JPS6369714A - Production of ferromagnetic iron oxide powder - Google Patents
Production of ferromagnetic iron oxide powderInfo
- Publication number
- JPS6369714A JPS6369714A JP61214289A JP21428986A JPS6369714A JP S6369714 A JPS6369714 A JP S6369714A JP 61214289 A JP61214289 A JP 61214289A JP 21428986 A JP21428986 A JP 21428986A JP S6369714 A JPS6369714 A JP S6369714A
- Authority
- JP
- Japan
- Prior art keywords
- iron oxide
- powder
- oxide powder
- compds
- contg
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 title claims abstract description 60
- 239000000843 powder Substances 0.000 title claims abstract description 44
- 230000005294 ferromagnetic effect Effects 0.000 title claims abstract description 9
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 239000002245 particle Substances 0.000 claims abstract description 31
- 238000000034 method Methods 0.000 claims abstract description 22
- 230000008569 process Effects 0.000 claims abstract description 13
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 10
- 238000010304 firing Methods 0.000 claims description 19
- 150000001875 compounds Chemical class 0.000 claims description 13
- 238000011946 reduction process Methods 0.000 claims description 5
- 238000005229 chemical vapour deposition Methods 0.000 claims 1
- 238000005245 sintering Methods 0.000 abstract description 26
- 238000010438 heat treatment Methods 0.000 abstract description 10
- 230000009467 reduction Effects 0.000 abstract description 8
- 230000003647 oxidation Effects 0.000 abstract description 6
- 238000006243 chemical reaction Methods 0.000 abstract description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 abstract description 2
- 150000004678 hydrides Chemical class 0.000 abstract description 2
- 230000001590 oxidative effect Effects 0.000 abstract description 2
- XMIJDTGORVPYLW-UHFFFAOYSA-N [SiH2] Chemical compound [SiH2] XMIJDTGORVPYLW-UHFFFAOYSA-N 0.000 abstract 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 22
- 230000005291 magnetic effect Effects 0.000 description 17
- AEIXRCIKZIZYPM-UHFFFAOYSA-M hydroxy(oxo)iron Chemical compound [O][Fe]O AEIXRCIKZIZYPM-UHFFFAOYSA-M 0.000 description 15
- 239000007789 gas Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 229910052598 goethite Inorganic materials 0.000 description 8
- 230000005415 magnetization Effects 0.000 description 8
- 238000006722 reduction reaction Methods 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000003405 preventing effect Effects 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 239000012159 carrier gas Substances 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 239000004115 Sodium Silicate Substances 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 235000019795 sodium metasilicate Nutrition 0.000 description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 3
- 229910052911 sodium silicate Inorganic materials 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- -1 161 Chemical class 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 238000004438 BET method Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 238000000889 atomisation Methods 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- YWWDBCBWQNCYNR-UHFFFAOYSA-N trimethylphosphine Chemical compound CP(C)C YWWDBCBWQNCYNR-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910006297 γ-Fe2O3 Inorganic materials 0.000 description 2
- 229910002588 FeOOH Inorganic materials 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 239000006247 magnetic powder Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910006299 γ-FeOOH Inorganic materials 0.000 description 1
Landscapes
- Hard Magnetic Materials (AREA)
- Compounds Of Iron (AREA)
Abstract
Description
【発明の詳細な説明】
(産業−にの利用分野)
本発明は、強磁性酸化鉄粉の製造に係り、より詳細には
、含水酸化鉄粉末の熱処理]二稈中での焼結現象を防止
する方法に関する。Detailed Description of the Invention (Industrial Field of Application) The present invention relates to the production of ferromagnetic iron oxide powder, and more specifically, heat treatment of hydrated iron oxide powder. Regarding how to prevent it.
(従来の技術)
一般に、ビデオテープ、オーディオテープ、フロッピー
、カード等に使用される磁気記録用酸化鉄粉や酸化鉄粉
を還元して得られる磁気記録用鉄粉は、ゲータイト(α
−FeOOH)、レピッドクロサイト(γ−FeOOH
)等の針状又は米粒状含水酸化鉄粉を出発物質とし、こ
れに焼成、還元などの熱処理を施して製造されている。(Prior Art) In general, iron oxide powder for magnetic recording and iron powder for magnetic recording obtained by reducing iron oxide powder used for video tapes, audio tapes, floppy disks, cards, etc. are goethite (α
-FeOOH), lepidocrocite (γ-FeOOH)
) etc. as a starting material and is manufactured by subjecting it to heat treatment such as calcination and reduction.
すなわち、まず、硫酸鉄又は塩化鉄の水溶液にカセイソ
ーダ又はアンモニア等のアルカリを添加して中和し、こ
れに酸素含有ガス(空気又は酸素)を吹込んでゲータイ
ト、レピッドクロサイト等の釘状含水酸化鉄粉を合成す
る。次いで、これを濾過、水洗、乾燥後、空気中で焼成
することによりα−Fe203が得られ、これを水素気
流中で還元すると、マグネタイ1−(Fe、O,)と鉄
粉が得られる。更にマグネタイトを空気中で酸化するこ
とによってマグヘマイト(γ−Fe2O3)が製造され
る。That is, first, an aqueous solution of iron sulfate or iron chloride is neutralized by adding an alkali such as caustic soda or ammonia, and an oxygen-containing gas (air or oxygen) is blown into it to form a nail-like hydrated material such as goethite or lepidocrocite. Synthesize iron oxide powder. Next, α-Fe203 is obtained by filtering, washing with water, drying, and firing in air, and reducing this in a hydrogen stream produces magnetite 1-(Fe, O,) and iron powder. Furthermore, maghemite (γ-Fe2O3) is produced by oxidizing magnetite in air.
マグヘマイトの粒子表面にコバルト変成処理するとコバ
ルト被着したマグヘマイト(Co−γ−Fe、03)が
得られる。更に、この工程により得られる酸化鉄粉を還
元気流を用いて還元すれば鉄粉が得られ。When the particle surface of maghemite is subjected to a cobalt modification treatment, maghemite (Co-γ-Fe, 03) coated with cobalt is obtained. Furthermore, iron powder can be obtained by reducing the iron oxide powder obtained through this step using a reducing air stream.
この工程により製造される針状又は米粒状の酸化鉄粉末
(マグヘマイト)等としては、記録密度の向上と、保磁
力、角形比、配向比等の磁気特性の改善のために粒子サ
イズの微小化が求められているが、かかる微粒子化に伴
い焼成、還元、酸化の熱処理中に粒子間に焼結現象が生
じやすくなり、特に還元工程での焼結現象が著しい。こ
の焼結現象は粒子を微粒子化すればするほど進行し易く
、結果として分散性が悪化し、保磁力、飽和磁化、角形
比、配向比等の磁気特性の悪化、特に保磁力の低下、S
/N比の悪化をもたらし、高密度記録用として不向きな
材料となる。The needle-shaped or grain-shaped iron oxide powder (maghemite) produced by this process is made smaller in particle size in order to improve recording density and improve magnetic properties such as coercive force, squareness ratio, and orientation ratio. However, as particles become finer, sintering phenomena tend to occur between particles during heat treatments such as firing, reduction, and oxidation, and the sintering phenomenon is particularly noticeable during the reduction process. This sintering phenomenon progresses more easily as the particles are made finer, and as a result, the dispersibility deteriorates, and the magnetic properties such as coercive force, saturation magnetization, squareness ratio, and orientation ratio deteriorate, especially the coercive force decreases.
/N ratio deteriorates, making the material unsuitable for high-density recording.
このため、従来より粒子間焼結を防止する方策が種々試
みられてきている。例えば、含水酸化鉄粉末の合成反応
中又は合成反応後にSi及び/又はPを含む水溶液(例
、メタケイ酸ソーダ、リン酸等)を粒子含有水溶液スラ
リー中に添加して、粒子表面にSi酸化物等のSi化合
物を生成する方法(例、特開昭52−153198、同
53−129158、同55−161007、同55−
161、008、同56−26730)、或いは同様に
してP酸化物等のP化合物を生成する方法(例、特開昭
55−115902、同55−149138、同56−
38405、同56−41835)などがある。For this reason, various measures have been attempted to prevent interparticle sintering. For example, during or after the synthesis reaction of hydrated iron oxide powder, an aqueous solution containing Si and/or P (e.g., sodium metasilicate, phosphoric acid, etc.) is added to an aqueous solution slurry containing particles, so that Si oxide is formed on the particle surface. Methods for producing Si compounds such as
161, 008, 56-26730), or a similar method of producing P compounds such as P oxide (e.g., JP-A-55-115902, JP-A-55-149138, JP-A-56-26-
38405, 56-41835), etc.
しかし、これらの粒子間焼結防止法では、Sl、P等の
添加量の増加に伴って磁気特性が悪化し、また焼結防止
効果も必ずしも充分とは云えないという欠点があった。However, these methods for preventing interparticle sintering have the disadvantage that magnetic properties deteriorate as the amount of added Sl, P, etc. increases, and the sintering preventing effect is not necessarily sufficient.
本発明は、粒子間焼結に関する」1記従来技術の欠点を
解消し、粒子微細化によっても焼結現象の発生が少なく
、しかもS/N比、分散性の低下を防止でき、磁気特性
の劣化をもたらさない強磁性酸化鉄粉又は強磁性鉄粉の
効率的な製造方法を提供することを目的とするものであ
る。The present invention solves the drawbacks of the prior art described in 1. regarding interparticle sintering, reduces the occurrence of sintering phenomenon even by making particles finer, prevents deterioration of S/N ratio and dispersibility, and improves magnetic properties. The object of the present invention is to provide an efficient method for producing ferromagnetic iron oxide powder or ferromagnetic iron powder that does not cause deterioration.
(問題点を解決するための手段)
上記目的を達成するため、本発明者は、従来の粒子間焼
結防止法が磁気特性の中でも特に保磁力や飽和磁化の悪
化をもたらす原因について分析検討を加えたところ、単
にSi酸化物、P酸化物等の非磁性物質が増加すること
に起因するだけでは説明できず、含水酸化鉄粉末の合成
反応中又は合成反応後にSj、Pなどの化合物を生成す
るため、これらのSi化合物、P化合物が焼成工程にお
ける結晶成長、気孔の移動、粒子のw、@化に悪影響を
及ぼし、更には還元工程における還元反応速度の低下を
もたらしているものと考えられる。(Means for Solving the Problems) In order to achieve the above object, the present inventor conducted an analysis and study on the cause of the deterioration of coercive force and saturation magnetization, especially among magnetic properties, due to the conventional interparticle sintering prevention method. In addition, it cannot be explained simply by an increase in non-magnetic substances such as Si oxide and P oxide, but compounds such as Sj and P are produced during or after the synthesis reaction of hydrated iron oxide powder. Therefore, it is thought that these Si compounds and P compounds have a negative effect on crystal growth, pore movement, and particle w and @ formation in the firing process, and furthermore, they are causing a decrease in the reduction reaction rate in the reduction process. .
一方、含水酸化鉄の粒子が焼成、還元、酸化の熱処理中
にどのような粒子形状の変化を来たすかを透過型電子顕
微鏡を用いて調べたところ、粒子間の焼結現象は焼成、
酸化の各工程でも起きるが、還元工程での焼結が最も激
しいことが判明した。On the other hand, we used a transmission electron microscope to investigate how the particle shape of hydrated iron oxide particles changes during heat treatment of calcination, reduction, and oxidation.
Although sintering occurs during each oxidation step, it was found that sintering was the most severe during the reduction step.
この還元工程での焼結を防止するには、還元温度の低下
、還元時間の短縮、水素ガス流量の減少等々の対策を講
ずればよいが、逆に磁気特性、特に保磁力や飽和磁化が
悪化すると共に効率低下をまねき、根本的な解決策とは
云えない。To prevent sintering in this reduction process, measures such as lowering the reduction temperature, shortening the reduction time, and reducing the hydrogen gas flow rate can be taken, but on the other hand, the magnetic properties, especially the coercive force and saturation magnetization, This cannot be said to be a fundamental solution as it causes deterioration and a decrease in efficiency.
そこで、本発明者は、従来の粒子間焼結防止法がいわば
湿式法である点に鑑み、乾式による粒子間焼結防止策に
ついて鋭意研究を重ねた結果、含水酸化鉄粉末の焼成工
程で化学蒸着法(CV D)の原理を利用してSi、P
、B等の酸化物皮膜を粒子表面に生成しコーティングせ
しめることにより、次の還元等の工程における粒子間焼
結を可及的に少なくし得ることを見い出し、ここに本発
明をなしたものである。Therefore, in view of the fact that the conventional method for preventing interparticle sintering is a so-called wet method, the inventors of the present invention have conducted intensive research on measures to prevent interparticle sintering using a dry method. Using the principle of vapor deposition (CVD), Si, P
, B, etc. on the surface of the particles to reduce interparticle sintering as much as possible in the subsequent steps such as reduction, and hereby the present invention has been made. be.
以下に本発明を実施例に基づいて詳細に説明する。The present invention will be explained in detail below based on examples.
前述の如く、焼成工程は針状又は米粒状の含水酸化鉄粒
子を酸化鉄(α−Fe20.)粒子に変成する工程であ
り、一般的には第1図に示すように昇温期A〜C(変態
点による一時保持期Bを含む)、最高温度保持期り及び
降温期Eからなるプロファイルにより加熱、冷却される
。As mentioned above, the firing process is a process in which acicular or grain-shaped hydrated iron oxide particles are transformed into iron oxide (α-Fe20.) particles, and is generally carried out during heating periods A to A as shown in Figure 1. Heating and cooling are performed according to a profile consisting of C (including a temporary holding period B due to the transformation point), a maximum temperature holding period, and a cooling period E.
本発明におけるCVDは、上記プロファイルにおけるい
ずれの段階でも実施することができ、焼成炉内にSi、
P及びBの少なくとも1種の成分を含む化合物ガスを酸
素又は酸素含有ガスと共に流し、酸化反応せしめて含水
酸化鉄粒子表面にそれらの酸化物皮膜を生成せしめてコ
ーティングするものである。CVD in the present invention can be carried out at any stage in the above profile, and Si,
A compound gas containing at least one component of P and B is flowed together with oxygen or an oxygen-containing gas to cause an oxidation reaction and form a coating of the oxide on the surface of the hydrated iron oxide particles.
上記化合物としては、水素化物、炭水素化物等であり、
例えば、 SiH4,Sj、zHI、、5j3H8,5
i(CH3)いS jH3(CN3)、5i(CH3)
3(C3HS )、S I H2(CH3) 2.5j
(C2H,)4、 S jH(CzHs)3、(CH3
)30Si(CH3)3などのSi化合物、或いはB2
H6、B4H,。、B(CH3)3、B(C2H5)3
などのB化合物、 PH,、P2H4、P(CH3)3
、P(C2H5)3、P(CH3)N2、P(C2Hs
) H2、P(CH,)2H,P(C2H,)2H,
P(C。The above compounds include hydrides, hydrocarbons, etc.
For example, SiH4,Sj,zHI,,5j3H8,5
i (CH3) S jH3 (CN3), 5i (CH3)
3 (C3HS), S I H2 (CH3) 2.5j
(C2H,)4, S jH(CzHs)3, (CH3
)30Si(CH3)3 or other Si compounds, or B2
H6, B4H,. , B(CH3)3, B(C2H5)3
B compounds such as PH,, P2H4, P(CH3)3
, P(C2H5)3, P(CH3)N2, P(C2Hs
) H2, P(CH,)2H, P(C2H,)2H,
P(C.
H5) H2などのP化合物が挙げられる。H5) Examples include P compounds such as H2.
これらの化合物の酸化は、例えば、
5jH4+202→S i O2+ 2 FI 20S
iH4+4PH3+1002→SjO□+2P205+
8H20
2B2H6+602 →2B203+6H,,0の如
く各成分の単独の酸化反応又はそれらの反応を併用した
酸化反応により行なわれる。その際、当量以上の02ガ
スを流す必要があり、また350〜450℃の温度範囲
で反応せしめるのが好ましい。Oxidation of these compounds is, for example, 5jH4+202→S i O2+ 2 FI 20S
iH4+4PH3+1002→SjO□+2P205+
8H20 2B2H6+602 →2B203+6H,,0 This is carried out by an oxidation reaction of each component alone or by a combination of these reactions. At this time, it is necessary to flow an equivalent amount or more of 02 gas, and it is preferable to carry out the reaction in a temperature range of 350 to 450°C.
上記化合物の反応ガスは、通常はキャリヤーガス(N2
等)にて希釈し、粒子表面に極く薄い酸化皮膜が生成さ
れる程度の極く少量を流せばよく、処理時間で調整する
ことができる。The reaction gas for the above compounds is usually a carrier gas (N2
etc.) and flow a very small amount to the extent that an extremely thin oxide film is formed on the particle surface, and the treatment time can be adjusted.
なお、このCVDを最高温度保持期に実施すると粒子間
焼結の防止には効果があるが、焼締まり(酸化鉄の緻密
化)が不足するおそれがあるので、通常は昇温の前期又
は降温過程で実施する。特に降温過程で実施すれば、昇
温期及び最高温度保持期に十分焼締めされるので焼き締
まり不足の問題がなくなる。勿論、焼成工程の全段階を
通じて反応ガスを流してもよいことは云うまでもない。Note that if this CVD is carried out during the maximum temperature holding period, it is effective in preventing interparticle sintering, but since there is a risk of insufficient sintering compaction (densification of iron oxide), it is usually carried out during the first half of the temperature rise or during the temperature fall. Implemented during the process. In particular, if it is carried out during the temperature-falling process, the problem of insufficient sintering will be eliminated since sufficient sintering will occur during the temperature rising period and the maximum temperature holding period. Of course, it goes without saying that the reaction gas may be allowed to flow through all stages of the firing process.
(実施例) 次に本発明の実施例を示す。(Example) Next, examples of the present invention will be shown.
災亀促上
常法により合成したBET法比表面積SSAが91 r
rr/gのレピッドクロサイトを濾過、水洗、乾燥した
後、この乾燥品200gを回転型焼結炉に装入し、5f
l/n+inの空気を炉内に流しつつ6℃/minの昇
温速度で加熱した。The BET method specific surface area SSA synthesized by the conventional method is 91 r
After filtering, washing with water, and drying rr/g of lepidocrocite, 200 g of this dried product was charged into a rotary sintering furnace, and 5 f.
The furnace was heated at a temperature increase rate of 6° C./min while flowing 1/n+in of air into the furnace.
炉内の粉末温度が470°Cに達したときに加熱ヒータ
を止めると共に、導入空気を次の組成の混合ガスに切換
え、15分間炉内に流した。但し、S i H4はキャ
リヤーガスN2で希釈して用いた。When the powder temperature in the furnace reached 470°C, the heater was stopped, and the introduced air was switched to a mixed gas having the following composition, which was allowed to flow into the furnace for 15 minutes. However, S i H4 was used after being diluted with carrier gas N2.
濃度 流量
SjH,10% 0 、5 Q /m1nO□
100% Q、5Q/mjnN2 100
% 20.0(1/minその後、5 Q /mi
nの空気を流しつつ自然放冷した。このように焼成して
得られた酸化鉄(α−Fe203)粉末を通常の方法で
還元、酸化してマグヘマイト(γ−Fe2O3)粉末を
製造した。Concentration Flow rate SjH, 10% 0, 5 Q/m1nO□
100% Q, 5Q/mjnN2 100
% 20.0 (1/min then 5 Q/mi
It was allowed to cool naturally while flowing air of n. The iron oxide (α-Fe203) powder obtained by firing in this manner was reduced and oxidized in a conventional manner to produce maghemite (γ-Fe2O3) powder.
失庭舛ス
実施例1に供したものと同じレピッドクロサイトの乾燥
品200gを回転型焼成炉に装入し、5Q / mid
の空気を流しつつ6℃/minの昇温速度で加熱した。200 g of dried lepidocrocite, the same as that used in Example 1, was charged into a rotary kiln and heated at 5Q/mid.
It was heated at a temperature increase rate of 6° C./min while flowing air.
炉内の粉末温度が470℃に達したときに加熱ヒータを
止めると共に、導入空気を次の組成の混合ガスに切換え
、10分間炉内に流した。但し、PH3はキャリヤーガ
スN2で希釈して用いた。When the powder temperature in the furnace reached 470° C., the heater was stopped, and the introduced air was changed to a mixed gas having the following composition, which was allowed to flow into the furnace for 10 minutes. However, PH3 was used after being diluted with carrier gas N2.
濃度 流量
PH310% 0 、5 n /m1nO210
0% 0 、5 Q /m1nN2 100
% 20.Off/mjnその後、再び5Ω/mi
nの空気を炉内に流しつつ室温まで冷却した。このよう
に焼成して得られた酸化鉄(α−Fe203)粉末を通
常の方法で還元、酸化してマグヘマイト(γ−Fe2O
3)粉末を製造した。Concentration Flow rate PH310% 0,5 n/m1nO210
0% 0, 5 Q/m1nN2 100
% 20. Off/mjn then 5Ω/mi again
The furnace was cooled to room temperature while flowing n air into the furnace. The iron oxide (α-Fe203) powder obtained by firing in this way is reduced and oxidized by the usual method to form maghemite (γ-Fe2O
3) A powder was produced.
枇*@1゜
実施例1の場合と同じレピッドクロサイトにつき、焼成
昇温中にPH3,0□及びN2の混合ガスを流さず、他
の焼成条件を同一にして焼成し、得られた酸化鉄(α−
Fe20.)粉末を実施例1と同様にして還元、酸化し
てマグヘマイト粉末を製造した。*@1゜The same lepidocrosite as in Example 1 was obtained by firing without flowing a mixed gas of PH 3,0□ and N2 during heating and under the same firing conditions. Iron oxide (α-
Fe20. ) The powder was reduced and oxidized in the same manner as in Example 1 to produce maghemite powder.
共、tf1次
実施例1の場合と同じレピッドクロサイトを合成反応終
了後、従来法により粒子表面をシリカコ−1〜した。After the synthesis reaction of the same lepidocrocite as in Example 1 was completed, the particle surface was coated with silica co-1 by a conventional method.
すなわち、メタケイ酸ソーダ水溶液をレピッドクロサイ
ト当たりSi分で0.3wt%添加し、該スラリーを混
合攪拌しつつ粒子表面をコーティング処理した。That is, an aqueous solution of sodium metasilicate was added in an Si content of 0.3 wt % based on lepidocrocite, and the particle surfaces were coated while the slurry was mixed and stirred.
このレピッドクロサイトを比較例1と同じ条件で焼成し
、還元、酸化してマグヘマイト粉末を製造した。This lepidocrocite was fired under the same conditions as in Comparative Example 1, reduced and oxidized to produce maghemite powder.
上記実施例1.2及び比較例1.2により得られた各マ
グヘマイト粉末のBET法比表面積SSAと磁気特性を
調べた。その結果を第1−表に示す。The BET specific surface area SSA and magnetic properties of each maghemite powder obtained in Example 1.2 and Comparative Example 1.2 were investigated. The results are shown in Table 1.
同表から明らかなように、本発明の実施例の如く焼成の
降温過程でCVDを利用して粒子コーティングすると、
比表面積SSAが大きく焼結現象を防止しつつ微粒化が
促進され、したがって保磁力He、飽和磁化6s、角形
比SRなど磁気特性の優れたマグヘマイトが得られる。As is clear from the table, when particle coating is performed using CVD during the temperature cooling process of firing as in the example of the present invention,
The large specific surface area SSA promotes atomization while preventing sintering, and therefore maghemite with excellent magnetic properties such as coercive force He, saturation magnetization 6s, and squareness ratio SR can be obtained.
これに対し、従来法の粒子コーティング(比較例2)で
は、粒子コーティングしない場合(比較例」)に比べて
比表面積SSAが大きくなるものの、飽和磁化が劣化し
ており、比表面積の向上に伴う磁気特性の改善効果が十
分とは云えない。On the other hand, in the conventional particle coating (Comparative Example 2), although the specific surface area SSA is larger than in the case without particle coating (Comparative Example), the saturation magnetization is deteriorated, and as a result of the improvement in the specific surface area. It cannot be said that the effect of improving magnetic properties is sufficient.
失寒耐−
常法により合成したBET法比表面積SSAが79 r
ri’/gのゲータイトを濾過、水洗、乾燥した後、こ
の乾燥品200gを回転型焼成炉に装入し、511!/
minの空気を炉内に流しつつ6℃/minの昇温速度
で加熱した。Loss of cold resistance - BET method specific surface area SSA synthesized by conventional method is 79 r
After filtering, washing and drying ri'/g of goethite, 200g of this dried product was charged into a rotary kiln, and 511! /
The furnace was heated at a temperature increase rate of 6° C./min while flowing air at a rate of 6° C./min into the furnace.
炉内の粉末温度が400’Cに達したときに空気の導入
を止めると共に、導入空気を次の組成の混合ガスに切換
え、11分間炉内に流し、その後5(!/minの空気
に切換えた。但し、5JH4はキャリヤーガスN2で希
釈して用いた。When the powder temperature in the furnace reached 400'C, the introduction of air was stopped and the introduced air was switched to a mixed gas with the following composition, which was allowed to flow in the furnace for 11 minutes, and then switched to air at 5 (!/min). However, 5JH4 was used after being diluted with carrier gas N2.
濃度 流星
SiH,10% 0 、5 Q /m1n02
100% 0 、5 Q /m1nN2 1
00% 20.On/min炉内の粉末温度が47
0℃に達したときに加熱ヒータを止め、5Q/minの
空気を流しつつ自然放冷した。このように焼成して得ら
れた酸化鉄(α−Fe203)粉末を通常の方法で還元
、酸化してマグヘマイト粉末を製造した。Concentration Meteor SiH, 10% 0, 5 Q/m1n02
100% 0, 5 Q/m1nN2 1
00% 20. On/min powder temperature in the furnace is 47
When the temperature reached 0° C., the heater was stopped, and the sample was allowed to cool naturally while flowing air at a rate of 5 Q/min. The iron oxide (α-Fe203) powder obtained by firing in this manner was reduced and oxidized in a conventional manner to produce maghemite powder.
実施例4
実施例3に供したものと同じゲータイトの乾燥品200
gを回転型焼成炉に装入し、5 Q / minの空気
を流しつつ6℃/minの昇温速度で加熱した。Example 4 200 pieces of dried goethite same as that used in Example 3
g was placed in a rotary firing furnace and heated at a temperature increase rate of 6° C./min while flowing air at 5 Q/min.
炉内の粉末温度が420℃に達したときに空気の導入を
止めると共に、導入空気を次の組成の混合ガスに切換え
、8分間炉内に流し、その後5Q/minの空気に切換
えた。但し、PH3はキャリヤーガスN2で希釈して用
いた。When the powder temperature in the furnace reached 420° C., the introduction of air was stopped, and the introduced air was changed to a mixed gas having the following composition, which was flowed into the furnace for 8 minutes, and then changed to air at 5 Q/min. However, PH3 was used after being diluted with carrier gas N2.
濃度 流量
PH310% 0 、5 (1/m1n0□
100% 0 、5 Q /m1nN2 1
00% 20.OA/min炉内の粉末温度が47
0℃に達したときに加熱ヒータを止め、5n/minの
空気を流しつつ自然放冷した。このように焼成して得ら
れた酸化鉄(α−Fe203)粉末を通常の方法で還元
、酸化してマグヘマイト粉末を製造した。Concentration Flow rate PH310% 0, 5 (1/m1n0□
100% 0, 5 Q/m1nN2 1
00% 20. The powder temperature in the OA/min furnace is 47
When the temperature reached 0° C., the heater was stopped, and the sample was allowed to cool naturally while flowing air at a rate of 5 n/min. The iron oxide (α-Fe203) powder obtained by firing in this manner was reduced and oxidized in a conventional manner to produce maghemite powder.
比較例3
実施例3の場合と同じゲータイトにつき、焼成昇温中に
PH3,0□及びN2の混合ガスを流さず、他の焼成条
件を同一にして焼成し、得られた酸化鉄(α−F e2
03 )粉末を実施例3と同様にして還元、酸化してマ
グヘマイト粉末を製造した。Comparative Example 3 The same goethite as in Example 3 was fired without flowing a mixed gas of PH3. Fe2
03) The powder was reduced and oxidized in the same manner as in Example 3 to produce maghemite powder.
ル軟叢土
実施例3の場合と同じゲータイトを合成反応終了後、従
来法により粒子表面をシリカコートした。After the synthesis reaction of the same goethite as in Example 3, the particle surfaces were coated with silica using a conventional method.
すなわち、メタケイ酸ソーダ水溶液をゲータイト当たり
Si分で0 、3 wt%添加し、該スラリーを混合攪
拌しつつ粒子表面をコーティング処理した。That is, an aqueous solution of sodium metasilicate was added in an amount of 0.3 wt% Si based on goethite, and the particle surfaces were coated while the slurry was mixed and stirred.
このゲータイトを比較例3と同じ条件で焼成し、還元、
酸化してマグヘマイト粉末を製造した。This goethite was fired under the same conditions as Comparative Example 3, reduced,
Maghemite powder was produced by oxidation.
上記実施例3.4及び比較例3.4により得ら九た各マ
グヘマイト粉末の比表面積と磁気特性を調べた。その結
果を第2表に示す。The specific surface area and magnetic properties of each of the maghemite powders obtained in Example 3.4 and Comparative Example 3.4 were investigated. The results are shown in Table 2.
同表から明らかなように、本発明の実施例の如く焼成の
昇温中にCVDを利用して粒子コーティングすると、比
表面積SSAが大きく焼結現象を防止しつつ微粒化が促
進され、したがって保磁力He、飽和磁化σS、角形比
SRなど磁気特性の優れたマグヘマイトが得られる。こ
れに対し、従来法の粒子コーティング(比較例4)では
、粒子コーティングしない場合(比較例3)に比べて比
表面積SSAが大きくなるものの、飽和磁化が劣化して
おり、比表面積の向上に伴う磁気特性の改善効果が十分
とは云えない。As is clear from the table, when particles are coated using CVD during heating during firing as in the example of the present invention, the specific surface area SSA is large and atomization is promoted while preventing the sintering phenomenon. Maghemite with excellent magnetic properties such as magnetic force He, saturation magnetization σS, and squareness ratio SR can be obtained. On the other hand, in the conventional particle coating (Comparative Example 4), although the specific surface area SSA is larger than in the case without particle coating (Comparative Example 3), the saturation magnetization is deteriorated, and as a result of the improvement in the specific surface area. It cannot be said that the effect of improving magnetic properties is sufficient.
【以下余白1
なお、上記各実施例では、酸化鉄粉(マグヘマイト)の
製造の例を示したが、これを還元して得られる鉄粉につ
いても、同様の効果が期待できることは云うまでもない
。[Blank 1 below] In each of the above examples, an example of the production of iron oxide powder (maghemite) was shown, but it goes without saying that similar effects can be expected with iron powder obtained by reducing this. .
(発明の効果)
以上詳述したように、本発明によれば、強磁性酸化鉄粉
及び強磁性鉄粉の製造に際し、焼成過程でCVDの原理
を利用して粒子表面をSi、P又はBの酸化物皮膜にて
コーティングするので、次の還元工程での粒子間焼結を
効果的に防止でき、比表面積SSAが4.Orr?/g
以上で、しかも優れた磁気特性を有する磁性粉を効率的
に製造することが可能である。特に従来の粒子コーティ
ング法のようなS/N比、分散性の低下、或いは保磁力
や飽和磁化の悪化などの問題も生じない。更に本発明法
は乾式であるので通常の連続熱処理プロセスの焼成工程
で支障な〈実施できるので、経済的効果も大きい。(Effects of the Invention) As detailed above, according to the present invention, when producing ferromagnetic iron oxide powder and ferromagnetic iron powder, the particle surface is coated with Si, P or B by utilizing the principle of CVD in the firing process. Since it is coated with an oxide film of 4.5%, interparticle sintering in the next reduction process can be effectively prevented, and the specific surface area SSA is 4. Orr? /g
With the above, it is possible to efficiently produce magnetic powder having excellent magnetic properties. In particular, problems such as deterioration of the S/N ratio and dispersibility, or deterioration of coercive force and saturation magnetization, which occur in conventional particle coating methods, do not occur. Furthermore, since the method of the present invention is a dry method, it can be carried out without the trouble of the firing step of the usual continuous heat treatment process, and therefore has great economic effects.
第1図は一般的な焼成工程の温度プロファイルを示す説
明図である。FIG. 1 is an explanatory diagram showing a temperature profile of a general firing process.
Claims (1)
酸化鉄粉を得るに際し、前記焼成工程において、化学蒸
着法の原理を利用してSi、P及びBのうちの少なくと
も1種の成分を含む化合物を酸化反応せしめ、該成分の
酸化物皮膜を前記粒子表面に生成することを特徴とする
強磁性酸化鉄粉の製造方法。After firing the hydrated iron oxide powder, when obtaining ferromagnetic iron oxide powder through a reduction process, at least one component of Si, P, and B is added in the firing process using the principle of chemical vapor deposition. A method for producing ferromagnetic iron oxide powder, which comprises subjecting a compound contained therein to an oxidation reaction to form an oxide film of the component on the surface of the particles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61214289A JPS6369714A (en) | 1986-09-11 | 1986-09-11 | Production of ferromagnetic iron oxide powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61214289A JPS6369714A (en) | 1986-09-11 | 1986-09-11 | Production of ferromagnetic iron oxide powder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6369714A true JPS6369714A (en) | 1988-03-29 |
Family
ID=16653261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61214289A Pending JPS6369714A (en) | 1986-09-11 | 1986-09-11 | Production of ferromagnetic iron oxide powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6369714A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03161904A (en) * | 1989-11-21 | 1991-07-11 | Shiseido Co Ltd | Manufacture of needlelike crystal magnetic iron oxide powder |
US5531977A (en) * | 1992-07-17 | 1996-07-02 | Ishihara Sangyo Kaisha Ltd. | Process for producing acicular γ-FeOOH particles |
US5609789A (en) * | 1992-12-29 | 1997-03-11 | Ishihara Sangyo Kaisha, Ltd. | Cobalt-containing magnetic iron oxide and process for producing the same |
-
1986
- 1986-09-11 JP JP61214289A patent/JPS6369714A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03161904A (en) * | 1989-11-21 | 1991-07-11 | Shiseido Co Ltd | Manufacture of needlelike crystal magnetic iron oxide powder |
US5531977A (en) * | 1992-07-17 | 1996-07-02 | Ishihara Sangyo Kaisha Ltd. | Process for producing acicular γ-FeOOH particles |
US5609789A (en) * | 1992-12-29 | 1997-03-11 | Ishihara Sangyo Kaisha, Ltd. | Cobalt-containing magnetic iron oxide and process for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0448732B2 (en) | ||
JPH09295814A (en) | Spindle-like geothite particle powder, its production, spindle-like metal magnetic particle powder consisting mainly of iron and obtained by using the same geothite particle powder as starting raw material and its production | |
JPS6369714A (en) | Production of ferromagnetic iron oxide powder | |
US5451245A (en) | Process for producing magnetic metal particles | |
JPS6021307A (en) | Production of ferromagnetic metallic powder | |
JPS6369715A (en) | Production of ferromagnetic iron oxide powder | |
JPH0585487B2 (en) | ||
JP2000302445A (en) | Fusiform goethite particle powder, fusiform hematite particle powder, and fusiform metallic magnetic particle powder consisting mainly of iron, and their production | |
JPH02175806A (en) | Manufacture of metal magnetic powder for magnetic recorder | |
JP2931182B2 (en) | Method for producing acicular γ-FeOOH | |
JPH08165501A (en) | Fusiform metallic magnetic-grain powder consisting essentially of cobalt and iron and its production | |
JPH0461302A (en) | Metal magnetic particle powder mainly made of spindle type iron | |
JPS5891102A (en) | Production of magnetic particle powder of needle crystal alloy | |
JP2740922B2 (en) | Method for producing metal magnetic powder for magnetic recording material | |
JPH03194905A (en) | Manufacture of magnetic metal powder for magnetic recording | |
JP3092649B2 (en) | Method for producing spindle-shaped metal magnetic particles containing iron as a main component | |
JPH0463210A (en) | Manufacture of metal magnetic granular powder having fusiform and iron as essential component | |
JPS63140005A (en) | Production of fine ferromagnetic metal particle powder | |
JPH04132621A (en) | Acicular ferromagnetic iron oxide powder and production thereof | |
JPS5946281B2 (en) | Method for producing acicular Fe-Co alloy magnetic particle powder | |
JPS58151333A (en) | Manufacture of needlelike iron oxide particle | |
JPS5932046B2 (en) | Method for producing acicular magnetic iron oxide particles | |
JPS59128293A (en) | Manufacture of needlelike crystal of alpha-iron oxyhydroxide | |
JPH0380506A (en) | Manufacture of magnetic metal powder for magnetic recording | |
JPH06333711A (en) | Manufacture of metallic magnetic powder |