光を照射する光源の可視光LEDランプ1個または波長が異なる可視光LEDランプ複数個と、該測定具内の前記検査液に赤外線を照射する光源の赤外線LEDランプと、前記紫外線照射により前記検査液から得られた透過光を検出する紫外線検出器と、前記可視光照射により前記検査液から得られた透過光を検出する可視光検出器と、前記赤外線照射により前記検査液から得られた透過光を検出する赤外線検出器と、前記紫外線照射により前記検査液から得られた励起して発光した可視光を検出する蛍光輝度検出器と、前記ポンプの動作時および停止時の前記検査液の、前記紫外線検出器、前記可視光検出器、前記赤外線検出器、前記蛍光輝度検出器による各検出値に基づいて、それぞれ前記検査液に含有する前記蛍光磁粉の濃度および分散剤濃度、防錆剤濃度、スケール濃度、油分濃度を算出する情報処理部とを備え、かつ前記測定具は、暗箱体内に設置するとともに、前記紫外線LEDランプと、前記可視光LEDランプと、前記赤外線LEDランプと、前記紫外線検出器と、前記可視光検出器と、前記赤外線検出器と、前記蛍光輝度検出器とは、前記暗箱体内に備えることを特徴とする。   According to a fourth aspect of the present invention, a test liquid obtained by mixing at least fluorescent magnetic powder is brought into contact with a magnetized metal surface of an object to be inspected, and the fluorescent magnetic powder is collected and adhered to a scratch on the metal surface. A component concentration measuring device for the test liquid used in a wet fluorescent magnetic particle flaw detection test for flaw detection of the scratched part, the component concentration measuring device comprising: a measuring tool for introducing the test solution; and a flow of the test solution A pump for controlling, an ultraviolet LED lamp as a light source for irradiating the test liquid in the measuring tool with ultraviolet light, and a visible light LED lamp or a wavelength of a light source for irradiating the test liquid in the measuring tool as visible light. A plurality of different visible light LED lamps, an infrared LED lamp of a light source for irradiating the test solution in the measuring instrument with infrared light, and an ultraviolet detector for detecting transmitted light obtained from the test solution by the ultraviolet irradiation A visible light detector for detecting the transmitted light obtained from the test liquid by the visible light irradiation; an infrared detector for detecting the transmitted light obtained from the test liquid by the infrared irradiation; and Fluorescence luminance detector for detecting visible and excited light obtained from the test solution, and the ultraviolet detector, the visible light detector, and the infrared detection of the test solution when the pump is operated and stopped And an information processing unit for calculating the concentration of the fluorescent magnetic powder and the concentration of the dispersant, the concentration of the rust inhibitor, the scale concentration, and the oil concentration contained in the test solution, respectively, based on the detection values by the fluorescence luminance detector. And the measuring tool is installed in a dark box, and the ultraviolet LED lamp, the visible LED lamp, the infrared LED lamp, the ultraviolet detector, and the visible detector. A detector, said infrared detector, wherein the fluorescent intensity detector, characterized by comprising the dark box body.

請求項5に記載の発明は、少なくとも蛍光磁粉を混合してなる検査液を貯留する検査液タンクと、該検査液タンク内の前記検査液を循環手段で取り出すとともに、前記検査液タンク内に還流させる移送手段と、該移送手段内の前記検査液を、被検査体の磁化した金属の表面に接触させて、前記表面の傷部の探傷を行う探傷部とを備える湿式蛍光磁粉探傷試験装置であって、前記移送手段は、前記検査液の成分濃度を測定する、請求項4に記載の成分濃度測定装置を備え、前記移送手段が、前記探傷部に前記検査液を圧送する試験用配管であって、該試験用配管に、前記成分濃度測定装置の前記測定具を接続したことを特徴とする。   According to a fifth aspect of the present invention, there is provided a test liquid tank for storing a test liquid formed by mixing at least fluorescent magnetic powder, and the test liquid in the test liquid tank is taken out by a circulation means and returned to the test liquid tank. A wet-type fluorescent magnetic particle flaw detection tester comprising: a transfer means that causes the test liquid in the transfer means to contact the magnetized metal surface of the object to be inspected to detect a flaw on the surface. The transfer means includes the component concentration measuring device according to claim 4 for measuring the component concentration of the test liquid, and the transfer means is a test pipe for pumping the test liquid to the flaw detection unit. Then, the measuring instrument of the component concentration measuring device is connected to the test pipe.

請求項1に記載の発明によれば、被検査体の磁化した金属の表面に、少なくとも蛍光磁粉を混合してなる検査液を接触させ、表面の傷部に前記蛍光磁粉を集合および付着させることによって、傷部を探傷する湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定方法であって、この成分濃度測定方法は、撹拌された検査液を測定具に導入し、異なる波長の複数の光源として、紫外線LEDランプ、可視光LEDランプ1個または波長が異なる可視光LEDランプ複数個、および赤外線LEDランプの光を、測定具の一側方から検査液に照射して得られた透過光および励起して発光した可視光を用い、透過光を検出する紫外線検出器、可視光検出器および赤外線検出器と、励起して発光した可視光を検出する蛍光輝度検出器との各検出値および検査液の各成分の時間経過に伴う沈降特性の違いによって得られる各検出器の検出値の変化および前記紫外線LEDランプを除く前記光源のうち、異なる波長の2つの光源に応じた検出器による各検出値の差分値から、検査液の各成分濃度を測定するので、光学的手法を用いた簡単な構成により、検査液中に含まれる混入物を含む各成分の濃度を瞬時かつ高精度で、容易に測定することができる。 According to the first aspect of the present invention, the test liquid obtained by mixing at least the fluorescent magnetic powder is brought into contact with the magnetized metal surface of the object to be inspected, and the fluorescent magnetic powder is collected and adhered to the scratched surface. Is a method for measuring the concentration of a component of a test liquid used in a wet fluorescent magnetic particle flaw detection test for flaw detection, wherein the component concentration measurement method introduces a stirred test solution into a measuring tool, and a plurality of light sources having different wavelengths. As an ultraviolet LED lamp, one visible light LED lamp or a plurality of visible light LED lamps having different wavelengths, and transmitted light obtained by irradiating the test solution with light from an infrared LED lamp from one side of the measuring tool and Each detection value and detection of an ultraviolet detector, a visible light detector, and an infrared detector that detect transmitted light using visible light excited and emitted, and a fluorescence luminance detector that detects visible light excited and emitted. Changes in the detection value of each detector obtained by the difference in sedimentation characteristics with the passage of time of each component of the test solution and each of the light sources other than the ultraviolet LED lamp by the detectors corresponding to two light sources having different wavelengths Since the concentration of each component of the test solution is measured from the difference value of the detection value, the concentration of each component including contaminants contained in the test solution is instantaneously and highly accurate with a simple configuration using an optical method. It can be measured easily.

特に、検査液内での蛍光磁粉の凝集を促進させ、探傷精度を著しく低下させてしまう切削油や防腐剤など、従来では測定できなかった検査液中に混入した油分濃度を、検査液に含まれる他の成分または混入物(蛍光磁粉、分散剤、防錆剤、スケール)の各濃度とともに測定することができるため、検査液の液質管理によって探傷性能を維持することができる。   In particular, the test solution contains oil concentrations mixed in the test solution that could not be measured in the past, such as cutting oil and preservatives that promote the aggregation of fluorescent magnetic powder in the test solution and significantly reduce the flaw detection accuracy. Since it can measure with each density | concentration of other components or contaminants (fluorescent magnetic powder, a dispersing agent, a rust preventive agent, a scale) to be detected, flaw detection performance can be maintained by liquid quality management of a test liquid.

また、波長の異なる3種類の電磁波を用いて、検査液および検査液中に含まれる各成分から、成分濃度算出に必要な多種類の測定データを得ることができるとともに、LEDランプを用いることで検査液に吸光および励起発光させる光源ランプの使用寿命が長くなり、コストダウンを図ることができる。従って、各成分濃度の測定を可能にするとともに、測定精度および作業性を向上させた湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法を提供することができる。   In addition, by using three types of electromagnetic waves with different wavelengths, various types of measurement data necessary for component concentration calculation can be obtained from the test solution and each component contained in the test solution, and an LED lamp can be used. The service life of the light source lamp that absorbs and excites the test solution is prolonged, and the cost can be reduced. Therefore, it is possible to provide a method for measuring the component concentration of the test liquid used in the wet fluorescent magnetic particle flaw detection test which enables measurement of each component concentration and improves measurement accuracy and workability.

請求項2に記載の発明によれば、紫外線検出器、可視光検出器および赤外線検出器は、測定具を挟んで光源の対向位置に設置するので、紫外線LEDランプ、可視光LEDランプおよび赤外線LEDランプから検査液に入射し、液中を略直進的に透過した紫外線、可視光および赤外線の各透過光を、各成分の吸光濃度として正確かつ安定的に測定することができる。従って、簡単な構成で測定精度を向上させた、湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法を提供することができる。   According to invention of Claim 2, since an ultraviolet detector, a visible light detector, and an infrared detector are installed in the position which opposes a light source on both sides of a measuring tool, an ultraviolet LED lamp, a visible light LED lamp, and an infrared LED The ultraviolet light, visible light, and infrared transmitted light that are incident on the test solution from the lamp and pass through the solution in a straight line can be accurately and stably measured as the absorbance concentration of each component. Therefore, it is possible to provide a method for measuring the component concentration of the test liquid used in the wet fluorescent magnetic particle flaw detection test with a simple configuration and improved measurement accuracy.

請求項3に記載の発明によれば、各成分は、蛍光磁粉と、分散剤と、防錆剤と、スケールと、油分とを含むので、検査液内での蛍光磁粉の凝集を促進させ、探傷精度を著しく低下させてしまう切削油や防腐剤など、従来では測定できなかった検査液中に混入した油分濃度を、検査液に含まれる蛍光磁粉、分散剤、防錆剤、スケールの各濃度とともに測定することができる。従って、混入物を含む各成分濃度の測定を可能にするとともに、測定精度および作業性を向上させた、湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法を提供することができる。   According to invention of Claim 3, since each component contains fluorescent magnetic powder, a dispersing agent, a rust preventive agent, a scale, and oil, it promotes aggregation of the fluorescent magnetic powder in a test | inspection liquid, The concentration of oil contained in the test solution, which could not be measured in the past, such as cutting oil and preservatives that significantly reduce the flaw detection accuracy, is the concentration of fluorescent magnetic powder, dispersant, rust preventive, and scale contained in the test solution. Can be measured together. Therefore, it is possible to provide a method for measuring the concentration of each component of the test liquid used in the wet fluorescent magnetic particle flaw detection test, which enables measurement of the concentration of each component including the contaminants and improves the measurement accuracy and workability.

請求項4に記載の発明によれば、被検査体の磁化した金属の表面に、少なくとも蛍光磁粉を混合してなる検査液を接触させ、金属表面の傷部に蛍光磁粉を集合および付着させることによって、傷部を探傷する湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定装置であって、この成分濃度測定装置は、検査液を導入する測定具と、検査液の流れを制御するポンプと、この測定具内の検査液に紫外線を照射する光源の紫外線LEDランプと、この測定具内の検査液に可視光を照射する光源の可視光LEDランプ1個または波長が異なる可視光LEDランプ複数個と、この測定具内の検査液に赤外線を照射する光源の赤外線LEDランプと、紫外線照射により検査液から得られた透過光を検出する紫外線検出器と、可視光照射により検査液から得られた透過光を検出する可視光検出器と、赤外線照射により検査液から得られた透過光を検出する赤外線検出器と、紫外線照射により検査液から得られた励起して発光した可視光を検出する蛍光輝度検出器と、ポンプの動作時および停止時の前記検査液の、紫外線検出器、可視光検出器、赤外線検出器、蛍光輝度検出器による各検出値に基づいて、それぞれ検査液に含有する蛍光磁粉の濃度および、分散剤濃度、防錆剤濃度、スケール濃度、油分濃度を算出する情報処理部とを備え、かつ測定具は、暗箱体内に設置するとともに、紫外線LEDランプと、可視光LEDランプと、赤外線LEDランプと、紫外線検出器と、可視光検出器と、赤外線検出器と、蛍光輝度検出器とは、暗箱体内に備えるので、検査液中に含まれる混入物を含む各成分の濃度を瞬時かつ高精度で、容易に測定することができる。   According to the fourth aspect of the present invention, the test liquid formed by mixing at least the fluorescent magnetic powder is brought into contact with the magnetized metal surface of the object to be inspected, and the fluorescent magnetic powder is collected and adhered to the scratched portion of the metal surface. Is a component concentration measuring device for a test liquid used in a wet fluorescent magnetic particle flaw detection test for flaw detection by using a measuring tool for introducing the test solution, a pump for controlling the flow of the test solution, and the like. An ultraviolet LED lamp as a light source for irradiating the test solution in the measuring tool with ultraviolet light, and a single visible light LED lamp as a light source for irradiating the test solution in the measuring tool with visible light, or a plurality of visible light LED lamps having different wavelengths. An infrared LED lamp as a light source for irradiating the test solution in the measuring instrument with infrared light, an ultraviolet detector for detecting transmitted light obtained from the test solution by ultraviolet irradiation, and obtained from the test solution by visible light irradiation. A visible light detector that detects the transmitted light, an infrared detector that detects the transmitted light obtained from the test solution by infrared irradiation, and an excited and emitted visible light obtained from the test solution by ultraviolet irradiation. Fluorescence intensity detector and the test liquid at the time of operation and stop of the pump, each contained in the test liquid based on each detection value by the ultraviolet detector, visible light detector, infrared detector, fluorescence fluorescence detector And an information processing unit for calculating the concentration of the fluorescent magnetic powder, the dispersant concentration, the rust inhibitor concentration, the scale concentration, and the oil concentration, and the measuring tool is installed in the dark box, and the ultraviolet LED lamp and visible light Since the LED lamp, the infrared LED lamp, the ultraviolet ray detector, the visible light detector, the infrared ray detector, and the fluorescence luminance detector are provided in the dark box, each component including contaminants contained in the test liquid is included. The concentration in instantaneous and accurate, can be easily measured.

特に、検査液内での蛍光磁粉の凝集を促進させ、探傷精度を著しく低下させてしまう切削油や防腐剤など、従来では測定できなかった検査液中に混入した油分濃度を、検査液に含まれる他の成分または混入物(蛍光磁粉、分散剤、防錆剤、スケール)の各濃度とともに測定することができるため、検査液の液質管理によって探傷性能を維持することができる。従って、各成分濃度の測定を可能にするとともに、測定精度および作業性を向上させた湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定装置を提供することができる。   In particular, the test solution contains oil concentrations mixed in the test solution that could not be measured in the past, such as cutting oil and preservatives that promote the aggregation of fluorescent magnetic powder in the test solution and significantly reduce the flaw detection accuracy. Since it can measure with each density | concentration of other components or contaminants (fluorescent magnetic powder, a dispersing agent, a rust preventive agent, a scale) to be detected, flaw detection performance can be maintained by liquid quality management of a test liquid. Therefore, it is possible to provide a component concentration measuring apparatus for a test liquid used for a wet fluorescent magnetic particle flaw detection test that enables measurement of each component concentration and improves measurement accuracy and workability.

さらに、本成分濃度測定装置は、設置場所を限定せず、探傷試験装置に組込んだり、成分濃度測定装置を測定ユニットとして携帯可能とし、サンプリングした検査液の成分濃度を、任意の場所で測定することができる。従って、測定精度および作業性を向上させた湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定装置を提供することができる。   In addition, this component concentration measurement device is not limited to the installation location, and can be incorporated into a flaw detection test device, or the component concentration measurement device can be carried as a measurement unit, and the component concentration of the sampled test solution can be measured at any location. can do. Therefore, it is possible to provide an apparatus for measuring the component concentration of the test liquid used in the wet fluorescent magnetic particle flaw detection test with improved measurement accuracy and workability.

請求項5に記載の発明によれば、少なくとも蛍光磁粉を混合してなる検査液を貯留する検査液タンクと、この検査液タンク内の検査液を循環手段で取り出すとともに、検査液タンク内に還流させる移送手段と、この移送手段内の検査液を、被検査体の磁化した金属の表面に接触させて、表面の傷部の探傷を行う探傷部とを備える湿式蛍光磁粉探傷試験装置であって、移送手段は、検査液の成分濃度を測定する、請求項4に記載の成分濃度測定装置を備え、移送手段が、探傷部に検査液を圧送する試験用配管であって、この試験用配管に、成分濃度測定装置の測定具を接続したので、成分濃度測定装置が湿式蛍光磁粉探傷試験装置と一体に構成され、従来のように検査液をサンプリングして探傷試験装置とは別の場所で成分濃度測定を行う必要がない。   According to the fifth aspect of the present invention, the test liquid tank storing the test liquid formed by mixing at least the fluorescent magnetic powder, the test liquid in the test liquid tank is taken out by the circulation means, and returned to the test liquid tank. A wet fluorescent magnetic particle flaw detection test apparatus comprising: a transfer means that causes the test liquid in the transfer means to contact the magnetized metal surface of the object to be inspected to detect a flaw on the surface. The transfer means includes the component concentration measuring device according to claim 4, wherein the transfer means is a test pipe for pumping the test liquid to the flaw detection unit, and the test pipe In addition, since the measuring tool of the component concentration measuring device is connected, the component concentration measuring device is integrated with the wet fluorescent magnetic particle flaw detection testing device, and the inspection liquid is sampled as in the conventional method at a place different from the flaw detection testing device. Need to measure component concentration No.

つまり、検査液タンクから探傷部へ移送途中である検査液の成分濃度を、散布装置での散布直前に探傷試験の一環としてオンラインで瞬時に測定することができる。従って、作業性を向上させた湿式蛍光磁粉探傷試験装置を提供することができる。   That is, the component concentration of the test liquid being transferred from the test liquid tank to the flaw detection unit can be instantaneously measured online as part of the flaw detection test immediately before spraying with the spraying device. Accordingly, it is possible to provide a wet fluorescent magnetic particle flaw detection test apparatus with improved workability.

本発明の一例を示す、湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定装置の斜視図である。It is a perspective view of the component density | concentration measuring apparatus of the test liquid used for a wet fluorescent magnetic particle flaw detection test which shows an example of this invention. 成分濃度測定装置の平面図および測定具の斜視図である。It is the top view of a component concentration measuring apparatus, and the perspective view of a measuring tool. 成分濃度測定装置の正面図である。It is a front view of a component concentration measuring apparatus. 測定具に対する光源(紫外線LEDランプ)と、紫外線検出器および蛍光輝度検出器の設置位置を示す測定具周辺の正面模式図である。It is a front schematic diagram of the measurement tool periphery showing the installation position of the light source (ultraviolet LED lamp) with respect to the measurement tool, the ultraviolet detector, and the fluorescence luminance detector. 測定具に対する光源(可視光LEDランプまたは赤外線LEDランプ)と、可視光検出器または赤外線検出器の設置位置を示す測定具周辺の正面模式図である。It is a front schematic diagram of the measurement tool periphery which shows the installation position of the light source (visible light LED lamp or infrared LED lamp) with respect to a measurement tool, and a visible light detector or an infrared detector. 成分濃度測定装置のブロック制御図である。It is a block control diagram of a component concentration measuring device. 検査液中の各成分(a)〜(d)の濃度に対する吸光濃度および蛍光輝度を示すグラフ(検査液を撹拌・流動状態)である。It is a graph (A test liquid is stirred and fluidized) which shows the light-absorbing density | concentration with respect to the density | concentration of each component (a)-(d) in a test liquid, and fluorescence luminance. 検査液中の各成分(a)〜(d)の濃度に対する紫外線沈降吸光濃度を示すグラフ(検査液静止状態)である。It is a graph (test | medical solution stationary state) which shows the ultraviolet sedimentation absorption density with respect to the density | concentration of each component (a)-(d) in a test | inspection liquid. 防錆剤および油分における光の波長による透過率の違いを示すグラフである。It is a graph which shows the difference in the transmittance | permeability by the wavelength of light in a rust preventive agent and oil. 油分としての切削油の各波長における濃度と吸光度の関係を示すグラフである。It is a graph which shows the density | concentration and the light absorbency in each wavelength of the cutting oil as an oil component. コントローラによる検査液中の成分濃度算出経路のブロック図である。It is a block diagram of a component concentration calculation path in a test solution by a controller. 切削油の濃度と、青色可視光および赤外線による吸光濃度の差分との関係を示すグラフである。It is a graph which shows the relationship between the density | concentration of cutting oil, and the difference of the light absorption density by blue visible light and infrared rays. 本発明の他の例を示す、光源をダイヤル式に配置した、湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定装置の斜視図である。It is a perspective view of the component density | concentration measuring apparatus of the test solution used for a wet fluorescent magnetic particle flaw detection test which has arrange | positioned the light source in the dial type which shows the other example of this invention. 湿式蛍光磁粉探傷試験装置の一例を示した全体模式図である。It is the whole schematic diagram which showed an example of the wet fluorescent magnetic particle flaw detection test apparatus. 探傷部の拡大模式図である。It is an expansion schematic diagram of a flaw detection part.

以下、図面を参照しつつ、この発明を実施するための最良の形態について詳述する。図1は本発明の一例を示した、湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定装置を示す斜視図、図2は成分濃度測定装置の平面図、図3は成分濃度測定装置の正面図、図4は測定具に対する光源(紫外線LEDランプ)と、紫外線検出器および蛍光輝度検出器の設置位置を示す測定具周辺の正面模式図、図5は測定具に対する光源(可視光LEDランプまたは赤外線LEDランプ)と、可視光検出器または赤外線検出器の設置位置を示す測定具周辺の正面模式図、図6は成分濃度測定装置のブロック制御図である。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view showing a component concentration measuring device for a test liquid used in a wet fluorescent magnetic particle flaw detection test, showing an example of the present invention, FIG. 2 is a plan view of the component concentration measuring device, and FIG. 3 is a front view of the component concentration measuring device. FIG. 4 is a schematic front view of the periphery of the measuring tool showing the light source (ultraviolet LED lamp) for the measuring tool and the installation position of the ultraviolet detector and the fluorescence luminance detector, and FIG. 5 is a light source (visible light LED lamp or FIG. 6 is a block control diagram of the component concentration measuring device. FIG. 6 is a schematic front view of the periphery of the measuring tool showing the installation position of the infrared LED lamp) and the visible light detector or infrared detector.

まず、周知のとおり湿式蛍光磁粉探傷試験に用いる検査液は、蛍光磁粉と、分散剤と、必要に応じて防錆剤とを混合させてなるものである。そして、それら成分の詳細は、例えば上述した特開2009−109424号公報などに記載されているように、まず蛍光磁粉としては、例えば、市販の磁粉(四三酸化鉄粒子や純鉄粒子などの導磁性粒子に酢酸セルローズ系合成樹脂やビニルブチラール系合成樹脂などの合成樹脂バインダーを用いてルモゲンイエロー50790:商品名:BASF社製やフエスタA:商品名:Swada社製などの蛍光顔料を付着させてなるメジアン径3〜70μm:体積基準分布表示−以下、同じ−で真比重2〜5g/cm3の粉末;以下「蛍光磁粉」という)を用いることができる。 First, as is well known, the inspection liquid used in the wet fluorescent magnetic particle flaw detection test is a mixture of fluorescent magnetic powder, a dispersant, and, if necessary, a rust inhibitor. The details of these components are described in, for example, the above-mentioned Japanese Patent Application Laid-Open No. 2009-109424, etc. First, as the fluorescent magnetic powder, for example, commercially available magnetic powder (such as iron trioxide particles or pure iron particles) Using a synthetic resin binder such as cellulose acetate-based synthetic resin or vinyl butyral-based synthetic resin, Lumogen Yellow 50790: Product name: BASF or Festa A: Product name: Swada The median diameter of 3 to 70 μm: a volume-based distribution display—hereinafter the same—with a true specific gravity of 2 to 5 g / cm 3 ; hereinafter referred to as “fluorescent magnetic powder”) can be used.

また、分散剤は、例えば、ポリオキシアルキレンアリルフェニルエーテル型非イオン系界面活性剤および陰イオン活性剤を用いることができる。さらに防錆剤としては、例えば亜硝酸ナトリウムなどを用いることができる。なお、蛍光磁粉や分散剤、防錆剤は上述した成分に限定されない。   Moreover, a polyoxyalkylene allyl phenyl ether type nonionic surfactant and an anionic surfactant can be used for a dispersing agent, for example. Furthermore, as a rust preventive agent, sodium nitrite etc. can be used, for example. In addition, fluorescent magnetic powder, a dispersing agent, and a rust preventive agent are not limited to the component mentioned above.

そして、湿式蛍光磁粉探傷試験では、上記のような各成分(蛍光磁粉、分散剤、防錆剤)について、探傷試験の対象に応じて設定したそれぞれの所定量で混合し、調製した検査液を、自動車のシャフトなどの鋼製部品や、ビレットなどの鋼材である被検査体に接触させ、当該被検査体の表面傷部(検査物の表面乃至表面近傍に存在する微細なワレやピンホール)に当該検査液に分散している当該磁粉を集合させて形成した磁粉模様によって表面傷部を探傷する周知の技術である。   In the wet fluorescent magnetic particle flaw detection test, the above-described components (fluorescent magnetic powder, dispersant, rust preventive agent) are mixed in respective predetermined amounts set according to the object of the flaw detection test, and the prepared inspection liquid is used. In contact with an object to be inspected, which is a steel part such as an automobile shaft, or a steel material such as a billet, surface scratches on the object to be inspected (fine cracks or pinholes existing on or near the surface of the object to be inspected) This is a well-known technique for flaw detection of a surface flaw by a magnetic powder pattern formed by collecting the magnetic powder dispersed in the inspection liquid.

この検査液は、多くが検査液タンクで調製され、磁化した被検査体に塗布された後、余剰分の検査液は回収し、再び被検査体に散布される。上述したように、被検査体に対して前工程で表面処理を行っている場合、この表面処理で生じた鉄屑などのスケールが被検査体に付着し、このスケールの付着した被検査体に検査液を塗布すると、検査液タンクには余剰分の検査液に混入したスケールが回収されてしまうことから、検査液には探傷の使用当初(調製当初)は存在しなかったスケールが混入されるとともに、その濃度は徐々に上昇する。そして、このスケールは、酸化鉄などの強磁性体であるため、探傷の際、傷部への蛍光磁粉の付着を阻害し、探傷精度を著しく低下させてしまう。   Most of the test liquid is prepared in the test liquid tank and applied to the magnetized test object, and then the surplus test liquid is collected and sprayed on the test object again. As described above, when surface treatment is performed on the object to be inspected in the previous process, scales such as iron scrap generated by the surface treatment adhere to the object to be inspected, and the object to be inspected to which this scale is attached is attached. When the test liquid is applied, the scale mixed in the surplus test liquid is collected in the test liquid tank, and therefore the scale that did not exist at the beginning of the flaw detection (initial preparation) is mixed in the test liquid. Along with this, the concentration gradually increases. And since this scale is a ferromagnetic material such as iron oxide, the flaw detection accuracy is greatly reduced because the adhesion of the fluorescent magnetic powder to the flaw portion is hindered during flaw detection.

さらに、このような鋼材など被検査体は、探傷試験の前工程で切削加工が行われる場合が多く、被検査体表面には、切削油や防腐剤など周知の油分が付着し、上述したスケール同様にこれら油分も検査液とともに検査液タンクに回収されていく。このような検査液中への油分の混入量の増加は、検査液内での蛍光磁粉の凝集を促進させ、探傷精度を著しく低下させてしまう。   In addition, such an object to be inspected such as a steel material is often subjected to a cutting process before the flaw detection test, and a well-known oil component such as a cutting oil or an antiseptic is attached to the surface of the object to be inspected. Similarly, these oil components are also collected in the inspection liquid tank together with the inspection liquid. Such an increase in the amount of oil mixed in the test solution promotes the aggregation of the fluorescent magnetic powder in the test solution, and significantly reduces the flaw detection accuracy.

また、検査液中における蛍光磁粉の濃度は、探傷の視認性を左右し、分散剤の濃度も、検査液の被検査体への濡れ性を左右するとともに、防錆剤の濃度管理も当然必要である。このような検査液を用いて行なう、後述する湿式蛍光磁粉探傷試験装置において、検査液タンク内からポンプで取出し、被検査体に接触させて探傷試験を行った検査液は、検査液タンクに戻された後、再度探傷試験に使用して循環利用されるため、その検査液の成分濃度が刻々と変動することから、探傷検出性能を向上させ、高精度な被検査体の探傷試験を行うには、検査液中の各成分濃度を同時かつ瞬時に測定でき、それら濃度を把握し管理する必要がある。   In addition, the concentration of the fluorescent magnetic powder in the test solution affects the visibility of flaw detection, and the concentration of the dispersant also affects the wettability of the test solution to the object to be inspected. It is. In a wet fluorescent magnetic particle flaw detection test apparatus, which will be described later, performed using such a test liquid, the test liquid taken out from the test liquid tank with a pump and brought into contact with the object to be inspected and subjected to the flaw detection test is returned to the test liquid tank. After that, since the component concentration of the inspection liquid fluctuates every moment because it is used again for the flaw detection test, the flaw detection performance is improved and a highly accurate flaw detection test is performed on the inspected object. The concentration of each component in the test solution can be measured simultaneously and instantaneously, and it is necessary to grasp and manage these concentrations.

そこで、本願発明者らは、光学的手法を用いることにより、検査液中に混入した油分の濃度を測定可能にするとともに、この油分濃度に加えて、検査液中に含まれる各成分の濃度(蛍光磁粉、分散剤、防錆剤およびスケール)を、瞬時かつ同時に測定可能とした、湿式蛍光磁粉探傷試験に用いる検査液の成分濃度の測定方法および測定装置を開発した。   Therefore, the inventors of the present application can measure the concentration of the oil mixed in the test solution by using an optical technique, and in addition to the oil concentration, the concentration of each component contained in the test solution ( We have developed a measurement method and measuring device for the component concentration of the test liquid used in the wet fluorescent magnetic particle flaw detection test, which enables instantaneous and simultaneous measurement of fluorescent magnetic powder, dispersant, rust inhibitor and scale).

まず、検査液の成分濃度測定装置1としては、例えば、図1〜3に示すように、暗箱2と、この暗箱体2内に設置した測定具3と、さらには暗箱体2内に取付けられた例えば光源4a,4b,4c,4dおよびこれら光源4a,4b,4c,4dによる照射光の検出器5a,5b,5c,5d,5eとから構成されるものである。以下の説明では、成分濃度測定装置1を、設置場所を自由とし、後述する検査液タンク22内からサンプリングした検査液の成分濃度を測定できる測定装置ユニットとして説明する。   First, as the component concentration measuring apparatus 1 for the test liquid, for example, as shown in FIGS. 1 to 3, the dark box 2, the measuring tool 3 installed in the dark box 2, and the dark box 2 are attached. For example, the light source 4a, 4b, 4c, 4d and the detectors 5a, 5b, 5c, 5d, 5e of the light irradiated by these light sources 4a, 4b, 4c, 4d are configured. In the following description, the component concentration measuring apparatus 1 will be described as a measuring apparatus unit that can measure the component concentration of the test liquid sampled from the test liquid tank 22 to be described later, with the installation location being free.

暗箱体2は、例えば、正面視略台形の形状(限定しない)を有し、材質は特に限定されないが、プラスチックなどの合成樹脂またはアルミなどの金属からなる、内部を暗室とした箱材である。また、暗箱体2における正面および背面の中央近傍を結ぶ直線上には、円形(限定しない、後述する測定具3の外形に応じた形状とする)の穴部hが設けられている。さらに暗箱体2における天面の左右肩部には、左右の一方または双方(図例では双方)の外側端部を外方に向けて下降傾斜させた傾斜部8を形成する。なお、この暗箱体2には、例えば図3に示すような把持部16を天面などに設けてもよい。   The dark box body 2 is, for example, a box material having a substantially trapezoidal shape (not limited) when viewed from the front and made of a synthetic resin such as plastic or a metal such as aluminum. . Further, on a straight line connecting the vicinity of the center of the front surface and the back surface in the dark box body 2, a circular hole portion h (not limited to a shape corresponding to the outer shape of the measuring tool 3 described later) is provided. Further, the left and right shoulders of the top surface of the dark box body 2 are formed with inclined portions 8 in which the outer end portions of one or both of the left and right sides (both in the illustrated example) are inclined downward. The dark box body 2 may be provided with a gripping portion 16 as shown in FIG.

次に、測定具3は、図2に示すように、上述した暗箱体2の穴部hに貫設可能とし、暗箱体2の前後方向に略等しい長さを有する、側面部が透明(半透明など各光源からの光を測定できるものであればよい)な円筒形状(限定しない)のものであり、その材質は、測定具3内面の摩擦係数を小さくできるフッ素樹脂から構成されている。なお、円筒部の直径は、例えば6mm程度(限定されない)とされる。なお、測定具3の材質は上述したフッ素樹脂が好ましいが、測定具3内面の摩擦係数を小さくできる材質であれば適宜用いることができる。   Next, as shown in FIG. 2, the measuring tool 3 can be penetrated into the hole h of the dark box body 2 described above, and has a length substantially equal to the front and rear direction of the dark box body 2, and the side surface portion is transparent (half Any material that can measure light from each light source, such as a transparent material, is used (not limited), and the material thereof is made of a fluororesin that can reduce the friction coefficient of the inner surface of the measuring tool 3. In addition, the diameter of a cylindrical part shall be about 6 mm (it is not limited), for example. The material of the measuring tool 3 is preferably the above-described fluororesin, but any material that can reduce the friction coefficient of the inner surface of the measuring tool 3 can be used as appropriate.

また、測定具3は、例えば、基端部は、本体から図示しない螺旋溝などで着脱自在とした鍔部9を備える蓋体10を有しており、この蓋体10および測定具3の先端部11に遮光板の貼付や着色などをすることにより、測定具3を暗箱体2の穴部hに貫設設置した際に、暗箱体2内に周囲から光が入らないように遮光している。   In addition, the measuring tool 3 has, for example, a lid 10 provided with a flange 9 that is detachable from the main body by a spiral groove (not shown) at the base end, and the distal end of the lid 10 and the measuring tool 3. By attaching or coloring a light shielding plate to the portion 11, when the measuring tool 3 is installed in a hole h of the dark box body 2, the light is shielded from entering the dark box body 2 from the surroundings. Yes.

さらに、例えば、暗箱体2の背面側(装着させた測定具3の先端側)外側部には、測定具3の撹拌手段としてのケース16a内に設置した駆動モータ16が取付けられる。この場合、測定具3の先端部には、モータ軸17に嵌合可能とする凹部18が取付けられており、測定具3を暗箱体2に装着した際、凹部18をモータ軸17に嵌合させ、駆動モータ16の回転駆動によりモータ軸17を介して測定具3が暗箱体2の前後方向を軸芯として回転する。   Further, for example, a drive motor 16 installed in a case 16 a as a stirring means of the measuring tool 3 is attached to the back side of the dark box body 2 (the front end side of the measuring tool 3 attached). In this case, a recess 18 that can be fitted to the motor shaft 17 is attached to the tip of the measuring tool 3. When the measuring tool 3 is mounted on the dark box body 2, the recess 18 is fitted to the motor shaft 17. The measuring tool 3 is rotated about the front-rear direction of the dark box body 2 through the motor shaft 17 by the rotational drive of the drive motor 16.

次に、この暗箱体2の左右一方の側面(図1中では手前に示した左側面)前後位置には、前部から順に適宜間隔を空けて、光源4aとしての紫外線LED(Light Emitting Diode)ランプ(図例では左側)、光源4bとしての、例えば青色可視光LEDランプ、光源4cとしての、例えば緑色可視光LEDランプおよび光源4dとしての赤外線LEDランプ(図例では右側)が、暗箱体2の内側暗室内を照射方向として取付けられている。なお、これら各LEDランプ4a,4b,4c,4dの設置位置(暗箱体2側面の左右位置)や設置順は上述に限定されず、左右逆位置など適宜設置することができる。   Next, ultraviolet LEDs (Light Emitting Diode) as the light source 4a are provided at the front and rear positions of the left and right side surfaces of the dark box body 2 (the left side surface shown in FIG. 1). For example, a blue visible light LED lamp as the light source 4b, a green visible light LED lamp as the light source 4c, and an infrared LED lamp (right as the light source 4d) as the light source 4d as the light source 4b are included in the dark box 2 The inside darkroom is attached as the irradiation direction. The LED lamps 4a, 4b, 4c, and 4d are not limited to the above-described installation positions (left and right positions on the side surface of the dark box body 2) and the order of installation, and can be appropriately installed such as left and right reverse positions.

ここで、可視光は、 電磁波のうち、 人間の目で見える波長であり、その波長域は、おおよそ380nm〜750nmであり、波長の短い側から順に、紫(380nm〜450nm)、青(450nm〜495nm)、緑(495nm〜570nm)、黄(570nm〜590nm)、橙(590nm〜620nm)、赤(620nm〜750nm)の各色を有して見える。なお、紫外線領域は約380nm以下、赤外線領域は約750nm以上である。   Here, visible light is a wavelength that can be seen by human eyes among electromagnetic waves, and its wavelength range is approximately 380 nm to 750 nm, and in order from the shorter wavelength side, purple (380 nm to 450 nm), blue (450 nm to 450 nm) 495 nm), green (495 nm to 570 nm), yellow (570 nm to 590 nm), orange (590 nm to 620 nm), and red (620 nm to 750 nm). The ultraviolet region is about 380 nm or less, and the infrared region is about 750 nm or more.

本願発明の検査液の成分濃度測定装置1では、可視光を照射する光源として、1または複数の異なる波長の可視光LEDランプを用いる。この例では、青色可視光LEDランプ4bおよび緑色可視光LEDランプ4cの2つを用いるものとするが、これら可視光LEDランプの設置は、上記可視光波長域内のいずれか1つ(1色)の可視光LEDランプであっても、あるいは可視光波長域内であって、異なる波長域を有するいずれか3つ(3色)以上の可視光LEDランプとしてもよく、測定する油分濃度の油分種類数によって適宜設定することができる。なお、これらLEDランプ4a〜4dは周知の技術であるため、詳細な説明は省略する。   In the test solution component concentration measurement apparatus 1 of the present invention, one or a plurality of visible light LED lamps having different wavelengths are used as a light source for irradiating visible light. In this example, two of the blue visible light LED lamp 4b and the green visible light LED lamp 4c are used. However, these visible light LED lamps are installed in any one of the visible light wavelength ranges (one color). Even if it is a visible light LED lamp, it is good also as any three (three colors) visible light LED lamp which is in a visible light wavelength range and has a different wavelength range, and the number of kinds of oil content of the oil concentration to measure. Can be set as appropriate. In addition, since these LED lamps 4a-4d are well-known techniques, detailed description is abbreviate | omitted.

また、暗箱体2における左右他方の内側面(図1中では奥に示した右側面)の端部(図例では左側)であって、暗箱体2に装着した状態での測定具3を挟んだ紫外線LEDランプ4aの取付位置に対向する位置には、紫外線検出器5aが設置される。この紫外線検出器5aでは、紫外線LEDランプ4aから照射され、測定具3内の検査液を通過して得られた紫外線の透過度が検出される。なお、この紫外線検出器5aは周知の技術であるため、詳細な説明は省略する。   Further, the measuring tool 3 is mounted on the dark box body 2 at the end (left side in the figure) of the other left and right inner side surfaces (the right side surface shown in the back in FIG. 1) of the dark box body 2. An ultraviolet detector 5a is installed at a position opposite to the mounting position of the ultraviolet LED lamp 4a. In this ultraviolet detector 5a, the transmittance of the ultraviolet rays irradiated from the ultraviolet LED lamp 4a and obtained by passing through the test solution in the measuring tool 3 is detected. The ultraviolet detector 5a is a well-known technique and will not be described in detail.

また、例えば、暗箱体2の紫外線LEDランプ4aが設置されている側(図1中では手前に示した左上面傾斜)の傾斜部8における紫外線LEDランプ4aの斜め上方の内面には、蛍光輝度検出器5bが取付けられる。この蛍光輝度検出器5bでは、紫外線を測定具3内の検査液に照射し、検査液から得られた可視光(励起して発光した可視光)が蛍光輝度として検出される。なお、この蛍光輝度検出器5bも周知の技術であるため、詳細な説明は省略する。   In addition, for example, the inner surface of the dark box body 2 on the obliquely upper side of the ultraviolet LED lamp 4a in the inclined portion 8 on the side where the ultraviolet LED lamp 4a is installed (the upper left inclined surface shown in FIG. 1) is fluorescent. A detector 5b is attached. In this fluorescence luminance detector 5b, ultraviolet light is irradiated onto the test solution in the measuring tool 3, and visible light (visible light that has been excited and emitted) obtained from the test solution is detected as fluorescence luminance. Since this fluorescence luminance detector 5b is also a well-known technique, detailed description thereof is omitted.

また、暗箱体2における左右他方の内側面(図1中では奥に示した右側面)の前端部(図例では紫外線検出器5aの隣に、順に並設)であって、暗箱体2に装着した状態での測定具3を挟んだ青色可視光LEDランプ4bおよび緑色可視光LEDランプ4cの取付位置に対向するそれぞれの位置には、可視光検出器5c,5dが設置される。これら各可視光検出器5c,5dでは、青色可視光LEDランプ4bおよび緑色可視光LEDランプ4cのそれぞれから照射され、測定具3内の検査液を通過して得られたそれぞれ青色可視光および緑色可視光の透過度が検出される。なお、これら可視光検出器5c,5dは周知の技術であるため、詳細な説明は省略する。   Further, it is a front end portion (in the example shown in FIG. 1, next to the ultraviolet ray detector 5a in parallel, in order) on the other left and right inner side surfaces (the right side surface shown in the back in FIG. 1). Visible light detectors 5c and 5d are installed at respective positions facing the mounting positions of the blue visible light LED lamp 4b and the green visible light LED lamp 4c with the measuring tool 3 in the mounted state. In each of these visible light detectors 5c and 5d, the blue visible light and the green light emitted from each of the blue visible light LED lamp 4b and the green visible light LED lamp 4c and obtained by passing through the test solution in the measuring tool 3 are obtained. Visible light transmission is detected. Since these visible light detectors 5c and 5d are well-known techniques, detailed description thereof is omitted.

さらに、暗箱体2における左右他方の内側面(図1中では奥に示した右側面)の後端部(図例では右側)であって、暗箱体2に装着した状態での測定具3を挟んだ赤外線LEDランプ4dの取付位置に対向する位置には、赤外線検出器5eが設置される。この赤外線検出器5eでは、赤外線LEDランプ4dから照射され、測定具3内の検査液を通過して得られた赤外線の透過度が検出される。なお、この赤外線検出器5eは周知の技術であるため、詳細な説明は省略する。   Further, the measuring tool 3 in a state of being attached to the dark box body 2 at the rear end portion (right side in the illustrated example) of the other left and right inner side faces (the right side face shown in the back in FIG. 1) in the dark box body 2. An infrared detector 5e is installed at a position opposite to the mounting position of the sandwiched infrared LED lamp 4d. In this infrared detector 5e, the infrared ray transmittance obtained by irradiating from the infrared LED lamp 4d and passing through the test solution in the measuring instrument 3 is detected. Since the infrared detector 5e is a well-known technique, detailed description thereof is omitted.

光源4aおよび測定具3に対するこれら紫外線検出器5aおよび蛍光輝度検出器5b の設置位置は、図4に示すように、まず、紫外線検出器5aは、上述したように測定具3を介して紫外線LEDランプ4aの対向位置に設置されるが、この紫外線LEDランプ4aの紫外線照射方向(測定具3内の検査液中への入射方向)の延長線上から正負適宜角度範囲内であって、好ましくは延長線上における暗箱体2の内側面に設置する。   As shown in FIG. 4, the ultraviolet detector 5a is first placed in the ultraviolet LED 5 via the measuring tool 3 as described above, with respect to the installation positions of the ultraviolet detector 5a and the fluorescence luminance detector 5b with respect to the light source 4a and the measuring tool 3. Although it is installed at a position opposite to the lamp 4a, it is within an appropriate angle range from the extension line in the ultraviolet irradiation direction of the ultraviolet LED lamp 4a (incident direction into the test solution in the measuring tool 3), and preferably extended. Installed on the inner surface of the dark box 2 on the line.

また、蛍光輝度検出器5bは、紫外線LEDランプ4a側の測定具3の周囲であって、測定具3の正面中心位置cから、紫外線LEDランプ4aによる照射光の照射方向に対して、正側(上側)90度の範囲内であって、例えば40度〜50度、好ましくは50度となる暗箱体2における傾斜部8内面に設置する。なお、蛍光輝度検出器5bは、広範な濃度の蛍光磁粉の蛍光輝度値をより正確に測定し得る位置として、実験データに基づき、前記50度が適切な角度の1つとして挙げられる。   Further, the fluorescence luminance detector 5b is around the measuring tool 3 on the ultraviolet LED lamp 4a side, and is on the positive side with respect to the irradiation direction of the irradiation light from the ultraviolet LED lamp 4a from the front center position c of the measuring tool 3. (Upper side) Within the range of 90 degrees, for example, 40 degrees to 50 degrees, preferably 50 degrees, preferably installed on the inner surface of the inclined portion 8 in the dark box 2. Note that the fluorescence brightness detector 5b is a position at which the fluorescence brightness values of a wide range of concentrations of fluorescent magnetic powder can be measured more accurately, based on experimental data, 50 degrees is one of the appropriate angles.

また、可視光検出器5c,5dの設置位置は、図5に示すように、測定具3を介して各青色可視光LEDランプ4bおよび緑色可視光LEDランプ4cの対向位置に設置されるが、これら青色可視光LEDランプ4bおよび緑色可視光LEDランプ4cの可視光照射方向(測定具3内の検査液中への入射方向)の延長線上から正負適宜角度範囲内であって、好ましくは延長線上における暗箱体2の内側面に設置する。   Further, the visible light detectors 5c and 5d are installed at positions opposite to the blue visible light LED lamp 4b and the green visible light LED lamp 4c via the measuring tool 3, as shown in FIG. The blue visible light LED lamp 4b and the green visible light LED lamp 4c are within an appropriate angle range from the extension line in the visible light irradiation direction (incident direction into the test solution in the measuring tool 3), preferably on the extension line. It is installed on the inner surface of the dark box body 2 in FIG.

また、赤外線検出器5eの設置位置も図5に示すように、測定具3を介して赤外線LEDランプ4dの対向位置に設置されるが、この赤外線LEDランプ4dの赤外線照射方向(測定具3内の検査液中への入射方向)の延長線上から正負適宜角度範囲内であって、好ましくは延長線上における暗箱体2の内側面に設置する。   In addition, as shown in FIG. 5, the infrared detector 5e is installed at a position opposed to the infrared LED lamp 4d via the measuring tool 3. The infrared irradiation direction of the infrared LED lamp 4d (inside the measuring tool 3) It is installed on the inner surface of the dark box 2 on the extension line, preferably within an appropriate angle range from the extension line of the incident direction into the test solution.

さらに、図6に示すように、これら検出器5a,5b,5c,5d,5eは、暗箱体2内に設置されたコントローラC内の情報処理部14などに接続されており、この情報処理部14には、後述する図7,8,10のグラフから得られた各種データを含む計算式などを予め入力しておく。   Further, as shown in FIG. 6, these detectors 5a, 5b, 5c, 5d, and 5e are connected to the information processing unit 14 in the controller C installed in the dark box 2, and the information processing unit In 14, calculation formulas including various data obtained from the graphs of FIGS.

そして、このコントローラCには、例えば、暗箱体2の傾斜部8面上に設けた、蛍光磁粉濃度や分散剤濃度、防錆剤濃度、スケール濃度、油分濃度などを表示(デジタル表示など)させる、液晶などの表示パネルとしての表示部15を接続させる。なお、表示部15は、暗箱体2以外に、暗箱体2とは別体の表示装置や、後述する湿式蛍光磁粉探傷試験装置21内に設置してもよい。   The controller C displays, for example, a fluorescent magnetic powder concentration, a dispersant concentration, a rust inhibitor concentration, a scale concentration, an oil concentration, etc. (digital display etc.) provided on the inclined portion 8 surface of the dark box body 2. The display unit 15 as a display panel such as a liquid crystal is connected. In addition to the dark box 2, the display unit 15 may be installed in a display device separate from the dark box 2 or in a wet fluorescent magnetic particle testing apparatus 21 described later.

検査液に紫外線を照射すると、検査液中に含まれる各成分のうち、紫外線を照射された蛍光磁粉は、その蛍光顔料などの蛍光物質が励起して発光するため、この発光した可視光を蛍光輝度(照度)として上述の蛍光輝度検出器6により検出することができる。この蛍光輝度は、検査液中の蛍光磁粉の濃度によって異なる。   When the test liquid is irradiated with ultraviolet light, among the components contained in the test liquid, the fluorescent magnetic powder irradiated with ultraviolet light emits light when the fluorescent material such as the fluorescent pigment is excited. The luminance (illuminance) can be detected by the fluorescent luminance detector 6 described above. This fluorescence brightness varies depending on the concentration of the fluorescent magnetic powder in the test solution.

また、検査液に紫外線、可視光および赤外線を照射すると、検査液に入射した紫外線、可視光および赤外線は、混入物や各成分を含む検査液中を通過し、入射方向とは逆方向から透過して液外に放射される。このとき、光のエネルギーは、透過や反射によって伝達され、光の透過は通常、次式1のように吸光濃度として表される。
吸光濃度=−LOG10(放射光束/入射光束)・・・・・[式1]
When the test solution is irradiated with UV, visible light, and infrared light, the UV, visible light, and infrared light incident on the test solution pass through the test solution containing contaminants and components, and are transmitted from the direction opposite to the incident direction. And emitted outside the liquid. At this time, the energy of light is transmitted by transmission or reflection, and the transmission of light is usually expressed as an absorbance concentration as in the following equation 1.
Absorbance density = -LOG 10 (Radiation flux / incident flux) ... [Formula 1]

この吸光濃度は、検査液中に含まれる各成分(蛍光磁粉、分散剤、防錆剤、スケールなど)によって異なるとともに、各成分の濃度によっても異なる。さらには、検査液が撹拌(流動)されない静置状態においても、各成分の時間経過に伴う沈降特性の違いによっても異なる。   This absorbance concentration varies depending on each component (fluorescent magnetic powder, dispersant, rust inhibitor, scale, etc.) contained in the test solution, and also varies depending on the concentration of each component. Furthermore, even in a stationary state where the test liquid is not stirred (flowed), the difference depends on the difference in sedimentation characteristics with the passage of time of each component.

そこで、上述した成分濃度測定装置1などを用い、以下の表1に示す要領で調製した検査液に見立てた各試験液に、光源4a,4dから波長の異なる電磁波(紫外線および赤外線)を照射し、各成分別に検出器5a,5b,5eで蛍光輝度および吸光濃度を検出して、各成分の特性を得る実験を行った。図7は検査液中の各成分(a)〜(d)の濃度に対する吸光濃度および蛍光輝度を示すグラフ(検査液は撹拌・流動状態)、図8は検査液中の各成分(a)〜(d)の濃度に対する紫外線沈降吸光濃度を示すグラフ(検査液は静止状態)である。   Therefore, using the above-described component concentration measuring apparatus 1 or the like, the test solutions prepared as shown in Table 1 below are irradiated with electromagnetic waves (ultraviolet rays and infrared rays) having different wavelengths from the light sources 4a and 4d. An experiment was carried out to obtain the characteristics of each component by detecting the fluorescence brightness and the light absorption density with the detectors 5a, 5b and 5e for each component. FIG. 7 is a graph showing the absorbance concentration and fluorescence luminance with respect to the concentrations of the components (a) to (d) in the test solution (the test solution is in a stirred and fluidized state), and FIG. 8 is the components (a) to (a) in the test solution. It is a graph which shows the ultraviolet sedimentation absorption density with respect to the density | concentration of (d) (a test solution is a stationary state).

Figure 0005658091
Figure 0005658091

なお、これら試験液は、例えばグループ1では、蛍光磁粉のみを水2Lに添加する場合、それら磁粉濃度が、それぞれ0g/L(無添加)、0.3g/L、0.5g/L、1.0g/L、2.0g/Lになるように蛍光磁粉の添加量を変更して5種類の磁粉濃度を有する試験液を作成したものである。同様にグループ2は分散剤のみを有する試験液、グループ3は防錆剤のみを有する試験液、グループ4はスケールのみを有する試験液を作成した。なお、蛍光磁粉には、LY−20(マークテック株式会社製、スーパーマグナ蛍光磁粉)、分散剤には、EC−600C(マークテック株式会社製、エコマグナ分散剤)、防錆剤には、AR−100K(マークテック株式会社製、スーパーキープ防錆剤)、スケールには、酸化鉄粉体をそれぞれ使用した。   In addition, for example, in Group 1, when only fluorescent magnetic powder is added to 2 L of water, the concentration of the magnetic powder is 0 g / L (no addition), 0.3 g / L, 0.5 g / L, 1 The test liquid having five kinds of magnetic powder concentrations was prepared by changing the addition amount of the fluorescent magnetic powder to 0.0 g / L and 2.0 g / L. Similarly, group 2 was a test solution having only a dispersant, group 3 was a test solution having only a rust inhibitor, and group 4 was a test solution having only a scale. In addition, LY-20 (manufactured by Marktec Co., Ltd., Super Magna fluorescent magnetic powder) is used for the fluorescent magnetic powder, EC-600C (manufactured by Marktec Co., Ltd., Eco-Magna Dispersant) is used for the dispersant, and AR is used for the rust preventive agent. Iron oxide powder was used for each of −100K (manufactured by Marktec Co., Ltd., super keep rust inhibitor) and scale.

まず、成分濃度測定装置1における蓋体10を脱着した測定具3内にサンプリングした、例えば試験液グループ1の磁粉濃度が0g/Lの試験液No1を装填し、再び蓋体10を取付けた測定具3を、暗箱体2の穴部7に回転可能に貫設する。このとき、測定具3の先端部は、暗箱体2の背面の穴部7およびモータ軸17に凹部18を嵌合させることで、安定的に支持されるとともに、測定具3の基端部は、蓋体10の鍔部9が暗箱2正面板へのストッパーとなり、暗箱体2に測定具3をずれることなく安定装着させることができる。   First, measurement was performed by loading the sample solution 1 in which the magnetic powder concentration of the test solution group 1 was 0 g / L, for example, which was sampled in the measuring tool 3 from which the lid body 10 was detached in the component concentration measuring apparatus 1, and then attaching the lid body 10 again. The tool 3 is rotatably inserted in the hole 7 of the dark box body 2. At this time, the distal end of the measuring tool 3 is stably supported by fitting the recess 18 into the hole 7 and the motor shaft 17 on the back surface of the dark box body 2, and the base end of the measuring tool 3 is The flange portion 9 of the lid body 10 serves as a stopper for the front plate of the dark box 2, and the measuring tool 3 can be stably mounted on the dark box body 2 without shifting.

そして、駆動モータ16の動力により、モータ軸17および凹部18を介して測定具3を回転させて試験液No1を撹拌し、この撹拌開始から3分後に、測定具3内で撹拌されている検査液に、紫外線LEDランプ4aおよび赤外線LEDランプ4dを点灯させて紫外線および赤外線を照射し、各検出器5a,5b,5eにより該試験液の蛍光輝度、紫外線吸光濃度、赤外線吸光濃度を検出した。同様にして、磁粉濃度が0.3〜2.0g/Lの順(順不問)に各試験液の蛍光輝度、紫外線吸光濃度、赤外線吸光濃度を検出した結果を、図7(a)のグラフに示した。   Then, by the power of the drive motor 16, the measuring tool 3 is rotated through the motor shaft 17 and the recess 18 to stir the test solution No 1, and after 3 minutes from the start of stirring, the test stirred in the measuring tool 3. The ultraviolet LED lamp 4a and the infrared LED lamp 4d were turned on to irradiate the solution with ultraviolet rays and infrared rays, and the fluorescence luminance, ultraviolet absorption concentration, and infrared absorption concentration of the test solution were detected by the detectors 5a, 5b, and 5e. Similarly, the graph of Fig.7 (a) shows the result of having detected the fluorescence brightness | luminance of each test solution, the ultraviolet light absorption density | concentration, and the infrared light absorption density | concentration in order (magnetic order) of 0.3-2.0 g / L of magnetic powder density | concentration. It was shown to.

また、同様にして、試験液グループ2の分散剤濃度別、試験液グループ3の防錆剤濃度別、試験液グループ4のスケール濃度別の各試験液についても蛍光輝度、紫外線吸光濃度、赤外線吸光濃度を検出した結果を、図7(b)〜(d)のグラフに示した。   Similarly, the fluorescence intensity, ultraviolet light absorption concentration, and infrared light absorption of each test solution by the concentration of dispersant in test solution group 2, by the concentration of rust inhibitor in test solution group 3, and by the concentration of scale in test solution group 4 are also shown. The results of detecting the concentration are shown in the graphs of FIGS.

そして、これら各値から撹拌中における各成分(蛍光磁粉、分散剤、防錆剤およびスケール)は、それぞれの成分濃度と、各検出値(蛍光輝度、紫外線吸光濃度、赤外線吸光濃度)との間に略一次直線を有する相関性を見出すことができ、各成分固有の相関係数(各直線の傾き)として情報処理部14に入力される。なお、これら相関係数は、後述する検査液測定で説明する。   From these values, each component (fluorescent magnetic powder, dispersant, rust inhibitor and scale) during stirring is between the component concentration and each detected value (fluorescence luminance, ultraviolet light absorption concentration, infrared light absorption concentration). Can be found, and is input to the information processing unit 14 as a correlation coefficient (slope of each straight line) specific to each component. These correlation coefficients will be described in the test liquid measurement described later.

次に、成分濃度測定装置1において、上述同様にして測定具3内に充填したグループ1〜4の各濃度におけるそれぞれの試験液を駆動モータ16で撹拌させ、この駆動モータ16の駆動を停止して所定時間(例えば2分間)経過したときの、静置状態時におけるこれら試験液に紫外線LEDランプ4aで紫外線を照射し、紫外線検出器5aにより紫外線吸光濃度を検出した。   Next, in the component concentration measuring apparatus 1, the test solutions at the respective concentrations of groups 1 to 4 filled in the measuring tool 3 are agitated by the drive motor 16 in the same manner as described above, and the drive of the drive motor 16 is stopped. When a predetermined time (for example, 2 minutes) has passed, the test solution in a stationary state was irradiated with ultraviolet rays by the ultraviolet LED lamp 4a, and the ultraviolet light absorption concentration was detected by the ultraviolet detector 5a.

さらに、それぞれの成分(蛍光磁粉、分散剤、防錆剤およびスケール)の各濃度において、上述した試験液撹拌時の紫外線吸光濃度の値から、静置状態時の紫外線吸光濃度の値を差し引いた差分値の値(紫外線沈降吸光濃度)を、図8(a)〜(d)のグラフに示した。なお、この図8(a)〜(d)には、上記成分の各濃度において、上述した試験液撹拌時の赤外線吸光濃度の値から、静置状態時の赤外線吸光濃度の値を差し引いた差分値の値(赤外線沈降吸光濃度)および試験液撹拌時の蛍光輝度の値から、静置状態時の蛍光輝度の値を差し引いた差分値の値(沈降蛍光輝度)も示している。   Furthermore, at each concentration of each component (fluorescent magnetic powder, dispersant, rust inhibitor and scale), the value of the ultraviolet light absorption density in the stationary state was subtracted from the value of the ultraviolet light absorption density when stirring the test solution described above. The value of the difference value (ultraviolet sedimentation absorption concentration) is shown in the graphs of FIGS. In FIGS. 8A to 8D, the difference obtained by subtracting the value of the infrared light absorption density in the stationary state from the value of the infrared light absorption density when stirring the test solution described above in each concentration of the above components. The value of the difference (precipitation fluorescence brightness) obtained by subtracting the value of the fluorescence brightness in the stationary state from the value of the value (infrared sedimentation absorption density) and the fluorescence brightness value when stirring the test solution is also shown.

そして、これら各値から、静置中における各成分(蛍光磁粉、分散剤、防錆剤およびスケール)は、それぞれの成分濃度と、各差分値(紫外線沈降吸光濃度、赤外線沈降吸光濃度、沈降蛍光輝度)との間に略一次直線を有する相関性を見出すことができ、各成分固有の沈降特性として、それら相関係数(各直線の傾き)が情報処理部14に入力される。なお、これら相関係数は、後述する検査液測定で説明する。   And from these values, each component (fluorescent magnetic powder, dispersant, rust inhibitor and scale) during standing is the respective component concentration and each differential value (ultraviolet sedimentation absorbance concentration, infrared sedimentation absorbance concentration, sedimentation fluorescence) (Corresponding to luminance) having a substantially linear line can be found, and the correlation coefficient (slope of each straight line) is input to the information processing unit 14 as a sedimentation characteristic unique to each component. These correlation coefficients will be described in the test liquid measurement described later.

一方、検査液中に混入する油分の種類としては、上述したように切削油や防腐剤などが挙げられるが、本例では切削油で説明する。図9は防錆剤および油分における光の波長による透過率の違いを示すグラフ、図10は切削油の各波長における切削油濃度と吸光濃度の関係を示すグラフ、図11はコントローラによる検査液中の成分濃度算出経路のブロック図、図12は切削油の濃度と、青色可視光および赤外線による吸光濃度の差分との関係を示すグラフである。   On the other hand, as the type of oil contained in the inspection liquid, cutting oil, preservative, and the like can be mentioned as described above. In this example, description will be made with cutting oil. FIG. 9 is a graph showing the difference in transmittance depending on the wavelength of light in the rust inhibitor and oil, FIG. 10 is a graph showing the relationship between the cutting oil concentration and the light absorption concentration at each wavelength of the cutting oil, and FIG. FIG. 12 is a graph showing the relationship between the concentration of the cutting oil and the difference between the absorption concentrations of blue visible light and infrared rays.

防錆剤および切削油の波長による光の透過率は、図9に示すように、防錆剤は400nm付近を境にして紫外線を吸光するが、可視光は透過する。一方、切削油では、赤外線領域に近いほど光の透過量が高くなる傾向であることが分かった。なお、本実験では、防錆剤(マークテック株式会社製、AR−100K)および切削油(ソリブル油、汎用品)をそれぞれ水で希釈し、2%にした濃度のものを、分光器(株式会社島津製作所製、自動分光光度計UV−2200)で測定したものである。   As shown in FIG. 9, the transmittance of light depending on the wavelengths of the rust inhibitor and the cutting oil is such that the rust inhibitor absorbs ultraviolet rays around 400 nm but transmits visible light. On the other hand, it was found that the cutting oil tends to increase the amount of transmitted light as it approaches the infrared region. In this experiment, a rust inhibitor (AR-100K, manufactured by Marktec Co., Ltd.) and cutting oil (solibble oil, general-purpose product) were each diluted with water to a concentration of 2%. It is measured by Shimadzu Corporation, automatic spectrophotometer UV-2200).

防錆剤は、紫外線を吸収するため、例えば、光源から紫外線の照射方向に対して防錆剤の裏側に切削油が位置した場合、この防錆剤が紫外線を吸光することで、切削油は正確な吸光濃度を測定することができない。ところで、防錆剤は、可視光および赤外線を通過させることができる。   Since the rust preventive agent absorbs ultraviolet rays, for example, when the cutting oil is located behind the rust preventive agent with respect to the irradiation direction of the ultraviolet rays from the light source, the rust preventive agent absorbs the ultraviolet rays, so that the cutting oil is Accurate absorbance concentration cannot be measured. By the way, the rust inhibitor can pass visible light and infrared rays.

ここで、図10に示すように、濃度の異なる切削油に、異なる波長の紫外線、可視光、赤外線、さらに可視光においても異なる波長の青色可視光、緑色可視光を、それぞれから照射し、濃度別に各波長による吸光度を測定した。なお、切削油(ソリブル油、汎用品)は、水で希釈した各濃度(0%〜4%)のものを作成した。また、本実験では、成分濃度測定装置1における紫外線LEDランプ4a、青色可視光LEDランプ4b、緑色可視光LEDランプ4cおよび赤外線LEDランプ4dと、それらの吸光濃度を検出する紫外線検出器5a、可視光検出器5c,5d、赤外線検出器5eを用いることができる。   Here, as shown in FIG. 10, the cutting oils having different concentrations are irradiated with ultraviolet light, visible light, infrared light having different wavelengths, and blue visible light and green visible light having different wavelengths even in visible light from the respective concentrations. Separately, the absorbance at each wavelength was measured. In addition, the cutting oil (solibble oil, general-purpose product) was prepared with each concentration (0% to 4%) diluted with water. Further, in this experiment, the ultraviolet LED lamp 4a, the blue visible light LED lamp 4b, the green visible light LED lamp 4c, and the infrared LED lamp 4d in the component concentration measuring apparatus 1, and the ultraviolet detector 5a for detecting the absorbance density thereof, visible Photodetectors 5c and 5d and infrared detector 5e can be used.

この図10の結果から、切削油は、各波長における濃度と吸光濃度との間に略一次直線を有する相関性を見出すことができた。そして、切削油の所定の濃度に対して、各波長間の吸光濃度の差分値(例えば、青色可視光による吸光濃度と、赤外線による吸光濃度の差分値)が所定の値を示していることが分かった。ここで、上述したように、紫外線の吸光濃度は、検査液中には切削油とともに防錆剤も含まれる場合があり、この防錆剤の存在によって、正確な吸光濃度が得られないことがある。   From the results of FIG. 10, the cutting oil was able to find a correlation having a substantially linear line between the concentration and the absorbance concentration at each wavelength. In addition, the difference value of the absorption density between the wavelengths (for example, the difference value of the absorption density due to blue visible light and the absorption density due to infrared rays) indicates a predetermined value with respect to the predetermined concentration of the cutting oil. I understood. Here, as described above, the ultraviolet light absorption concentration may include a rust preventive agent together with the cutting oil in the test solution, and the presence of this rust preventive agent may not provide an accurate light absorption concentration. is there.

そこで、切削油の濃度は、紫外線による吸光濃度の値を用いず、例えば、青色可視光による吸光濃度と、赤外線による吸光濃度との差分値から、予めコントローラCに入力しておいた上記図10の各波長における濃度と吸光濃度との間の相関によって正確に算出することができる。なお、波長の組み合わせは、紫外線を除いて上述した青色可視光および赤外線の組合せに限定しない。   Therefore, the concentration of the cutting oil does not use the value of the absorption density due to the ultraviolet rays, but for example, the above-described FIG. Can be accurately calculated by the correlation between the concentration at each wavelength and the absorbance concentration. The combination of wavelengths is not limited to the combination of blue visible light and infrared rays described above except for ultraviolet rays.

このように、切削油の濃度は、紫外線を除く波長の異なる2種の光源による吸光濃度の差分値から求めることができるが、本願発明の成分濃度測定装置1では、油分としてこの切削油の濃度と同時に、検査液中の他の成分(蛍光磁粉、分散剤、防錆剤およびスケール)の濃度も同時に測定することができる。   As described above, the concentration of the cutting oil can be obtained from the difference value between the light absorption concentrations of two types of light sources having different wavelengths excluding ultraviolet rays. In the component concentration measuring apparatus 1 of the present invention, the concentration of this cutting oil is used as an oil component. At the same time, the concentrations of other components (fluorescent magnetic powder, dispersant, rust inhibitor and scale) in the test solution can be measured simultaneously.

検査液中に含まれる各成分の濃度は、以下に例示する式から求めることができる。まず、例えば、知りたい検査液中の4種類の成分濃度(蛍光磁粉、分散剤、防錆剤およびスケール)をそれぞれ未知数として、イ、ロ、ハ、ニとし、成分濃度測定装置1などで測定した検査液の、実測データ(蛍光輝度、紫外線吸光濃度、赤外線吸光濃度、紫外線沈降吸光濃度)をそれぞれα、β、γ、δとすれば、上記相関係数と実測データは以下のような四元連立一次方程式となる。   The density | concentration of each component contained in a test | inspection liquid can be calculated | required from the formula illustrated below. First, for example, the four component concentrations (fluorescent magnetic powder, dispersant, rust inhibitor, and scale) in the test solution that you want to know are determined as unknowns by using the component concentration measuring device 1 and the like. Assuming that the measured data (fluorescence brightness, ultraviolet light absorption density, infrared light absorption density, ultraviolet precipitation density) of the test solution is α, β, γ, and δ, the correlation coefficient and the measured data are as follows. The original simultaneous linear equation.

[式2]
a×イ+b×ロ+c×ハ+d×ニ=α
e×イ+f×ロ+g×ハ+h×ニ=β
i×イ+j×ロ+k×ハ+l×ニ=γ
m×イ+n×ロ+o×ハ+p×ニ=δ

なお、a〜dは各成分における蛍光輝度の相関係数、e〜hは各成分における紫外線吸光濃度の相関係数、i〜lは各成分における赤外線吸光濃度の相関係数、m〜pは各成分における紫外線沈降吸光濃度の相関係数を示す。
[Formula 2]
a × b + b × b + c × c + d × d = α
e × b + f × b + g × c + h × d = β
i x i + j x b + k x c + l x d = γ
m × b + n × b + o × c + p × d = δ

Here, a to d are correlation coefficients of fluorescence luminance in each component, e to h are correlation coefficients of ultraviolet light absorption concentration in each component, i to l are correlation coefficients of infrared light absorption concentration in each component, and m to p are The correlation coefficient of the ultraviolet sedimentation absorption density in each component is shown.

そして、上述の式[2]を行列式で表記すると、
[式3]

Figure 0005658091
以上のようにした場合、A×C=B・・・[式4]
つまり、C=A―1×B・・・[式5]
となり、B(α、β、γ、δ)の値(検査液の実測値)が分かると、知りたい検査液中の4種類の成分濃度(蛍光磁粉、分散剤、防錆剤およびスケール)が判明する。従って、情報処理部14には、このような計算式ならびに各相関係数が入力される。なお、上述の例では、紫外線沈降吸光濃度を使用したが、この紫外線沈降吸光濃度の代わりに、赤外線沈降吸光濃度や蛍光沈降輝度を用いてもよい。 And when the above equation [2] is expressed as a determinant,
[Formula 3]
Figure 0005658091
In the case described above, A × C = B (Equation 4)
That is, C = A− 1 × B (Equation 5)
When the values of B (α, β, γ, δ) (measured values of the test solution) are known, the concentration of the four components (fluorescent magnetic powder, dispersant, rust inhibitor, and scale) in the test solution to be known Prove. Therefore, such a calculation formula and each correlation coefficient are input to the information processing unit 14. In the above example, the ultraviolet sedimentation absorbance is used, but infrared sedimentation absorbance and fluorescence sedimentation luminance may be used instead of the ultraviolet sedimentation absorbance.

ここで、例えば、後述の湿式蛍光磁粉探傷試験装置21における検査液タンク22内の検査液の成分濃度を測定したい場合には、まず、蓋体10を脱着した測定具3内にサンプリングした検査液を装填し、再び蓋体10を取付けた測定具3を、暗箱体2の穴部hに回転可能に貫設する。   Here, for example, when it is desired to measure the component concentration of the inspection liquid in the inspection liquid tank 22 in the wet fluorescent magnetic particle flaw detection test apparatus 21 described later, first, the inspection liquid sampled in the measuring tool 3 with the lid 10 removed. , And the measurement tool 3 with the lid 10 attached again is rotatably inserted in the hole h of the dark box body 2.

そして、測定開始のスイッチを投入するなどした際、コントローラCは、駆動モータ16を作動させ、モータ軸17および凹部18を介して測定具3を回転させることで、測定具3内で検査液を撹拌する。そして、コントローラCは、この測定具3の回転開始から所定時間(例えば3分)後に、紫外線LEDランプ4a、青色可視光LEDランプ4b、緑色可視光LEDランプ4cおよび赤外線LEDランプ4dを点灯させて紫外線、青色可視光、緑色可視光および赤外線を検査液に照射する。   When the measurement start switch is turned on, the controller C operates the drive motor 16 and rotates the measuring tool 3 via the motor shaft 17 and the recess 18 to thereby supply the test solution in the measuring tool 3. Stir. Then, the controller C turns on the ultraviolet LED lamp 4a, the blue visible light LED lamp 4b, the green visible light LED lamp 4c, and the infrared LED lamp 4d after a predetermined time (for example, 3 minutes) from the start of rotation of the measuring tool 3. The test solution is irradiated with ultraviolet rays, blue visible light, green visible light and infrared rays.

次いで、撹拌中で均質な検査液を透過した透過光である紫外線、青色可視光、緑色可視光および赤外線を紫外線吸光濃度、可視光吸光濃度(青色)、可視光吸光濃度(緑色)および赤外線吸光濃度として、それぞれ紫外線検出器5a、可視光検出器5c,5dおよび赤外線検出器5eで検出し、その検出結果が情報処理部14に送信されるとともに、検査液から得られる、励起して発光した可視光を蛍光輝度として蛍光輝度検出器5bで検出し、その検出結果が情報処理部14に送信される。   Next, ultraviolet light, blue visible light, green visible light, and infrared light that are transmitted through a homogeneous test solution in agitation are mixed with ultraviolet light absorption density, visible light absorption density (blue), visible light absorption density (green), and infrared light absorption. Concentrations were detected by the ultraviolet detector 5a, visible light detectors 5c and 5d, and infrared detector 5e, respectively, and the detection results were transmitted to the information processing unit 14 and obtained from the test solution. Visible light is detected as fluorescence luminance by the fluorescence luminance detector 5 b, and the detection result is transmitted to the information processing unit 14.

次に、コントローラCは、この測定具3の回転開始から所定時間(例えば3分)後であって、上述した検査液における紫外線吸光濃度、可視光吸光濃度(青色、緑色)、赤外線吸光濃度および蛍光輝度の検出後に、駆動モータ16の回転を停止し、さらに、駆動モータ16の回転停止から所定時間(例えば2分)後に、紫外線LEDランプ4a(または/および赤外線LEDランプ4dなどであってもよい)を点灯させて紫外線(または/および赤外線であってもよい)を検査液に照射する。   Next, the controller C is a predetermined time (for example, 3 minutes) after the rotation of the measuring tool 3 is started, and the ultraviolet light absorption density, visible light light absorption density (blue, green), infrared light absorption density and After detecting the fluorescence luminance, the rotation of the drive motor 16 is stopped. Further, after a predetermined time (for example, 2 minutes) from the stop of the rotation of the drive motor 16, the ultraviolet LED lamp 4a (or / and the infrared LED lamp 4d) may be used. The test solution is irradiated with ultraviolet light (or infrared light).

次いで、静置中の検査液を透過した透過光である紫外線を紫外線吸光濃度として、紫外線検出器5bで検出し、その検出結果が情報処理部14に送信される。なお、この場合の検査液の測定は、上述の紫外線吸光濃度に代えて、赤外線吸光濃度または蛍光輝度などであってもよい。   Next, ultraviolet light, which is transmitted light that has passed through the stationary test solution, is detected as an ultraviolet light absorption concentration by the ultraviolet light detector 5 b, and the detection result is transmitted to the information processing unit 14. In this case, the measurement of the test solution may be an infrared absorption density or a fluorescence luminance instead of the above-described ultraviolet absorption density.

そして、情報処理部14では、撹拌中の検査液から測定した紫外線吸光濃度と、静置中の検査液から測定した紫外線吸光濃度との差分値を紫外線沈降吸光濃度として算出するとともに、撹拌中の検査液における蛍光輝度や紫外線吸光濃度、赤外線吸光濃度の実測値を用いて、上述した[式5]のような行列式から検査液中の各成分(蛍光磁粉、分散剤、防錆剤およびスケール)の濃度を算出する。   And in the information processing part 14, while calculating the difference value of the ultraviolet light absorption density | concentration measured from the test | inspection liquid under stirring, and the ultraviolet light absorption density | concentration measured from the test | inspection liquid still at rest as an ultraviolet sedimentation absorption density, Each component (fluorescent magnetic powder, dispersant, rust inhibitor, and scale) in the test solution is calculated from the determinant such as [Equation 5] using the measured fluorescence luminance, ultraviolet absorption density, and infrared absorption density in the test solution. ) Is calculated.

以下に、行列式を用いた検査液の各成分濃度の算出例(式6)を示す。
(式6)

Figure 0005658091
式中のUVは紫外線(ultraviolet)、IRは赤外線(infrared)を示す。 An example of calculating the concentration of each component of the test solution using the determinant (Formula 6) is shown below.
(Formula 6)
Figure 0005658091
In the formula, UV indicates ultraviolet (ultraviolet) and IR indicates infrared.

一方、コントローラCは、青色可視光による吸光濃度と、赤外線による吸光濃度の検出情報に基づいて、予めコントローラCに入力しておいた上記図10における切削油の各波長における濃度と吸光濃度との間の差分値から切削油の濃度を算出する。   On the other hand, the controller C calculates the concentration and the absorption concentration at each wavelength of the cutting oil in FIG. 10 input in advance to the controller C based on the detection information of the absorption concentration by blue visible light and the absorption concentration by infrared rays. The concentration of the cutting oil is calculated from the difference value between them.

従って、図11に示すように、コントローラCは、各検出器5a〜5eからの検出情報に基づいて、一方では、異なる光源による吸光濃度(例えば、青色可視光照射による吸光濃度と、赤外線照射による吸光濃度)の差分値から、検査液中に含まれる油分としての切削油の濃度を算出するとともに、他方では、上述した四元連立一次方程式から検査液中に含まれる蛍光磁粉、分散剤、防錆剤、スケールの濃度を、同時かつ瞬時に算出することができる。   Therefore, as shown in FIG. 11, the controller C, on the other hand, is based on the detection information from the detectors 5a to 5e, and on the one hand, the absorption density by different light sources (for example, the absorption density by blue visible light irradiation and the infrared irradiation) The concentration of the cutting oil as the oil contained in the test solution is calculated from the difference value of the light absorption concentration). On the other hand, the fluorescent magnetic powder, the dispersant, the anti-proofing agent contained in the test solution are calculated from the above-described quaternary linear equations. The concentration of rusting agent and scale can be calculated simultaneously and instantaneously.

次に、検査液中の混入物を含む各成分(蛍光磁粉、分散剤、防錆剤、スケールおよび油分)全ての濃度を、後に例示する式から同時かつ瞬時に求めることもできる。ここで、上述の図10に示した、切削油の所定の濃度に対して、各波長間の吸光濃度の差分値(例えば、青色可視光による吸光濃度と、赤外線による吸光濃度の差分値)が所定の値を示していることから、図12に示すように、各濃度に対する差分値が、この切削油における濃度と差分値との間に略一次直線を有する相関性(差分値相関係数)を見出すことができる。   Next, the concentrations of all the components (fluorescent magnetic powder, dispersant, rust preventive agent, scale, and oil content) including contaminants in the test solution can be simultaneously and instantaneously determined from the formulas exemplified later. Here, with respect to the predetermined concentration of the cutting oil shown in FIG. 10 described above, the difference value of the absorption density between wavelengths (for example, the difference value of the absorption density by blue visible light and the absorption density by infrared rays) is Since the predetermined value is shown, as shown in FIG. 12, the difference value for each concentration has a substantially linear line between the concentration and the difference value in the cutting oil (difference value correlation coefficient). Can be found.

なお、図示しないが、異なる波長の光源による各成分(蛍光磁粉、分散剤、防錆剤およびスケール)の各濃度に対する吸光濃度の差分値もそれぞれの成分の濃度との間に略一次直線を有する相関性(相関係数)を見出すことができる。   In addition, although not shown in figure, the difference value of the light absorption density | concentration with respect to each density | concentration of each component (fluorescent magnetic powder, a dispersing agent, a rust preventive agent, and a scale) by the light source of a different wavelength also has a substantially linear line between the density | concentration of each component. Correlation (correlation coefficient) can be found.

まず、例えば、知りたい検査液中の5種類の成分濃度(蛍光磁粉、分散剤、防錆剤、スケールおよび油分)をそれぞれ未知数として、イ、ロ、ハ、ニ、ホとし、成分濃度測定装置1などで測定した検査液の、実測データ(蛍光輝度、紫外線吸光濃度、赤外線吸光濃度、紫外線沈降吸光濃度、可視光吸光濃度)をそれぞれα、β、γ、δ、ηとすれば、上記相関係数と実測データは以下のような五元連立一次方程式となる。   First, for example, the concentration of five components in the test solution that you want to know (fluorescent magnetic powder, dispersant, rust inhibitor, scale, and oil) are set as unknowns. If the measured data (fluorescence luminance, ultraviolet light absorption concentration, infrared light absorption concentration, ultraviolet sedimentation light absorption concentration, visible light light absorption concentration) of the test solution measured in 1 or the like are α, β, γ, δ, η, respectively, The number of relations and the measured data are the following five-way simultaneous linear equations.

[式7]
a×イ+b×ロ+c×ハ+d×ニ+e×ホ=α
f×イ+g×ロ+h×ハ+i×ニ+j×ホ=β
k×イ+l×ロ+m×ハ+n×ニ+o×ホ=γ
p×イ+q×ロ+r×ハ+s×ニ+t×ホ=δ
u×イ+v×ロ+w×ハ+x×ニ+y×ホ=η

なお、a〜dは各成分における蛍光輝度の相関係数、e〜hは各成分における紫外線吸光濃度の相関係数、i〜lは各成分における赤外線吸光濃度の相関係数、m〜pは各成分における紫外線沈降吸光濃度の相関係数、q〜tは各成分それぞれの濃度における異なる波長から得られた吸光濃度差分値相関係数を示す。
[Formula 7]
a x b + b x b + c x c + d x d + e x ho = α
f x i + g x b + h x h + i x d + j x ho = β
k x b + l x b + m x c + n x d + o x ho = γ
p × i + q × b + r × c + s × d + t × e = δ
u x b + v x b + w x c + x x d + y x ho = η

Here, a to d are correlation coefficients of fluorescence luminance in each component, e to h are correlation coefficients of ultraviolet light absorption concentration in each component, i to l are correlation coefficients of infrared light absorption concentration in each component, and m to p are Correlation coefficient of ultraviolet sedimentation absorption density in each component, q to t indicate absorption density difference value correlation coefficients obtained from different wavelengths in the concentration of each component.

そして、上述の式[7]を行列式で表記すると、
式[8]

Figure 0005658091
以上のようにした場合、A×C=B・・・[式9]
つまり、C=A―1×B・・・[式10]
となり、B(α、β、γ、δ、η)の値(検査液の実測値)が分かると、知りたい検査液中の5種類の成分濃度(蛍光磁粉、分散剤、防錆剤、スケールおよび油分)が判明する。従って、情報処理部14には、このような計算式ならびに各相関係数が入力される。 And when the above equation [7] is expressed as a determinant,
Formula [8]
Figure 0005658091
In the above case, A × C = B (Equation 9)
That is, C = A− 1 × B (Equation 10)
When the values of B (α, β, γ, δ, η) (measured values of the test solution) are known, the concentration of the five components in the test solution (fluorescent magnetic powder, dispersant, rust inhibitor, scale) And oil). Therefore, such a calculation formula and each correlation coefficient are input to the information processing unit 14.

つまり、情報処理部14では、撹拌中の検査液から測定した紫外線吸光濃度と、静置中の検査液から測定した紫外線吸光濃度との差分値を紫外線沈降吸光濃度として算出するとともに、撹拌中の検査液における蛍光輝度や紫外線吸光濃度、青色可視光吸光濃度、赤外線吸光濃度の実測値を用いて、上述した[式9]のような行列式から検査液中の各成分(蛍光磁粉、分散剤、防錆剤、スケールおよび油分)の濃度を算出する。   In other words, the information processing unit 14 calculates a difference value between the ultraviolet light absorption concentration measured from the test solution being stirred and the ultraviolet light absorption concentration measured from the test solution being left as a UV sedimentation light absorption concentration. Each component (fluorescent magnetic powder, dispersant) in the test solution is calculated from the determinant such as [Equation 9] using the measured values of the fluorescence luminance, ultraviolet absorption density, blue visible light absorption density, and infrared absorption density in the test liquid. , Antirust agent, scale and oil content).

以下に、行列式を用いた検査液の各成分濃度の算出例(式11)を示す。

[式11]

Figure 0005658091
An example of calculating the concentration of each component of the test solution using the determinant (Formula 11) is shown below.

[Formula 11]
Figure 0005658091

このように、[式10]のAに当たる各ファクターには、図7〜10に示した各グラフの傾き値が予め入力されているため、上述したような検査液の各実測値が、上式に入力されることで、行列式により検査液中の各成分(蛍光磁粉、分散剤、防錆剤、スケールおよび油分)の濃度を算出することができる。このように、各成分濃度を異にする様々な種類の検査液および、経時変化に伴い変動する検査液に対応して、各成分濃度を正確かつ瞬時に算出させることができるのである。なお、実測値に基づく実際の各成分濃度の記載は省略する。   As described above, since the slope values of the graphs shown in FIGS. 7 to 10 are input in advance to each factor corresponding to A in [Equation 10], each measured value of the test solution as described above is expressed by the above equation. The concentration of each component (fluorescent magnetic powder, dispersant, rust inhibitor, scale, and oil) in the test solution can be calculated from the determinant. In this way, the concentration of each component can be calculated accurately and instantaneously in response to various types of test solutions having different component concentrations and test solutions that vary with time. In addition, description of each actual component density | concentration based on a measured value is abbreviate | omitted.

このようにして、検査液中の混入物を含む各成分(蛍光磁粉、分散剤、防錆剤、スケールおよび油分)の濃度が算出され、それら算出結果を、コントローラCは、表示部15に表示させる。従って、検査液の撹拌開始から各成分濃度を表示部15に表示させるまで、その間わずか数分程度の短時間で検査液の各成分濃度を自動かつ同時に測定することができる。   In this way, the concentration of each component (fluorescent magnetic powder, dispersant, rust preventive agent, scale and oil content) containing contaminants in the test solution is calculated, and the controller C displays the calculation results on the display unit 15. Let Accordingly, the concentration of each component of the test liquid can be measured automatically and simultaneously in a short time of only a few minutes during the period from the start of stirring of the test liquid to the display unit 15 displaying the concentration of each component.

以上のような構成により、撹拌された検査液を透明な測定具3に導入し、異なる波長の複数の光源として、紫外線LEDランプ4a、複数の異なる波長の可視光LEDランプ4b,4cおよび赤外線LEDランプ4dの光を、測定具3の一側方から検査液に照射して得られた透過光および励起して発光した可視光を用い、透過光を検出する紫外線検出器5a、可視光検出器5c,5dおよび赤外線検出器5eと、励起して発光した可視光を検出する蛍光輝度検出器5bとの各検出値および検査液の各成分の時間経過に伴う沈降特性の違いによって得られる各検出器の検出値の変化および光源のうち、異なる波長の2の光源4b,4dに応じた検出器5c,5eによる各検出値の差分値から、検査液の各成分濃度を測定するので、光学的手法を用いた簡単な構成により、検査液中に含まれる混入物を含む各成分の濃度を瞬時かつ高精度で、容易に測定することができる。   With the above-described configuration, the agitated test solution is introduced into the transparent measuring tool 3, and as a plurality of light sources having different wavelengths, an ultraviolet LED lamp 4a, a plurality of visible light LED lamps 4b and 4c having different wavelengths, and an infrared LED. An ultraviolet detector 5a for detecting transmitted light using transmitted light obtained by irradiating the test solution with light from the lamp 4d from one side of the measuring tool 3 and visible light excited and emitted, and a visible light detector 5c, 5d and the infrared detector 5e, and each detection value obtained by the difference in the sedimentation characteristics of each component of the test liquid with the respective detected values and the fluorescence luminance detector 5b for detecting the visible light excited and emitted. The concentration of each component of the test solution is measured from the difference between the detection values of the detectors 5c and 5e corresponding to the two light sources 4b and 4d of the different wavelengths among the change in the detection value of the detector and the light source. Technique The simple structure had a concentration of each component comprising the contaminants contained in the test solution in instantaneous and accurate, can be easily measured.

特に、検査液内での蛍光磁粉の凝集を促進させ、探傷精度を著しく低下させてしまう切削油や防腐剤など、従来では測定できなかった検査液中に混入した油分濃度を、検査液に含まれる他の成分または混入物(蛍光磁粉、分散剤、防錆剤、スケール)の各濃度とともに測定することができるため、検査液の液質管理によって探傷性能を維持することができる。   In particular, the test solution contains oil concentrations mixed in the test solution that could not be measured in the past, such as cutting oil and preservatives that promote the aggregation of fluorescent magnetic powder in the test solution and significantly reduce the flaw detection accuracy. Since it can measure with each density | concentration of other components or contaminants (fluorescent magnetic powder, a dispersing agent, a rust preventive agent, a scale) to be detected, flaw detection performance can be maintained by liquid quality management of a test liquid.

また、光源4a〜4dは、LEDランプを用いているので、複数の波長の異なる電磁波を用いて、検査液および検査液中に含まれる各成分から、成分濃度算出に必要な多種類の測定データを得ることができるとともに、検査液に吸光および励起発光させる光源ランプの使用寿命が長くなり、コストダウンを図ることができる。   Further, since the light sources 4a to 4d use LED lamps, various types of measurement data necessary for calculating the component concentration from the test liquid and each component contained in the test liquid using electromagnetic waves having different wavelengths. In addition, the service life of the light source lamp that absorbs and excites the test solution is prolonged, and the cost can be reduced.

また、紫外線検出器5a可視光検出器5c,5dおよび赤外線検出器5eは、測定具3を挟んで光源4a〜4dの対向位置に設置するので、各LEDランプ4a〜4dから検査液に入射し、液中を略直進的に透過した紫外線、可視光(青、緑)および赤外線の透過光を、各成分の吸光濃度として正確かつ安定的に測定することができる。   In addition, the ultraviolet detector 5a, the visible light detectors 5c and 5d, and the infrared detector 5e are installed at positions opposite to the light sources 4a to 4d with the measuring tool 3 interposed therebetween, so that the LED lamps 4a to 4d enter the test solution. In addition, ultraviolet light, visible light (blue, green), and infrared light transmitted through the liquid almost linearly can be accurately and stably measured as the absorbance concentration of each component.

また、測定具3は、フッ素樹脂からなるので、摩擦係数が小さい測定具内面への検査液中の蛍光磁粉の付着を減らし、測定具3内の清掃作業などメンテナンス頻度を低下させるとともに、長期間安定した計測を行うことができる。   Moreover, since the measuring tool 3 is made of a fluororesin, the adhesion of the fluorescent magnetic powder in the test liquid to the inner surface of the measuring tool having a small friction coefficient is reduced, the frequency of maintenance such as cleaning work in the measuring tool 3 is reduced, and a long period of time. Stable measurement can be performed.

さらに、測定具3は、暗箱体2内に設置するとともに、各光源4a〜4dおよび各検出器5a〜5eは、暗箱体2内に備えるので、暗室内において検査液への紫外線、可視光、赤外線の透過光および蛍光輝度を正確に測定することができる。   Furthermore, since the measuring tool 3 is installed in the dark box 2, and the light sources 4a to 4d and the detectors 5a to 5e are provided in the dark box 2, ultraviolet rays, visible light to the test solution in the dark room, Infrared transmitted light and fluorescence luminance can be accurately measured.

そして、本成分濃度測定装置1は、設置場所を限定せず、成分濃度測定装置1を測定ユニットとして携帯可能とし、サンプリングした検査液の成分濃度を、任意の場所で測定することができる。なお、成分濃度測定装置1は、上述したような形状に限定されるものではない。   And this component concentration measuring apparatus 1 does not limit an installation place, but can make the component concentration measuring apparatus 1 portable as a measurement unit, and can measure the component density | concentration of the sampled test solution in arbitrary places. In addition, the component concentration measuring apparatus 1 is not limited to the shape as described above.

なお、上述の例では、検査液に混入した油分として、切削油の濃度測定を説明したが、油分の種類には切削油の他に防腐剤なども挙げられる。そこで、検査液に防腐剤も混入し、この防腐剤の濃度も測定したい場合には、次の方法で測定することができる。なお、防腐剤濃度の算出方法も切削油と類似しているため、以下簡略に説明する。   In the above-described example, the measurement of the concentration of the cutting oil is described as the oil mixed in the inspection liquid. However, the type of oil includes a preservative in addition to the cutting oil. Therefore, when a preservative is also mixed in the test solution and the concentration of this preservative is to be measured, it can be measured by the following method. In addition, since the calculation method of antiseptic | preservative density | concentration is similar to cutting oil, it demonstrates easily below.

上述したように、切削油は、青色可視光および赤外線を用いて両者の吸光濃度の差分値から切削油の濃度を測定したが、防腐剤では、例えば、緑色可視光および赤外線を用いる(防腐剤の濃度測定に青色可視光および赤外線を用い、切削油の濃度測定に緑色可視光および赤外線を用いてもよい)ことができる。   As described above, for cutting oil, the concentration of the cutting oil was measured from the difference between the absorption densities of both using blue visible light and infrared rays. For the preservative, for example, green visible light and infrared rays are used (preservative). Blue visible light and infrared light may be used to measure the concentration of green, and green visible light and infrared light may be used to measure the concentration of the cutting oil).

切削油と同様にして、濃度の異なる防腐剤に、可視光LEDランプ4bおよび赤外線LEDランプ4dの光を照射し、可視光検出器5cおよび赤外線検出器5eによりそれぞれ吸光度が得られるが、それら濃度と吸光度の差分値との間には、図示しないが、略一次的な相関関係を有し、相関係数として算出することができる。   Similarly to the cutting oil, the preservatives having different concentrations are irradiated with light from the visible LED lamp 4b and the infrared LED lamp 4d, and the absorbance is obtained by the visible light detector 5c and the infrared detector 5e, respectively. Although not shown in the figure, there is a substantially linear correlation between the difference value of the absorbance and the absorbance, and it can be calculated as a correlation coefficient.

そこで、検査液中に混入した切削油に加えて防腐剤の濃度をも測定する場合には、上述同様に、[式11]の油分に防腐剤の項目を増設(油分を切削油としてもよい)し、差分値の相関係数として、検査液中の各成分の濃度別に得られた緑色可視光および赤外線による吸光濃度の差分値の相関係数を予め与えておく。   Therefore, in the case of measuring the concentration of the preservative in addition to the cutting oil mixed in the inspection liquid, as described above, the preservative is added to the oil of [Equation 11] (the oil may be used as the cutting oil). Then, as the correlation coefficient of the difference value, the correlation coefficient of the difference value of the absorption density by the green visible light and the infrared ray obtained for each concentration of each component in the test solution is given in advance.

そして、成分濃度測定装置1により検査液から得られる各検出値(蛍光輝度、UV吸光濃度、IR吸光濃度、UV沈降吸光濃度、青色可視光吸光濃度および緑色可視光吸光濃度)をコントローラCが六元連立一次方程式(差分値のみから算出してもよい)により、検査液中に含まれる蛍光磁粉、分散剤、防錆剤、スケール、切削油および防腐剤の6種類の成分を同時かつ瞬時に算出することができる。   Then, the controller C has six detection values (fluorescence luminance, UV absorption concentration, IR absorption concentration, UV sedimentation absorption concentration, blue visible light absorption concentration, and green visible light absorption concentration) obtained from the test solution by the component concentration measuring apparatus 1. Based on the original simultaneous linear equation (which may be calculated from only the difference value), the six types of ingredients of fluorescent magnetic powder, dispersant, rust inhibitor, scale, cutting oil and preservative contained in the test solution are simultaneously and instantaneously Can be calculated.

なお、上述では、検査液に混入する油分として切削油および防腐剤の両者を同時に測定する例で説明したが、異なる光源の波長による吸光濃度の差分値や差分値相関係数を用いて、切削油のみあるいは防腐剤のみで測定してもよく、また、油分の測定に代えて他の含有成分や混入物を測定してもよい。そして、同じ可視光であっても、可視光内の他の波長領域を用いることで、さらに濃度測定できる検査液に含まれる成分(混入物)数を増やすことができる。   In the above description, the example in which both cutting oil and preservative are simultaneously measured as the oil mixed in the inspection liquid has been described. However, the difference value of the light absorption concentration and the difference value correlation coefficient with different light source wavelengths are used for cutting. You may measure only with oil or preservatives, and it may replace with the measurement of an oil content, and may measure another content component and a contaminant. And even if it is the same visible light, the number of the components (contaminants) contained in the test | inspection liquid which can measure a density | concentration can be increased by using the other wavelength area | region in visible light.

上記成分濃度測定装置1は、光源および検出器を他の配置にすることもできる。図13は本発明の他の例を示す、光源をダイヤル式に配置した、湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定装置の斜視図である。   In the component concentration measuring apparatus 1, the light source and the detector can be arranged in other ways. FIG. 13 is a perspective view of a test liquid component concentration measuring apparatus used in a wet fluorescent magnetic particle flaw detection test, in which a light source is arranged in a dial type, showing another example of the present invention.

この図13に示すように、成分濃度測定装置1´は、暗箱体2の左右一方の側面(図13中では手前に示した左側面)略中央近傍位置に、ダイヤル式の光源4を設けてもよい。この回転可能なダイヤル盤19は周知の構成でよく、紫外線LEDランプ4a、青色可視光LEDランプ4b、緑色可視光LEDランプ4cおよび赤外線LEDランプ4dが、暗箱体2の内側暗室内を照射方向としてダイヤル盤19の周囲に取付けられる。   As shown in FIG. 13, the component concentration measuring apparatus 1 ′ is provided with a dial-type light source 4 at a position near the center of one side of the dark box 2 (the left side shown in the front in FIG. 13). Also good. The rotatable dial panel 19 may have a well-known configuration, and the ultraviolet LED lamp 4a, the blue visible light LED lamp 4b, the green visible light LED lamp 4c, and the infrared LED lamp 4d are directed to the inside dark room of the dark box 2 in the irradiation direction. It is attached around the dial board 19.

なお、ダイヤル盤19の回転により、必ず光源ランプ4a〜4dの1つが、後述する測定具3を挟んで透過光検出器5´の正面に位置するよう、ダイヤル盤19の回転軸を暗箱体2の側面に設置する。そして、これら各光源ランプ4a〜4dの設置順は限定されない。また、図中の4nは、可視光ランプを上述の青色および緑色の他にも複数設置可能であることを示したものである。   The rotation axis of the dial board 19 is set to the dark box body 2 so that one of the light source lamps 4a to 4d is always positioned in front of the transmitted light detector 5 'with the measuring tool 3 to be described later sandwiched by the rotation of the dial board 19. Install on the side. And the installation order of these light source lamps 4a-4d is not limited. In addition, 4n in the drawing indicates that a plurality of visible light lamps can be installed in addition to the above-described blue and green.

また、暗箱体2における左右他方の内側面(図1中では奥に示した右側面)であって、暗箱体2に装着した状態での測定具3を挟んだ光源4を設けたダイヤル盤19の取付位置に対向する位置には、紫外線〜赤外線に至る全レンジの透過光を測定可能な透過光検出器5´が設置される。透過光検出器5´は周知の技術であるため、詳細な説明は省略する。なお、蛍光輝度検出器5bや駆動モータ16などの設置位置は上述と同じである。   Further, the dial board 19 provided with the light source 4 sandwiching the measuring tool 3 in the state mounted on the dark box 2, which is the other inner side (right side shown in the back in FIG. 1) of the left and right sides of the dark box 2. A transmitted light detector 5 ′ capable of measuring transmitted light in the entire range from ultraviolet to infrared is installed at a position opposite to the mounting position. Since the transmitted light detector 5 'is a well-known technique, a detailed description thereof is omitted. The installation positions of the fluorescence luminance detector 5b and the drive motor 16 are the same as described above.

従って、測定具3内の検査液における各成分濃度を測定する際には、ダイヤル盤19を手動もしくは自動(自動の場合は別途モータを設置)で回転させ、順に光源ランプ4a〜4dを検査液に照射し、上述同様に検査液中の各成分濃度を測定することができる。このような構成の成分濃度測定装置1´にすることで、設置機器の点数を削減できるとともに、装置の前後長さを短くして装置のコンパクト化を図ることができる。   Accordingly, when measuring the concentration of each component in the test liquid in the measuring tool 3, the dial panel 19 is rotated manually or automatically (a motor is separately installed in the case of automatic), and the light source lamps 4a to 4d are sequentially switched to the test liquid. The concentration of each component in the test solution can be measured in the same manner as described above. By using the component concentration measuring apparatus 1 ′ having such a configuration, the number of installed devices can be reduced, and the length of the apparatus can be shortened to make the apparatus compact.

上記成分濃度測定装置1,1´は、上述した例のように、検査液タンク内からサンプリングした検査液の成分濃度を測定できる測定装置ユニットとして説明したが、この成分濃度測定装置1を湿式蛍光磁粉探傷試験装置内に成分濃度測定装置1´´として組み込んで検査液の濃度測定をすることができる。   The component concentration measuring device 1, 1 ′ has been described as a measuring device unit that can measure the component concentration of the test solution sampled from the test solution tank as in the above-described example. The concentration of the test solution can be measured by incorporating it as a component concentration measuring device 1 ″ in the magnetic particle testing device.

以下、図14は湿式蛍光磁粉探傷試験装置の一例を示した全体模式図、図15は探傷部の拡大模式図である。   FIG. 14 is an overall schematic view showing an example of a wet fluorescent magnetic particle flaw detection test apparatus, and FIG. 15 is an enlarged schematic view of a flaw detection portion.

湿式蛍光磁粉探傷試験装置21(例えば、商品名:スーパーマグナなど、マークテック株式会社製)は、図14に示すように、検査液を貯留する検査液タンク22と、この検査液タンク22内の検査液を、ポンプなどの循環手段23で取り出すとともに、検査液タンク22内に還流させる配管などの移送手段24と、この移送手段24内の検査液を、被検査体の磁化した金属の表面に接触させて、表面の傷部の探傷を行う探傷部25とから構成される。   As shown in FIG. 14, the wet fluorescent magnetic particle flaw detection test apparatus 21 (for example, trade name: Super Magna, manufactured by Marktec Corporation) includes a test liquid tank 22 for storing a test liquid, and a test liquid tank 22 in the test liquid tank 22. The inspection liquid is taken out by a circulating means 23 such as a pump, and the transfer means 24 such as a pipe for returning to the inspection liquid tank 22 and the inspection liquid in the transfer means 24 are applied to the magnetized metal surface of the object to be inspected. It is comprised from the flaw detection part 25 which is made to contact and flaw-detects the surface flaw part.

この探傷部25は、図15に示すように、搬送ローラ26aを備え、コンベア26b上の被検査体を搬送する搬送装置26と、検査液タンク22内から取出した検査液を被検査体上に散布する散布装置27(図示しないが、散布した検査液を回収して検査液タンク内に戻す循環装置を含む)と、貫通コイル28aおよびヨークコイル28bなどからなり、コンベア26b上の被検査体を磁化する磁化装置28と、紫外線探傷灯29a(ブラックライト)を被検査体に照射して探傷を行う探傷装置29(図示しないが、傷部を検出するCCDカメラなど画像処理装置を含む)とから構成される。   As shown in FIG. 15, the flaw detection unit 25 includes a transport roller 26 a, and a transport device 26 that transports the test object on the conveyor 26 b and the test liquid taken out from the test liquid tank 22 on the test target. A spraying device 27 for spraying (including a circulation device (not shown) that collects the sprayed test solution and returns it to the test solution tank), a through coil 28a, a yoke coil 28b, and the like. From a magnetizing device 28 that magnetizes, and a flaw detection device 29 that performs flaw detection by irradiating an inspection object with an ultraviolet flaw detection lamp 29a (black light) (not shown, but includes an image processing device such as a CCD camera that detects a flaw). Composed.

なお、この湿式蛍光磁粉探傷試験装置21は、上述してきたように周知の装置(技術)であるため、それら詳細な説明は省略する。   The wet fluorescent magnetic particle flaw detection test apparatus 21 is a well-known apparatus (technique) as described above, and a detailed description thereof will be omitted.

そして、本願発明の検査液の成分濃度測定装置1´´は、湿式蛍光磁粉探傷試験装置21における検査液タンク22と、探傷部25との間の移送手段24中途部に設置される。   The test liquid component concentration measuring apparatus 1 ″ according to the present invention is installed in the middle of the transfer means 24 between the test liquid tank 22 and the flaw detection part 25 in the wet fluorescent magnetic particle flaw detection test apparatus 21.

なお、成分濃度測定装置1´´は、測定具3´を挿入する穴部h近傍に、上述したような遮光手段を設けるとともに、湿式蛍光磁粉探傷試験装置21では循環手段23を備えているため、移送手段24中を検査液が搬送されることから、成分濃度測定装置1,1´で説明した暗箱体2内の撹拌手段の設置は不要とされる。また、表示部15は、各暗箱体2a,2bの天面水平部分や、湿式蛍光磁粉探傷試験装置21の操作盤など、適宜位置に設けることができる。   The component concentration measuring apparatus 1 ″ is provided with the light shielding means as described above in the vicinity of the hole h where the measuring tool 3 ′ is inserted, and the wet fluorescent magnetic particle testing apparatus 21 includes the circulating means 23. Since the test solution is transported through the transfer means 24, it is not necessary to install the stirring means in the dark box 2 described in the component concentration measuring devices 1 and 1 ′. Moreover, the display part 15 can be provided in appropriate positions, such as the top horizontal part of each dark box 2a, 2b, and the operation panel of the wet fluorescent magnetic particle test equipment 21.

そして、この湿式蛍光磁粉探傷試験装置21で被検査体の探傷試験を行う際、検査液タンク22内に貯留される検査液を、移送手段24内に循環手段23で取り出し、探傷部25に圧送するが、この移送途中において移送手段24内の検査液は、成分濃度測定装置1´´の暗箱体2の測定具3´内を通過した後、移送手段24内から探傷部25に到達する。   When the wet fluorescent magnetic particle flaw detection test apparatus 21 performs a flaw detection test on the object to be inspected, the inspection liquid stored in the inspection liquid tank 22 is taken out into the transfer means 24 by the circulation means 23 and is pumped to the flaw detection section 25. However, during this transfer, the inspection liquid in the transfer means 24 passes through the measuring tool 3 ′ of the dark box 2 of the component concentration measuring apparatus 1 ″ and then reaches the flaw detection part 25 from the transfer means 24.

そして、検査液中の成分濃度を測定する場合には、上述した成分濃度測定装置1での測定のように、この場合、湿式蛍光磁粉探傷試験装置21において、循環手段23による検査液の循環開始から所定時間(例えば3分)後に、暗箱体2において、測定具3´内を通過中の検査液(循環による撹拌状態)に、光源4a〜4dから紫外線、可視光(青や緑など)および赤外線を照射し、各検出器5a〜5eによって、上述同様に各測定値(紫外線吸光濃度、青色可視色吸光濃度、緑色可視色吸光濃度、赤外線吸光濃度および蛍光輝度)を得る。   Then, when measuring the component concentration in the test solution, as in the measurement with the component concentration measuring device 1 described above, in this case, in the wet fluorescent magnetic particle testing device 21, the circulation of the test solution by the circulating means 23 is started. After a predetermined time (for example, 3 minutes), in the dark box 2, ultraviolet light, visible light (such as blue and green) and the like from the light sources 4 a to 4 d are applied to the test solution passing through the measuring instrument 3 ′ (stirring state by circulation). Irradiated with infrared rays, the respective measurement values (ultraviolet ray absorbance density, blue visible color absorbance density, green visible color absorbance density, infrared absorbance density and fluorescence luminance) are obtained by the detectors 5a to 5e as described above.

次いで、循環開始から所定時間(例えば3分)後であって、上述の各測定値の検出後に、循環手段23の駆動を停止し、さらに、循環手段23の駆動停止から所定時間(例えば2分)後に、暗箱体2において、測定具3´内を静置中の検査液に、光源4a〜4dから紫外線、可視光(青や緑など)および赤外線を照射し、各検出器5a〜5eによって、所定の測定値を得て、情報処理部14において、上述した算出方法により検査液中の各成分(蛍光磁粉、分散剤、防錆剤、スケールおよび油分)が上述同様にして算出され、表示部15などに表示される。   Next, after a predetermined time (for example, 3 minutes) from the start of circulation and after the detection of each measurement value, the driving of the circulation means 23 is stopped, and further, a predetermined time (for example, 2 minutes) from the stop of the circulation means 23 is stopped. ) After that, in the dark box 2, the test solution standing in the measuring instrument 3 ′ is irradiated with ultraviolet rays, visible light (blue, green, etc.) and infrared rays from the light sources 4 a to 4 d, and the detectors 5 a to 5 e. Then, a predetermined measurement value is obtained, and in the information processing unit 14, each component (fluorescent magnetic powder, dispersant, rust inhibitor, scale and oil) in the test liquid is calculated in the same manner as described above by the calculation method described above and displayed. Displayed in the part 15 and the like.

なお、コントローラCには、予め検査液の各成分濃度の上限値や下限値を設置しておくことで、例えば、検査液中のスケール濃度や油分濃度が、設定値に到達したところで、表示部15や図示しない警報装置などを介して周囲に注意を喚起することで、検査液の交換など適切な処理が施される。   In addition, by setting the upper limit value and the lower limit value of each component concentration of the test solution in advance in the controller C, for example, when the scale concentration or oil concentration in the test solution reaches the set value, the display unit Appropriate processing such as replacement of a test solution is performed by drawing attention to the surroundings via an alarm device 15 or an alarm device (not shown).

なお、上述した静置中の検査液の各測定値を検出した後は、循環手段23の駆動を開始し、湿式蛍光磁粉探傷試験装置21において、循環手段23により検査液の循環が開始され、上述した検査液の測定操作が繰り返される。   In addition, after detecting each measured value of the test liquid during the above-described standing, driving of the circulation means 23 is started, and in the wet fluorescent magnetic particle flaw detection test apparatus 21, circulation of the test liquid is started by the circulation means 23, The test liquid measurement operation described above is repeated.

このような構成にすることで、成分濃度測定装置1´´が湿式蛍光磁粉探傷試験装置21と一体に構成され、検査液タンク22から探傷部25へ移送途中である検査液中の各成分濃度を、散布装置27での散布直前に探傷試験の一環としてオンラインで瞬時に測定することができ、作業性とともに探傷性能を向上させることで、被検査体の生産性および品質向上に貢献することができる。   With this configuration, the component concentration measuring device 1 ″ is integrated with the wet fluorescent magnetic particle flaw detection test device 21, and each component concentration in the test solution being transferred from the test solution tank 22 to the flaw detection unit 25. Can be instantaneously measured online as part of the flaw detection test immediately before spraying with the spraying device 27, and improving the flaw detection performance as well as workability can contribute to improving the productivity and quality of the inspected object. it can.

また、成分濃度測定装置1´´は、図示しないが、検査液タンク22に別途設けた、循環手段を備える、検査液中の各成分濃度の測定専用配管である移送手段の中途部に設置させることもできる。   In addition, although not shown, the component concentration measuring device 1 ″ is installed in the middle of the transfer means, which is provided separately in the test liquid tank 22 and has a circulation means and is a dedicated pipe for measuring each component concentration in the test liquid. You can also.

このような構成にすることで、検査液タンク22から測定用配管などの移送手段24´を介して検査液タンク22に戻される循環中の検査液の各成分濃度を、探傷試験の一環としてオンラインで瞬時に測定することができる。そして、この場合、検査液の散布経路とは別に、検査液の測定専用経路を設けたため、例えば散布経路に不都合などが生じて、散布が停止しても、測定専用経路で常時検査液中の各成分濃度を測定することができる。   With this configuration, the concentration of each component of the circulating test liquid returned from the test liquid tank 22 to the test liquid tank 22 via the transfer means 24 'such as a measurement pipe is online as part of the flaw detection test. Can be measured instantaneously. In this case, since a dedicated path for measuring the test liquid is provided separately from the path for spraying the test liquid, for example, inconvenience occurs in the spray path, and even if the spraying stops, The concentration of each component can be measured.

本発明は、湿式蛍光磁粉探傷試験に用いる検査液中の各成分濃度を測定する、あらゆる湿式蛍光磁粉探傷試験装置および検査液の成分濃度測定装置に適用することができる。   The present invention can be applied to all wet fluorescent magnetic particle flaw detection test devices and test liquid component concentration measurement devices that measure the concentration of each component in the test liquid used in the wet fluorescent magnetic particle flaw detection test.

1,1´,1´´ 成分濃度測定装置
2 暗箱体
3,3´ 測定具
4a 紫外線LEDランプ(光源)
4b 可視光LEDランプ(青、光源)
4c 可視光LEDランプ(緑、光源)
4d 赤外線LEDランプ(光源)
5a 紫外線検出器
5b 蛍光輝度検出器
5c 可視光検出器(青)
5d 可視光検出器(緑)
5e 赤外線検出器
8 傾斜部
14 情報処理部
21 湿式蛍光磁粉探傷試験装置
22 検査液タンク
23 循環手段
24 移送手段
C コントローラ
c 正面中心位置
h 穴部
1, 1 ′, 1 ″ Component concentration measuring device 2 Dark box 3, 3 ′ Measuring tool 4a UV LED lamp (light source)
4b Visible LED lamp (blue, light source)
4c Visible LED lamp (green, light source)
4d Infrared LED lamp (light source)
5a Ultraviolet detector 5b Fluorescence luminance detector 5c Visible light detector (blue)
5d Visible light detector (green)
5e Infrared detector 8 Inclination part 14 Information processing part 21 Wet fluorescent magnetic particle flaw detection test equipment 22 Inspection liquid tank 23 Circulation means 24 Transfer means C Controller c Front center position h Hole

Claims (5)

被検査体の磁化した金属の表面に、少なくとも蛍光磁粉を混合してなる検査液を接触させ、前記表面の傷部に前記蛍光磁粉を集合および付着させることによって、前記傷部を探傷する湿式蛍光磁粉探傷試験に用いる前記検査液の成分濃度測定方法であって、該成分濃度測定方法は、撹拌された前記検査液を測定具に導入し、異なる波長の複数の光源として、紫外線LEDランプ、可視光LEDランプ1個または波長が異なる可視光LEDランプ複数個、および赤外線LEDランプの光を、前記測定具の一側方から前記検査液に照射して得られた透過光および励起して発光した可視光を用い、前記透過光を検出する紫外線検出器、可視光検出器および赤外線検出器と、前記励起して発光した可視光を検出する蛍光輝度検出器との各検出値および前記検査液の各成分の時間経過に伴う沈降特性の違いによって得られる前記各検出器の検出値の変化および前記紫外線LEDランプを除く前記光源のうち、異なる波長の2つの光源に応じた前記検出器による各検出値の差分値から、前記検査液の各成分濃度を測定することを特徴とする、湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定方法。 Wet fluorescence for flaw detection by bringing a test liquid made by mixing at least fluorescent magnetic powder into contact with the magnetized metal surface of the object to be inspected, and collecting and adhering the fluorescent magnetic powder to the scratch on the surface. A method for measuring the component concentration of the test liquid used in the magnetic particle flaw detection test, wherein the component concentration measuring method introduces the stirred test liquid into a measuring tool, and uses an ultraviolet LED lamp, visible light as a plurality of light sources having different wavelengths. One light LED lamp or a plurality of visible light LED lamps having different wavelengths, and the light of an infrared LED lamp, and the transmitted light obtained by irradiating the test solution from one side of the measuring instrument and excited to emit light Each of the detected values and the previous values of an ultraviolet detector, a visible light detector and an infrared detector for detecting the transmitted light using visible light, and a fluorescence luminance detector for detecting the visible light excited and emitted The detection according to two light sources having different wavelengths among the light sources excluding the change in the detection value of each detector obtained by the difference in the sedimentation characteristics of each component of the test solution with time and the ultraviolet LED lamp A component concentration measuring method for a test liquid used in a wet fluorescent magnetic particle flaw detection test, wherein the concentration of each component of the test liquid is measured from a difference value of each detection value by a vessel. 前記紫外線検出器、前記可視光検出器および前記赤外線検出器は、前記測定具を挟んで前記光源の対向位置に設置することを特徴とする、請求項1に記載の湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定方法。   2. The wet fluorescent magnetic particle inspection test according to claim 1, wherein the ultraviolet detector, the visible light detector, and the infrared detector are installed at positions opposed to the light source with the measuring tool interposed therebetween. Method for measuring the concentration of components in the test solution. 前記各成分は、蛍光磁粉と、分散剤と、防錆剤と、スケールと、油分とを含むことを特徴とする、請求項1に記載の湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定方法。   The said each component contains fluorescent magnetic powder, a dispersing agent, a rust preventive agent, a scale, and an oil component, The component density | concentration measurement of the test solution used for the wet fluorescent magnetic powder flaw detection test of Claim 1 characterized by the above-mentioned. Method. 被検査体の磁化した金属の表面に、少なくとも蛍光磁粉を混合してなる検査液を接触させ、前記金属表面の傷部に前記蛍光磁粉を集合および付着させることによって、前記傷部を探傷する湿式蛍光磁粉探傷試験に用いる前記検査液の成分濃度測定装置であって、
該成分濃度測定装置は、前記検査液を導入する測定具と、
前記検査液の流れを制御するポンプと、
該測定具内の前記検査液に紫外線を照射する光源の紫外線LEDランプと、
該測定具内の前記検査液に可視光を照射する光源の可視光LEDランプ1個または波長が異なる可視光LEDランプ複数個と、
該測定具内の前記検査液に赤外線を照射する光源の赤外線LEDランプと、
前記紫外線照射により前記検査液から得られた透過光を検出する紫外線検出器と、
前記可視光照射により前記検査液から得られた透過光を検出する可視光検出器と、
前記赤外線照射により前記検査液から得られた透過光を検出する赤外線検出器と、
前記紫外線照射により前記検査液から得られた励起して発光した可視光を検出する蛍光輝度検出器と、
前記ポンプの動作時および停止時の前記検査液の、前記紫外線検出器、前記可視光検出器、前記赤外線検出器、前記蛍光輝度検出器による各検出値に基づいて、それぞれ前記検査液に含有する前記蛍光磁粉の濃度および、分散剤濃度、防錆剤濃度、スケール濃度、油分濃度を算出する情報処理部とを備え、
かつ前記測定具は、暗箱体内に設置するとともに、前記紫外線LEDランプと、前記可視光LEDランプと、前記赤外線LEDランプと、前記紫外線検出器と、前記可視光検出器と、前記赤外線検出器と、前記蛍光輝度検出器とは、前記暗箱体内に備えることを特徴とする湿式蛍光磁粉探傷試験に用いる検査液の成分濃度測定装置。
A wet type for flaw detection by bringing a test liquid made by mixing at least fluorescent magnetic powder into contact with the magnetized metal surface of the object to be inspected, and collecting and attaching the fluorescent magnetic powder to the scratched part on the metal surface. An apparatus for measuring a concentration of a component of the test liquid used in a fluorescent magnetic particle flaw detection test,
The component concentration measuring device includes a measuring tool for introducing the test solution;
A pump for controlling the flow of the test solution;
An ultraviolet LED lamp as a light source for irradiating the test solution in the measuring instrument with ultraviolet rays;
One visible light LED lamp or a plurality of visible light LED lamps having different wavelengths as a light source for irradiating the test solution in the measuring instrument with visible light; and
An infrared LED lamp as a light source for irradiating the test solution in the measuring instrument with infrared rays;
An ultraviolet detector for detecting transmitted light obtained from the test solution by the ultraviolet irradiation;
A visible light detector for detecting transmitted light obtained from the test solution by the visible light irradiation;
An infrared detector for detecting transmitted light obtained from the test solution by the infrared irradiation;
A fluorescence luminance detector that detects visible light emitted from the test solution by the ultraviolet irradiation and excited to emit light;
The test solution at the time of operation and stop of the pump is contained in the test solution based on the detection values by the ultraviolet detector, the visible light detector, the infrared detector, and the fluorescence luminance detector, respectively. An information processing unit that calculates the concentration of the fluorescent magnetic powder, the dispersant concentration, the rust inhibitor concentration, the scale concentration, and the oil concentration;
And while the said measuring tool is installed in a dark box, the said ultraviolet LED lamp, the said visible light LED lamp, the said infrared LED lamp, the said ultraviolet detector, the said visible light detector, the said infrared detector, The fluorescence luminance detector is a component concentration measuring device for a test liquid used for a wet fluorescent magnetic particle flaw detection test, which is provided in the dark box.
少なくとも蛍光磁粉を混合してなる検査液を貯留する検査液タンクと、
該検査液タンク内の前記検査液を循環手段で取り出すとともに、前記検査液タンク内に還流させる移送手段と、
該移送手段内の前記検査液を、被検査体の磁化した金属の表面に接触させて、前記表面の傷部の探傷を行う探傷部とを備える湿式蛍光磁粉探傷試験装置であって、
前記移送手段は、前記検査液の成分濃度を測定する、請求項4に記載の成分濃度測定装置を備え、前記移送手段が、前記探傷部に前記検査液を圧送する試験用配管であって、該試験用配管に、前記成分濃度測定装置の前記測定具を接続したことを特徴とする湿式蛍光磁粉探傷試験装置。
A test solution tank for storing a test solution formed by mixing at least fluorescent magnetic powder;
A transfer means for taking out the test liquid in the test liquid tank by a circulation means and refluxing the test liquid in the test liquid tank;
A wet fluorescent magnetic particle testing apparatus comprising a flaw detection unit for contacting the surface of a magnetized metal of the object to be inspected with the inspection liquid in the transfer means and performing a flaw detection on the surface flaw,
The transfer means comprises the component concentration measuring device according to claim 4, which measures the component concentration of the test liquid, and the transfer means is a test pipe for pumping the test liquid to the flaw detection unit, The wet fluorescent magnetic particle flaw detection test apparatus, wherein the measurement tool of the component concentration measurement apparatus is connected to the test pipe.
JP2011116956A 2011-05-25 2011-05-25 Measuring method and measuring device for concentration of each component in test liquid used for wet fluorescent magnetic particle flaw detection test Active JP5658091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011116956A JP5658091B2 (en) 2011-05-25 2011-05-25 Measuring method and measuring device for concentration of each component in test liquid used for wet fluorescent magnetic particle flaw detection test

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011116956A JP5658091B2 (en) 2011-05-25 2011-05-25 Measuring method and measuring device for concentration of each component in test liquid used for wet fluorescent magnetic particle flaw detection test

Publications (2)

Publication Number Publication Date
JP2012247210A JP2012247210A (en) 2012-12-13
JP5658091B2 true JP5658091B2 (en) 2015-01-21

Family

ID=47467803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011116956A Active JP5658091B2 (en) 2011-05-25 2011-05-25 Measuring method and measuring device for concentration of each component in test liquid used for wet fluorescent magnetic particle flaw detection test

Country Status (1)

Country Link
JP (1) JP5658091B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103149181B (en) * 2013-01-31 2015-04-01 杭州华光光电有限公司 Glass light transmittance detection device
KR101710090B1 (en) * 2015-01-29 2017-03-08 서강대학교산학협력단 Portable fluorescence measurement device based upon uv-led light source and fluorescence measurement method using uv-led light source
JP6603265B2 (en) * 2017-05-19 2019-11-06 電子磁気工業株式会社 Concentration measuring method of fluorescent magnetic powder liquid, concentration measuring apparatus of fluorescent magnetic powder liquid
CN110095527B (en) * 2019-04-30 2023-12-15 冶金自动化研究设计院 Automatic fluorescent magnetic powder flaw detection device and method on assembly line
CN111474160B (en) * 2020-06-12 2023-08-08 京东方科技集团股份有限公司 Device for detecting mildew of food

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5173488A (en) * 1974-12-23 1976-06-25 Daido Steel Co Ltd Keikojifunnodono sokuteihohooyobisokuteisochi
JP2970944B2 (en) * 1991-01-22 1999-11-02 電子磁気工業株式会社 Magnetic powder liquid analyzer
JP2813952B2 (en) * 1994-02-28 1998-10-22 マークテック株式会社 Colored magnetic powder for magnetic particle flaw detection test and method for producing the same
US5870182A (en) * 1994-10-30 1999-02-09 Tiede Gmbh & Co. Rissprufanlagen System for checking a suspension of fluorescent material
WO2009082618A2 (en) * 2007-12-20 2009-07-02 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Frozen lonic liquid microparticles and nanoparticles, and methods for their synthesis and use
JP4871404B2 (en) * 2010-05-07 2012-02-08 マークテック株式会社 Method and apparatus for measuring component concentration in test liquid used for wet fluorescent magnetic particle testing
JP4750221B1 (en) * 2010-11-18 2011-08-17 マークテック株式会社 Measuring method and measuring device for concentration of each component in test liquid used for wet fluorescent magnetic particle flaw detection test

Also Published As

Publication number Publication date
JP2012247210A (en) 2012-12-13

Similar Documents

Publication Publication Date Title
WO2011138843A1 (en) Method and apparatus for measuring the concentration of component in inspection liquid used for wet-type fluorescent magnetic particle testing
JP5658091B2 (en) Measuring method and measuring device for concentration of each component in test liquid used for wet fluorescent magnetic particle flaw detection test
JP4750221B1 (en) Measuring method and measuring device for concentration of each component in test liquid used for wet fluorescent magnetic particle flaw detection test
JP4871404B2 (en) Method and apparatus for measuring component concentration in test liquid used for wet fluorescent magnetic particle testing
JP5531286B2 (en) Magnetic powder concentration measuring apparatus and magnetic powder concentration measuring method
TWI746719B (en) Device for inspecting microorganism
US20210088443A1 (en) Apparatus and method for extracting low intensity photonic signals
WO2020218337A1 (en) Fluorescent particles, inspection device using fluorescent particles for visualizing and inspecting motion/movement of fluid in locations where fluid is present, and inspection method using fluorescent particles for visualizing and inspecting motion/movement of fluid in locations where fluid is present
CN219142584U (en) Magnetic suspension concentration on-line measuring device
CN108318468B (en) Counting system for rapidly counting fluorescent dye staining particles in liquid sample
JP6603265B2 (en) Concentration measuring method of fluorescent magnetic powder liquid, concentration measuring apparatus of fluorescent magnetic powder liquid
JP5854370B2 (en) Inspection apparatus and inspection method for phosphor-containing glass member
JPH06300739A (en) Fluorescent magnetic-particle flaw detection method
JP2970944B2 (en) Magnetic powder liquid analyzer
JP2018100917A (en) Magnetic particle flaw detection device, magnetic particle flaw detection method, and suspension for magnetic particle flaw detection
RU2806246C1 (en) Method of magnetic powder flaw detection and device implementing it
JP2018072072A (en) Magnetic particle flaw detection device and magnetic particle flaw detection method
JPH0894582A (en) Measuring device for performance of fluorescent magnetic particle liquid
KR100939259B1 (en) Improved apparatus for maintaining density of magnetic powder
JPS60117148A (en) Characteristic measuring apparatus for inspection liquid for detecting flaw and flaw detection of steel material
JP3170649B2 (en) Method for managing magnetic powder liquid in magnetic particle flaw detection and artificial defect sensor device used in the method
KR100903633B1 (en) Apparatus for keeping magnetic powder
CN102759516B (en) Oiliness carrier fluid primary fluorescence characteristic test device and method of testing thereof
JP7322593B2 (en) Microorganism inspection device and method
CN117288640A (en) Low background noise particulate matter detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141127

R150 Certificate of patent or registration of utility model

Ref document number: 5658091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250