JPS59197506A - Preparation of metal powder for magnetic recording - Google Patents

Preparation of metal powder for magnetic recording

Info

Publication number
JPS59197506A
JPS59197506A JP58071124A JP7112483A JPS59197506A JP S59197506 A JPS59197506 A JP S59197506A JP 58071124 A JP58071124 A JP 58071124A JP 7112483 A JP7112483 A JP 7112483A JP S59197506 A JPS59197506 A JP S59197506A
Authority
JP
Japan
Prior art keywords
granules
magnetic recording
metal powder
alphafe2o3
needle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58071124A
Other languages
Japanese (ja)
Inventor
Yasunobu Ogata
安伸 緒方
Shigeo Fujii
重男 藤井
Tsutomu Iimura
飯村 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP58071124A priority Critical patent/JPS59197506A/en
Publication of JPS59197506A publication Critical patent/JPS59197506A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To prepare a metal powder for magnetic recording having uniform magnetic characteristics and good in dispersibility, by a method wherein a needle like ferric oxyhydroxide particles are granulated to form granules each having a proper particle size and, after dehydration heat treatment, reducing treatment is applied to the treated granules under stirring and heating. CONSTITUTION:Needle like alpha FeOOH particles are mainly used as a start stock material and granulated along with water being a binder to obtain spherical, angular or amorphous granules each having a particle size of 1-10mm.. After the obtained granules are further coated with silicate, dehydration heat treatment is applied to the coated granules to obtain needle like alphaFe2O3. Subsequently, this granular alphaFe2O3 is subjected to heat reducing treatment under stirring hydrogen stream by a rotary kiln for a time sufficient to rapidly penetrate hydrogen into granules to perfectly reduce alphaFe2O3 and a metal powder for magnetic recording having good magnetic characteristics, free from sintering and excellent in dispersibility can be obtained.

Description

【発明の詳細な説明】 本発明は、鉄を主成分とする磁気記録媒体用剣状磁性粉
末の製造方法、特に還元方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a sword-shaped magnetic powder for magnetic recording media containing iron as a main component, and particularly to a reduction method.

従来、磁気記録媒体用鎖状磁性粒子としては、1、どし
てγFe 203あるいはCOをドープ又は被着したγ
l”e203が用いられでいた。しかしながら最近、高
曹度記録化の要請に伴ない、Fe粉(メタル′F7J)
の磁気記録用テープ、ディスク等への適用が目されてき
ている。′1−6fに、デーブに対1ノてはメタルテー
プと称した高級カセッ1−テープが市販されるまでにな
っている。
Conventionally, as chain magnetic particles for magnetic recording media, γ Fe 203 or CO doped or coated γ
l”e203 had not been used. However, recently, with the request for high carbon content records, Fe powder (metal'F7J) was used.
Applications to magnetic recording tapes, disks, etc. are being considered. In 1995, a high-grade cassette tape called Metal Tape was commercially available for Dave.

該剣状メタル粉は、高飽和磁化(・〜150emu/Q
高保持力(1000〜15000e)等優れた磁気特性
を持っているが、反面欠点も有しており、メタル粉作製
についていえば、作製の最終プロセスである還元方法が
最も大きな問題点を有しCいるといえる。
The sword-shaped metal powder has high saturation magnetization (・~150 emu/Q
Although it has excellent magnetic properties such as high coercivity (1000 to 15000e), it also has drawbacks, and when it comes to metal powder production, the reduction method that is the final process of production has the biggest problem. It can be said that there is C.

該還元プロセスは、通常水素中の還元雰囲気で加熱する
ことにより行なわれるが、主として次の反応式によって
記さ、れる。(但しメタル成分は一括しでFeに代表ざ
ぜる) 低温では主どじて■の経路を、高温では主として■の経
路をとおる。少量の処理量の場合は簡単に還元されてα
F eが生成するが、現実の生産において1回数kg以
上の処理mとなれば、処JljαFe20aa’5)体
が置かれている雰囲気中の水蒸気圧が上屓し、(うまく
系外に除外されない)該圧が水素圧比C数%に達すれば
、FeOあるいはlコe304で反応が止ってしまい、
αFa粉が生成されない。還元反応を容易にするため還
元温度を上昇さければ該水蒸気圧の許容限界は緩和され
るが、処し’f!粉の全体を均一に水素を効率よく1共
給することは困f、Iiで、どうし−(し部分的に水蒸
気圧の高い所が残る。例えば600℃で該還元を行なっ
た場合、該水蒸気圧の高い部分はFeOとして残り、l
” c○が反強磁性体であるために、生成されたF e
紛の飽和磁化を署しく低める結果となる。
The reduction process is usually carried out by heating in a reducing atmosphere in hydrogen, and is mainly described by the following reaction formula. (However, metal components are collectively represented by Fe.) At low temperatures, it mainly follows the path (■), and at high temperatures, it mainly follows the path (2). If the amount of processing is small, it can be easily reduced to α
Fe is generated, but in actual production, if more than one kilogram is processed, the water vapor pressure in the atmosphere in which the treated body is placed will rise, and it will not be properly removed from the system. ) If the pressure reaches a hydrogen pressure ratio of several percent C, the reaction will stop at FeO or lcoe304,
αFa powder is not produced. If the reduction temperature is not raised to facilitate the reduction reaction, the permissible limit of the water vapor pressure will be relaxed, but the treatment 'f! It is difficult to co-supply hydrogen uniformly and efficiently to the entire powder, and in Ii, there remain some areas where the water vapor pressure is high. For example, when the reduction is carried out at 600°C, the water vapor The high-pressure part remains as FeO, and l
” Since c○ is an antiferromagnetic material, the generated Fe
This results in a significant decrease in the saturation magnetization of the powder.

以上記述した事情の結果、従来技術の還元方法では部分
的に還元が不完全な磁気特性のバラツキの大きなメタル
粉しかできず、又還元を完全【こ終了ざUようどづ−れ
ば、長時間の還元熱処理を必要とされ、(の結果剣状粒
子の形状前れや粒子間の焼結が進み、分散性の劣ったメ
タル粉しか得られなかった。
As a result of the circumstances described above, the reduction method of the prior art produces only partially incompletely reduced metal powder with large variations in magnetic properties. As a result, the shape of the sword-shaped particles was distorted and sintering between the particles progressed, resulting in a metal powder with poor dispersibility.

本発明は上記従来技術の欠点を改良し、磁気特性のバラ
ツギが少なく、焼結が無く分散性に優れた磁気記録用金
属粉の新規な製造方法を提供J−ることを目的とする。
It is an object of the present invention to improve the drawbacks of the above-mentioned prior art and to provide a new method for producing metal powder for magnetic recording, which has less variation in magnetic properties, does not require sintering, and has excellent dispersibility.

リ−なわち、脱水熱処理以前に、造粒を行ない加熱還元
熱処理時に1〜10+nmの大きざの顆粒を用い、1]
つ連続式El−タリーキルンを用いて、適当な攪拌の条
件下に)蕊元を行なえば、均一磁気特性を右し、口つ分
散性の良好な金属粉が1↓ノられることを新規(こ発見
し本発明をなしたものである。
In other words, before dehydration heat treatment, granulation is performed and granules with a size of 1 to 10+ nm are used during heat reduction heat treatment, 1]
It is newly discovered that if powdering is carried out using a continuous El tarry kiln under appropriate stirring conditions, metal powder with uniform magnetic properties and good dispersibility can be produced. This is what was discovered and the present invention was made.

本発明を構成Jる第1の要件は、還元処理において、1
〜10rmの大きさの顆粒酸化鉄を求めることにある。
The first requirement constituting the present invention is that in the reduction process, 1
The objective is to obtain granular iron oxide with a size of ~10rm.

顆粒状にすることにより、粉体中に空隙が増大ざ4′k
、該空隙を通って水素ガスが効率的に粉体に接し、且つ
還元反応により生成した水分が効率よく系外に排出され
、系内の水素カス゛に対Jる水魚気分)fか減少し、l
:eoやFeaO4で反応が止まること無(Feまで進
む。顆粒の大きさは1〜10 nI nIでな【プれば
ならない。1 m +n以下では上記空隙の増大の顕苔
な効果は期待できず、水ガスの偏流(チトンネリング)
が生じ、部分的に還元が進まなくなる。逆に10 II
I 111以上では該顆粒の内部まで水系カスが浸透し
なく4する。
By making it into granules, the voids in the powder increase.
, the hydrogen gas efficiently contacts the powder through the voids, and the moisture generated by the reduction reaction is efficiently discharged from the system, reducing the amount of hydrogen gas in the system. l
:The reaction does not stop at eo or FeaO4 (proceeds to Fe. The size of the granules must be 1 to 10 nI. Below 1 m + n, no noticeable effect of the increase in voids can be expected. First, uneven flow of water gas (chitunneling)
occurs, and reduction partially stops proceeding. On the contrary 10 II
When I is 111 or more, the aqueous scum cannot penetrate into the inside of the granules.

第2の要19は、該還元反応を攪拌下において行なわし
めることにある。実施例に示す如く、単に顆粒にしたた
りではやはり還元の進行度が処1lijわ)体各部にお
いて十分には均一でなく、該顆粒を攪拌する口とにより
、均一に還元され、且つ水蒸気の系外への排出が効率よ
く進む。
The second key point 19 is to carry out the reduction reaction under stirring. As shown in the examples, if the granules are simply dripped, the degree of reduction will not be sufficiently uniform in each part of the body. Exhaust to the outside progresses efficiently.

第1と第2の東件のいずれを欠いても本発明の目的は達
成されない。例えは、造粒−μず1]−タリーキルンに
より反応を行なりlノめでも、粉体は反応により生成−
リ−ろ水蒸気のため、凝集し不定大きざの塊どなり、又
炉壁にf」着し、本発明の目的(ユ達成され4rい9.
以−1・実施例に基づき本発明の内容を詳細に説明する
The object of the present invention cannot be achieved without either the first or second condition. For example, even if the reaction is carried out in a granulation-μzu1] tarry kiln, the powder is produced by the reaction.
Because of the leakage water vapor, it condenses into lumps of irregular size and deposits on the furnace wall.
Hereinafter, the content of the present invention will be explained in detail based on 1. Examples.

実施例 5%Nlを含有する長軸0.3μ、9.0Illlll
O003μ。
Example 5%Nl containing major axis 0.3μ, 9.0Illllll
O003μ.

軸比的10の剣状αF’000H粒子を出発原1′81
として用いた。該αFeO○1−1を水をバインダーと
して約5mn1の大きざの不定形状の顆粒とした。該α
F eo01」混合液にメタ珪酸すトリウムを加えた後
、炭酸ガスを吹き込みp)−1を1と中和することによ
り、S1化合物をαl−COO1−1表面に被るした。
A sword-shaped αF'000H particle with an axial ratio of 10 is used as a starting source 1'81
It was used as The αFeO○1-1 was made into irregularly shaped granules with a size of about 5 mn1 using water as a binder. The α
After adding thorium metasilicate to the "Feo01" mixture, carbon dioxide gas was blown in to neutralize p)-1 with 1, thereby covering the surface of αl-COO1-1 with the S1 compound.

水洗、錨過後該S1化合物被るαFeO○l−1を大気
中80(1℃x 2hのIB)水処」(!!をし、N1
固溶αF e、、03を背た。
After washing with water and passing through the anchor, αFeO○l-1, which is covered with the S1 compound, is exposed to air at
Solid solution αF e,,03 was turned away.

該顆粒状α「0e203をロータリーキルンにより攪拌
しながら還元した1回の処理値は1 kLロータリーキ
ルンの回転数は10V、l)、+11水素流吊は501
/’min 、 、’7’2元温度は500℃である。
The granular α'0e203 was reduced with stirring in a rotary kiln, and the processing value was 1 kL.
/'min, ,'7' The binary temperature is 500°C.

第1表に上記工程を踏んだ金属粉から、50ケ所試わ1
を採取して1111定した磁気′lZf性の平均値及び
−とのバラツキを示ザ。比較例どして、顆粒化のイj無
及び還元方式の各種のそれぞれの場合につき特性佃を示
した。
Table 1 shows 50 locations tested from the metal powder that has undergone the above process.
The graph shows the average value of the magnetic 'lZf property and the variation with -. As comparative examples, characteristics were shown for each case with and without granulation and with various reduction methods.

第1表 顆粒化と攪拌の組合せの場合において、特に特性及びパ
シッキ共優れてJ−3つ、本発明の効果は明らかである
In the case of the combination of granulation and agitation shown in Table 1, the effects of the present invention are clear, especially in the case of J-3, which has excellent properties and packing properties.

実施例2 実施例1ど同(〕1な方法により(1,1−301n 
nlのリーイコロ状の顆粒をV+ ’IIJロータリー
キルンによりIn拌を行ないながら還元を行ない、磁気
特性を測定した。その結果を第2表に示す。
Example 2 Same method as Example 1 (1,1-301n
The granules were reduced in a V+'IIJ rotary kiln while stirring in In, and their magnetic properties were measured. The results are shown in Table 2.

第  2  表 第2表により、顆粒の大きさを1〜10 m Inとし
に哩山は明らかである。
Table 2 From Table 2, it is clear that when the size of the granules is 1 to 10 m In.

実施例に示した如く、本発明による効果は明らかで、大
m還元処理の場合にお(プる特殊な事情を明確にし、生
産レベルでの最適なる還元プロヒス条件を新規に発見し
た点において本発明の工学上の意義は大である。
As shown in the examples, the effects of the present invention are clear, and the present invention is significant in that it clarifies the special circumstances involved in large m reduction processing and newly discovers the optimal reduction pro-hyde conditions at the production level. The invention has great engineering significance.

出願人  日立金属株式会ネ’WApplicant: Hitachi Metals Co., Ltd.

Claims (1)

【特許請求の範囲】 1、主どして針状オキシ水酸化第二u1粒子を出発原料
とし該出発原料を例えば、珪酸塩等で被覆した後、脱水
熱処理して針状第二鉄とし、更に該針状第二鉄を還元し
て鉄を主成分とりる磁気記録用孟1状磁性粉末を製造す
る方法において、特に以下の2つの要件を満たすことを
特徴とする磁気記録用金属粉の製造方法。 ■該脱水熱処理後の状態において、粒径が1・〜10 
m Illの瓜状、角状あるいは不定形1人の粒子に造
粒すること。 ■該加熱還元処理において、該造粒した顆粒を攪拌した
状態にすること。  。 2、特許請求の範囲第1項にJ5いて、攪拌を特にロー
タリーキルンを用いて行なわれることを特徴とする磁気
記録用金属粉の製造方法。
[Scope of Claims] 1. Mainly acicular oxyhydroxide ferric ferric particles are used as a starting material, the starting material is coated with, for example, a silicate, and then subjected to dehydration heat treatment to obtain acicular ferric iron, Furthermore, in the method for producing a monolithic magnetic powder for magnetic recording which has iron as a main component by reducing the acicular ferric iron, a metal powder for magnetic recording which is characterized in that it particularly satisfies the following two requirements is provided. Production method. ■ In the state after the dehydration heat treatment, the particle size is 1.~10
Granulation into melon-shaped, angular or irregularly shaped particles. (2) In the heat reduction treatment, the granulated granules are kept in a stirred state. . 2. A method for producing metal powder for magnetic recording, as set forth in claim 1, characterized in that stirring is carried out particularly using a rotary kiln.
JP58071124A 1983-04-22 1983-04-22 Preparation of metal powder for magnetic recording Pending JPS59197506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58071124A JPS59197506A (en) 1983-04-22 1983-04-22 Preparation of metal powder for magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58071124A JPS59197506A (en) 1983-04-22 1983-04-22 Preparation of metal powder for magnetic recording

Publications (1)

Publication Number Publication Date
JPS59197506A true JPS59197506A (en) 1984-11-09

Family

ID=13451500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58071124A Pending JPS59197506A (en) 1983-04-22 1983-04-22 Preparation of metal powder for magnetic recording

Country Status (1)

Country Link
JP (1) JPS59197506A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61187011A (en) * 1985-02-13 1986-08-20 Yaskawa Electric Mfg Co Ltd Graphic display system of numerical controller
US5470374A (en) * 1992-09-10 1995-11-28 Kao Corporation Method for production of magnetic metal particles and apparatus therefor
JP2008520824A (en) * 2004-11-19 2008-06-19 ファルコンブリッジ リミテッド Method for producing fine, low bulk density metallic nickel powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61187011A (en) * 1985-02-13 1986-08-20 Yaskawa Electric Mfg Co Ltd Graphic display system of numerical controller
JPH0566609B2 (en) * 1985-02-13 1993-09-22 Yaskawa Electric Corp
US5470374A (en) * 1992-09-10 1995-11-28 Kao Corporation Method for production of magnetic metal particles and apparatus therefor
JP2008520824A (en) * 2004-11-19 2008-06-19 ファルコンブリッジ リミテッド Method for producing fine, low bulk density metallic nickel powder

Similar Documents

Publication Publication Date Title
JPS59197506A (en) Preparation of metal powder for magnetic recording
JPS63134523A (en) Production of needle-like iron alpha-oxyhydroxide particulate powder
JPS5980901A (en) Manufacture of ferromagnetic metal powder
GB2058845A (en) Method of producing fine metal particles
JPS6021307A (en) Production of ferromagnetic metallic powder
JPH0585487B2 (en)
JPS60181210A (en) Manufacture of ferromagnetic metallic powder
JPS60141624A (en) Manufacture of acicular magnetic iron oxide containing cobalt
JPS5919168B2 (en) Manufacturing method of metal magnetic powder
JPH01219024A (en) Production of chromium (iii) oxide
JPH02175806A (en) Manufacture of metal magnetic powder for magnetic recorder
JPS5877505A (en) Production of metallic magnetic powder
JPS58161710A (en) Production of ferromagnetic powder
JPS6369714A (en) Production of ferromagnetic iron oxide powder
JPS6132259B2 (en)
JPH0317207A (en) Manufacture of ferromagnetic powder
SU1030315A1 (en) Method for preparing acicular gamma iron oxide used for producing magnetic carriers
JPS6452002A (en) Acicular magnetized metal fine powder having excellent dispersion and its production
JPS6349722B2 (en)
JPS59145706A (en) Production of magnetic metallic powder
JPS60174806A (en) Production of magnetic powder
JPS58161711A (en) Production of magnetic metallic powder
JPS62197324A (en) Production of feromagnetic iron oxide powder
JPH0226764B2 (en)
JPS58115028A (en) Preparation of magnetic iron oxide containing cobalt