JPS5926376B2 - Bending method for hollow double pipes - Google Patents

Bending method for hollow double pipes

Info

Publication number
JPS5926376B2
JPS5926376B2 JP13235374A JP13235374A JPS5926376B2 JP S5926376 B2 JPS5926376 B2 JP S5926376B2 JP 13235374 A JP13235374 A JP 13235374A JP 13235374 A JP13235374 A JP 13235374A JP S5926376 B2 JPS5926376 B2 JP S5926376B2
Authority
JP
Japan
Prior art keywords
tube
powder
bending
resin
filled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13235374A
Other languages
Japanese (ja)
Other versions
JPS5157777A (en
Inventor
大司 諸石
千尋 林
敦義 渋谷
寛太郎 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP13235374A priority Critical patent/JPS5926376B2/en
Publication of JPS5157777A publication Critical patent/JPS5157777A/en
Publication of JPS5926376B2 publication Critical patent/JPS5926376B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 外管と内管の間に中空の間隙をもたせた二重管が配管ま
たは熱交換器用管に使用される。
DETAILED DESCRIPTION OF THE INVENTION A double tube with a hollow gap between an outer tube and an inner tube is used for piping or heat exchanger tubes.

この二重管の間隙は流体が通過して内管内または外管外
の流体と熱交換させるために利用され、また断熱の目的
にも利用される。このよ5な中空二重管は直管の場合は
容易に製作できるが曲げ加工部分のあるものは製作は容
易でない。一つの方法は外管、内管を別個に曲げ加工後
、外管に内管を嵌めこむ方法であるが、その曲げ角度に
は制限がある。
The gap between the double tubes is used for the passage of fluid to exchange heat with the fluid inside the inner tube or outside the outer tube, and is also used for the purpose of heat insulation. This type of hollow double pipe is easy to manufacture if it is a straight pipe, but it is not easy to manufacture if it has a bent part. One method is to bend the outer tube and the inner tube separately and then fit the inner tube into the outer tube, but there are restrictions on the bending angle.

また他の方法は曲げ加工した内管に適当に分割した外管
を被せて接合するのであるが、これは工程が複雑になり
費用が嵩み、また曲り形状によつては製作できない場合
がある。それ故、中空二重管を直管の状態から任意に曲
げ加工する方法が最も工業生産的であると考えられる。
しかしながらこの場合、通常の管曲げ機でそのまゝ曲げ
加工するのでは座屈がおこり、内管と外管の間隙が均一
な曲げ管は得られない。
Another method is to cover the bent inner tube with appropriately divided outer tubes and join them, but this complicates the process and increases costs, and may not be possible depending on the curved shape. . Therefore, it is considered that the most industrially productive method is to arbitrarily bend a hollow double pipe from a straight pipe.
However, in this case, if the tube is simply bent using a normal tube bending machine, buckling will occur, and a bent tube with a uniform gap between the inner tube and the outer tube cannot be obtained.

そこで一般に内外管の間隙に適当な固体を充填して外管
にかゝる曲げ力を内管に伝える方法が行われる。この充
填物には低融点の金属類、砂、等が用いられてきたが、
これらの充填物を入れて曲げ加工を行つても、加工後面
げ部の扁平率(註)が大きかつたり、座屈が生じたり、
曲げ角度が小さい範囲に限られたりして必ずしも満足す
べき結果は得られていない。Dl−D。
Therefore, a method is generally used in which the gap between the inner and outer tubes is filled with a suitable solid to transmit the bending force applied to the outer tube to the inner tube. Low melting point metals, sand, etc. have been used for this filling, but
Even if bending is performed with these fillers in place, the flatness of the beveled portion (Note) may become large after processing, or buckling may occur.
Satisfactory results have not always been obtained because the bending angle is limited to a small range. Dl-D.

(註、扁平率= ×100、但しD。(Note: Flattening ratio = ×100, however, D.

は曲げ加工前のパイプ外径、Dlは曲げ加工後のパイプ
の長径、Dsは曲げ加工後のパイプの短径。
is the outer diameter of the pipe before bending, Dl is the long diameter of the pipe after bending, and Ds is the short diameter of the pipe after bending.

)本発明の目的は、如上の欠点を排除した中空二重管の
曲げ加工方法を提供するにある。また簡単な操作で複雑
な曲げ形状の、しかも扁平率が小さく良好な中空二重管
を得ることも本発明の目的である。本発明方法の特徴&
ζ外管と内管の間の中空部に熱硬化性樹脂を均一に混合
した硅砂、セラミツク等の耐火性粉体を充填し管を加熱
して充填粉体中の樹脂分を硬化させることによつて粉体
どおしを固定させ管に曲げ加工を施す点に存する。
) An object of the present invention is to provide a method for bending a hollow double pipe which eliminates the above-mentioned drawbacks. It is also an object of the present invention to obtain a hollow double pipe with a complicated bending shape, a small oblateness, and a good quality with a simple operation. Features of the method of the present invention &
ζThe hollow space between the outer tube and the inner tube is filled with refractory powder such as silica sand or ceramic, which is evenly mixed with thermosetting resin, and the tube is heated to harden the resin in the filled powder. Therefore, it consists in fixing the powder together and bending the tube.

本方法によれば曲げ加工後充填物をとり出す場合も管を
加熱し前記樹脂分を加熱炭化することにより容易にとり
出すことができるのである。都合のよいことにこの加熱
はまた曲げ加工による加工歪をとり除き、また焼鈍処理
をも兼ねることができる。前記充填用粉体はこれと混合
状態にある樹脂が加熱硬化して粉体が適度に固定さ飄外
管の受ける曲げ力を内管に伝達する性質が必要であり、
また曲げ加工後樹脂分を加熱炭化させて粉体と共に除去
するのであるから、耐火質であることが必要で硅砂、あ
るいはアルミナ、マグネシア、シリカなどのセラミツク
系粉体等が適当であり、使用する粉体の粒度は、好まし
くは100メッシユ以下であるが、曲げ角度、曲げ半径
によつては100メツシユより大きい粒径のものも使用
できる。
According to this method, even when the filling material is taken out after bending, it can be easily taken out by heating the tube and heating and carbonizing the resin component. Advantageously, this heating also removes processing strains due to bending and can also serve as an annealing treatment. The filling powder must have the property of being able to heat and harden the resin mixed therewith, thereby properly fixing the powder, and transmitting the bending force exerted by the outer tube to the inner tube.
In addition, since the resin is heated and carbonized after bending and removed together with the powder, it must be fireproof, and silica sand or ceramic powder such as alumina, magnesia, or silica is suitable. The particle size of the powder is preferably 100 mesh or less, but depending on the bending angle and bending radius, particles with a particle size larger than 100 mesh can also be used.

熱硬化性樹脂としては、フエノール樹脂、フラン樹脂、
キシレン樹脂、ホルムアルデヒド樹脂、尿素樹脂、メラ
ミン樹脂、アニリン樹脂、スルホンアミド樹脂、不飽和
ポリエステル樹脂、エポキシ樹脂、その他があるが、本
法には熱硬化性を有し、硬化によつて充填粉体の粒子ど
おしを適当に固定し、しかも曲げ加工になじみ得るもの
であれば、いずれも使用可能である。また樹脂を表面に
被覆した鋳物砂として知られるレジンコーテツドサンド
も本法の上記目的に使用することができる。充填用粉体
に対する熱硬化性樹脂の配合比率&ζ使用する樹脂によ
り、また粉体の粒度分布、粉体の性質により異なり、さ
らには管径、内外管の空隙の大きさ、彎曲度等によつて
違つてくるから一概に限定することは困難で、実験によ
つて決定すべきであるが、大略の見当は後記する実施例
より推測され得るであろう。また粉体を中空部に充填後
、樹脂分を熱硬化させる場合の加熱温度は樹脂により異
り、その樹脂のもつ硬化温度以上で炭化しない範囲内に
決定される。
Thermosetting resins include phenolic resin, furan resin,
There are xylene resins, formaldehyde resins, urea resins, melamine resins, aniline resins, sulfonamide resins, unsaturated polyester resins, epoxy resins, and others, but this method has thermosetting properties and can be made into a filled powder by curing. Any material can be used as long as it properly fixes the particles together and is compatible with bending. Resin-coated sand, also known as foundry sand whose surface is coated with resin, can also be used for the above-mentioned purpose of this method. The blending ratio of thermosetting resin to the filling powder & It is difficult to make a general restriction because the conditions vary and should be determined by experiment, but a rough idea can be inferred from the examples described later. Further, the heating temperature for thermally curing the resin after filling the powder into the hollow portion varies depending on the resin, and is determined within a range that does not cause carbonization above the curing temperature of the resin.

同様に曲げ加工後、樹脂分を炭化させて粉体と共に取出
す場合の加熱温度も、樹脂によつて炭化温度が異るが、
焼鈍処理をも兼ねる場合へ管の材質によつて決まる焼鈍
温度により、樹脂の方を選択すべきであつて、通常は3
00℃以上が適用される。前記中空部&丸その全部に熱
硬化性樹脂を混合状態にした粉体を充填する方法の他、
曲げ加工の程度や管径によつては、熱硬化性樹脂を混合
状態にした粉体を中空部の開放端部、もしくは開放端部
とその他数ケ所の部分充填に使用し、残余の中空部には
熱硬化性樹脂を含まない硅砂等の粉体を単独で充填し、
本法を実施しても本法の効果を得ることができる。
Similarly, after bending, the heating temperature when carbonizing the resin and taking it out together with the powder varies depending on the resin.
When the annealing process is also performed, resin should be selected depending on the annealing temperature determined by the material of the pipe, and usually 3
00°C or higher is applied. In addition to the method of filling the entire hollow part and round part with powder mixed with thermosetting resin,
Depending on the degree of bending and pipe diameter, powder mixed with thermosetting resin may be used to partially fill the open end of the hollow part, or the open end and several other places, and then fill the remaining hollow part. is filled with powder such as silica sand that does not contain thermosetting resin,
Even if this method is implemented, the effects of this method can be obtained.

すなわち二重管の中空部の両端が硬化樹脂によつて固定
されるので、充填物の密度に留意すれば、曲げ加工に際
して間隙空間内で充填粉体の体積が一定に保持されよう
とし、所望の曲げ加工が可能になるのである。この場合
、曲げ加工後の充填物の取出しは一層容易になる。なお
本法実施の対象となる二重管は管材質の如何を問うもの
でなく、また外管及び内管が同種材質のものも、また異
種材質のものでも勿論実施可能である。次に本法の実施
例並びに本発明の実施効果について述べる。
In other words, since both ends of the hollow part of the double tube are fixed by the cured resin, if the density of the filling material is taken into consideration, the volume of the filling powder will be maintained constant in the gap space during bending, and the desired This makes it possible to perform bending processes. In this case, it becomes easier to take out the filling after bending. Note that the material of the double pipe to which this method is applied does not matter, and the method can of course be implemented even if the outer pipe and inner pipe are made of the same material or of different materials. Next, examples of this method and effects of implementing the present invention will be described.

実施例 1 外管に材質炭素鋼、63.5φXl.6tX75Olの
電縫管、内管に材質SUS3O4、48.6φXl.5
t×7501の電縫管を使用し、この二重管直管の間隙
中空部に、充填材として100メツシユ以下の硅砂にフ
エノール樹脂の粉末を5Wt%均一に混合した粉体を充
填し、管を200℃に加熱して充填粉体中のフエノール
樹脂を硬化し、硅砂を固定して後、ロールベンダーを使
用して曲げ半径195V!lφ、曲げ角度1300に曲
げ加工した。
Example 1 The outer tube was made of carbon steel, 63.5φXl. 6tX75Ol electric resistance welded tube, inner tube made of SUS3O4, 48.6φXl. 5
Using an electric resistance welded pipe of t x 7501, the hollow part between the double-pipe straight pipes is filled with a powder made by uniformly mixing 5 wt % of phenol resin powder with 100 mesh or less of silica sand as a filler, and the pipe is closed. After heating to 200℃ to harden the phenolic resin in the filling powder and fixing the silica sand, use a roll bender to bend with a radius of 195V! It was bent to lφ and a bending angle of 1300.

加工品の外観は曲げ部に座屈がなく甚だ良好であつた。
第1図及第2図にこの曲げ加工した二重管の扁平率の分
布及び曲げ中央部周位置上の中空部間隙の変化を曲線図
で示す。両図表にみる如く、扁平率の分布は4%前後と
非常に小さく、また二重管の空隙部間隔も全周にわたり
均一である。この曲げ加エニ重管を焼鈍を兼ねて750
℃の大気中で30分加熱したところ、充填粉体はたやす
く抜け、充填物除去後の管にスプリングバツク現象はみ
られなかつた。なお前記第1図には本発明方法の効果を
比較する意味で、充填粉体に100メツシユ以下の硅砂
のみを使用した場合の数値をも曲線で表示した。
The appearance of the processed product was very good, with no buckling at the bent portion.
FIGS. 1 and 2 are curve diagrams showing the distribution of the oblateness of this bent double pipe and the change in the hollow space at the circumferential position of the bending center. As seen in both charts, the distribution of flatness is very small, around 4%, and the gap between the double pipes is uniform over the entire circumference. This bent tube is also annealed at 750°C.
When the tube was heated for 30 minutes in the atmosphere at .degree. C., the filling powder was easily removed, and no springback phenomenon was observed in the tube after the filling was removed. In addition, in FIG. 1, for the purpose of comparing the effects of the method of the present invention, the numerical values when only silica sand of 100 mesh or less is used as the filling powder are also shown as a curve.

この場合は如工中に砂の移動が起り、実際作業は非常に
やりにく\、曲げ加工によつて座屈が生じ、扁平率も大
きく到底商品にならない状態であつた。実施例 2実施
例1と同様の二重管を用い、充填粉体として硅砂の表面
に3wt%のフエノール樹脂を被覆したレジンコーテツ
ドサンドを使用して、実施例1と同様条件で曲げ加工し
た。
In this case, the sand moved during the process, making the actual work extremely difficult, buckling occurred during the bending process, and the flatness was too large to be commercially viable. Example 2 Using the same double tube as in Example 1, bending was performed under the same conditions as in Example 1, using resin coated sand in which the surface of silica sand was coated with 3 wt% phenolic resin as the filling powder. .

加工製品の扁平率分布及び周位置上の中空部間隙の変化
は第1図及び第2図に示す通りいずれも極めて小さく、
良好な結果が得られている。実施例 3 実施例1と同様の二重管を用い、実施例1と同じ樹脂を
含む粉体を二重管空隙部両端100uに充填し、残余の
中空部550mJ1には20メツシユ以下の硅砂単独を
充填し、管を200℃に加熱して前記両端部の充填粉体
を固定し、実施例1と同じ条件で曲げ加工を行つた。
As shown in Figures 1 and 2, the oblateness distribution of the processed product and the changes in the hollow space on the circumferential position are both extremely small.
Good results have been obtained. Example 3 Using the same double pipe as in Example 1, powder containing the same resin as in Example 1 was filled into 100 u of both ends of the double pipe cavity, and the remaining hollow part of 550 mJ1 was filled with 20 meshes or less of silica sand alone. The tube was heated to 200° C. to fix the filling powder at both ends, and the tube was bent under the same conditions as in Example 1.

内管、外管とも座屈は発生しておらず、扁平率の分布及
び中空部間隙の変化は第1図、第2図に示す通りで、こ
の程度の曲げ加工では前2例に遜色ない結果が得られて
いる。なお充填物をとりだすため、両端部を650℃で
30分加熱したところ、充填物は前記実施例の場合より
さらに簡単に抜き出すことができた。本発明方法はその
特徴よりして直管から実施例に述べた単なる二次元の彎
曲のみならずさらに高次元の複雑な彎曲形状をもつ中空
二重管にも加工できることは明かである。
No buckling occurred in either the inner or outer tube, and the distribution of oblateness and changes in the hollow space are as shown in Figures 1 and 2, and this degree of bending is comparable to the previous two examples. Results are being obtained. In order to take out the filling, both ends were heated at 650° C. for 30 minutes, and the filling could be taken out more easily than in the case of the previous example. From its characteristics, it is clear that the method of the present invention can process not only a straight pipe into a simple two-dimensional curve as described in the embodiment, but also a hollow double pipe having a higher-dimensional and complicated curved shape.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本方法による曲げ加工後の扁平率の分布と本法
によらない場合の同上分布を示す曲線図、第2図は本方
法による曲げ加工後の曲げ中央部周位置における二重管
中空部間隔の変化を示す曲線図である。
Figure 1 is a curve diagram showing the distribution of oblateness after bending by this method and the same distribution when not using this method. Figure 2 is a curve diagram showing the distribution of oblateness after bending by this method. Figure 2 is a curve diagram showing the distribution of oblateness after bending by this method. FIG. 3 is a curve diagram showing a change in the interval between hollow parts.

Claims (1)

【特許請求の範囲】 1 外管と内管の間の中空部に熱硬化性樹脂を混合状態
にした硅砂、セラミック等の耐火性粉体を充填し、管を
加熱して前記充填粉体中の樹脂分を硬化させてから管を
曲げ加工し、しかるのち管を加熱し前記樹脂分を炭化せ
しめ粉体を抜き去ることを特徴とする中空二重管の曲げ
加工法。 2 外管と内管の間の中空部の開放両端部を含む一部に
熱硬化性樹脂を混合状態にした硅砂、セラミック等の耐
火性粉体を、残余の中空部に樹脂分を含まない耐火性粉
体をそれぞれ充填し、管を加熱して前記充填粉体中の樹
脂分を硬化させてから管を曲げ加工し、しかるのち管を
加熱して前記樹脂分を炭化せしめ粉体を抜き去ることを
特徴とする中空二重管の曲げ加工法。
[Scope of Claims] 1. The hollow space between the outer tube and the inner tube is filled with refractory powder such as silica sand or ceramic mixed with a thermosetting resin, and the tube is heated to fill the filled powder. 1. A method for bending a hollow double pipe, comprising: curing the resin component, bending the tube, then heating the tube to carbonize the resin component and removing powder. 2 A part of the hollow part between the outer tube and the inner tube, including both open ends, is filled with refractory powder such as silica sand or ceramic mixed with thermosetting resin, and the remaining hollow part does not contain resin. Each tube is filled with refractory powder, the tube is heated to harden the resin in the filled powder, the tube is bent, and then the tube is heated to carbonize the resin and the powder is extracted. A method for bending hollow double pipes, which is characterized by the following:
JP13235374A 1974-11-15 1974-11-15 Bending method for hollow double pipes Expired JPS5926376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13235374A JPS5926376B2 (en) 1974-11-15 1974-11-15 Bending method for hollow double pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13235374A JPS5926376B2 (en) 1974-11-15 1974-11-15 Bending method for hollow double pipes

Publications (2)

Publication Number Publication Date
JPS5157777A JPS5157777A (en) 1976-05-20
JPS5926376B2 true JPS5926376B2 (en) 1984-06-27

Family

ID=15079363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13235374A Expired JPS5926376B2 (en) 1974-11-15 1974-11-15 Bending method for hollow double pipes

Country Status (1)

Country Link
JP (1) JPS5926376B2 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9140481B2 (en) 2012-04-02 2015-09-22 Whirlpool Corporation Folded vacuum insulated structure
US9221210B2 (en) 2012-04-11 2015-12-29 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US9689604B2 (en) 2014-02-24 2017-06-27 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US10052819B2 (en) 2014-02-24 2018-08-21 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
US9476633B2 (en) 2015-03-02 2016-10-25 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US9897370B2 (en) 2015-03-11 2018-02-20 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
US9441779B1 (en) 2015-07-01 2016-09-13 Whirlpool Corporation Split hybrid insulation structure for an appliance
US10041724B2 (en) 2015-12-08 2018-08-07 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10222116B2 (en) 2015-12-08 2019-03-05 Whirlpool Corporation Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US9752818B2 (en) 2015-12-22 2017-09-05 Whirlpool Corporation Umbilical for pass through in vacuum insulated refrigerator structures
US9840042B2 (en) 2015-12-22 2017-12-12 Whirlpool Corporation Adhesively secured vacuum insulated panels for refrigerators
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US10030905B2 (en) 2015-12-29 2018-07-24 Whirlpool Corporation Method of fabricating a vacuum insulated appliance structure
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US10712080B2 (en) 2016-04-15 2020-07-14 Whirlpool Corporation Vacuum insulated refrigerator cabinet
EP3443284B1 (en) 2016-04-15 2020-11-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
WO2018022007A1 (en) 2016-07-26 2018-02-01 Whirlpool Corporation Vacuum insulated structure trim breaker
WO2018034665A1 (en) 2016-08-18 2018-02-22 Whirlpool Corporation Machine compartment for a vacuum insulated structure
EP3548813B1 (en) 2016-12-02 2023-05-31 Whirlpool Corporation Hinge support assembly
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system

Also Published As

Publication number Publication date
JPS5157777A (en) 1976-05-20

Similar Documents

Publication Publication Date Title
JPS5926376B2 (en) Bending method for hollow double pipes
CN105172142B (en) A kind of 3D printing prepares carbon/carbon compound material method
US3246056A (en) Production of low-permeability, highdensity, carbon and graphite bodies
US6368423B1 (en) Process for producing amorphous magnetically soft body
US1819364A (en) Hot top
US2597964A (en) Fluid impervious carbon article and method of making same
JPS6327305B2 (en)
US3240479A (en) Apparatus useful in the production of low-permeability, high-density, carbon and graphite bodies
US4059682A (en) Method of making shaped carbonaceous bodies
JPS6146219B2 (en)
JPS62158164A (en) Manufacture of silicon carbide formed body
JPS605072A (en) Manufacture of silicon carbide formed body
JPH03137075A (en) Production of porous carbon tube
DE4131336C2 (en) Heat exchanger
JPH0483784A (en) Production of metal composite carbon material
JP3406307B2 (en) Manufacturing method of heat insulation molding for casting
JPH024551B2 (en)
AT270831B (en) Fuel element for nuclear reactors
JPS59197506A (en) Preparation of metal powder for magnetic recording
JPS6323123B2 (en)
JPH02208258A (en) Production of impermeable pipe material of heat resistance
JPS6360684B2 (en)
DE420338C (en) Chemical resistant heating elements
JPH01233012A (en) Manufacture of duplex pipe
JP2000159575A (en) Glassy carbon pipe and its production