JPS6369715A - Production of ferromagnetic iron oxide powder - Google Patents

Production of ferromagnetic iron oxide powder

Info

Publication number
JPS6369715A
JPS6369715A JP61214290A JP21429086A JPS6369715A JP S6369715 A JPS6369715 A JP S6369715A JP 61214290 A JP61214290 A JP 61214290A JP 21429086 A JP21429086 A JP 21429086A JP S6369715 A JPS6369715 A JP S6369715A
Authority
JP
Japan
Prior art keywords
iron oxide
oxide powder
contg
powder
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61214290A
Other languages
Japanese (ja)
Inventor
Toshinori Kamisaka
神坂 俊徳
Takeshi Otani
健 大谷
Koji Shibuya
浩司 渋谷
Yoji Matsue
松江 洋司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP61214290A priority Critical patent/JPS6369715A/en
Publication of JPS6369715A publication Critical patent/JPS6369715A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent occurrence of sintering phenomenon in the stage of heating of water-contg. iron oxide powder when the water-contg. iron oxide powder is reduced after it is sintered, by forming film of product generated by oxidizing a compd. contg. Si, P, or B in O2-contg. gas on the surface of the powder particles. CONSTITUTION:A compd. contg. at least a kind of components among Si, P, and B is oxidized in O2-contg. gas and the film of said component is formed on the surface of the powder particles basing on the principle of the CVD process in the reducing stage when ferromagnetic iron oxide powder is obtd. by reducing water-contg. iron oxide powder after it is sintered. Such compds. are hydrides, or carbohydrides, for example, Si compds. such as SiH4, SiH2(CH3)2, etc., B compds. such as B2H6, B(CH3)3, etc., P compds., such as PH3, P(C2H5)3, etc. The oxidation of these compds. is carried out by the oxidation reaction of each single component, or by the combination of the each single oxidation reaction. In this case, it necessary to flow >=equivalent amt. of O2 and the reaction is preferred to be carried out in the temp. range between 350 deg.C and 450 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、強磁性酸化鉄粉の製造に係り、より詳細には
、含水酸化鉄粉末の熱処理工程中での焼結現象を防止す
る方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to the production of ferromagnetic iron oxide powder, and more particularly, to a method for preventing sintering during a heat treatment process of hydrated iron oxide powder. Regarding.

(従来の技術) 一般に、ビデオテープ、オーディオテープ、フロッピー
、カード等に使用される磁気記録用酸化鉄粉や酸化鉄粉
を還元して得られる磁気記録用鉄粉は、ゲータイト(α
−F e OOH)、レピッドクロサイト(γ−FeO
OH)等の針状又は米粒状含水酸化鉄粉を出発物質とし
、これに焼成、還元などの熱処理を施して製造されてい
る。
(Prior Art) In general, iron oxide powder for magnetic recording and iron powder for magnetic recording obtained by reducing iron oxide powder used for video tapes, audio tapes, floppy disks, cards, etc. are goethite (α
-F e OOH), lepidocrocite (γ-FeO
It is manufactured by using needle-shaped or grain-shaped hydrated iron oxide powder such as OH) as a starting material and subjecting it to heat treatment such as calcination and reduction.

すなわち、まず、硫酸鉄又は塩化鉄の水溶液にカセイソ
ーダ又はアンモニア等のアルカリを添加して中和し、こ
れに酸素含有ガス(空気又は酸素)を吹込んでゲータイ
ト、レピッドクロサイト等の含水酸化鉄粉を合成する。
That is, first, an alkali such as caustic soda or ammonia is added to an aqueous solution of iron sulfate or iron chloride to neutralize it, and an oxygen-containing gas (air or oxygen) is blown into it to form hydrated iron oxides such as goethite and lepidocrocite. Synthesize powder.

次いで、これを濾過、水洗、乾燥後、空気中で焼成する
とα−Fe203が得られ、これを水素気流中で還元す
ると、マグネタイト(Fe304)と鉄粉が得られる。
Next, this is filtered, washed with water, dried, and then calcined in air to obtain α-Fe203, which is reduced in a hydrogen stream to obtain magnetite (Fe304) and iron powder.

更にマグネイトを空気中で酸化することによってマグヘ
マイト(γ−Fe2O3)が製造される。マグヘマイト
の粒子表面にコバルト変成処理するとコバルト被着した
マグヘマイト(Co−γ−Fe2O3)が得られる。更
に、この工程により得られる酸化鉄粉を還元気流中で還
元すれば鉄粉が得られる。
Furthermore, maghemite (γ-Fe2O3) is produced by oxidizing magnetite in air. When the surface of maghemite particles is subjected to a cobalt modification treatment, maghemite (Co-γ-Fe2O3) coated with cobalt is obtained. Furthermore, iron powder can be obtained by reducing the iron oxide powder obtained through this step in a reducing gas flow.

この工程により製造される針状又は米粒状の酸化鉄粉末
(マグヘマイト)等としては、記録密度の向上と、保磁
力、角形比、配向比等の磁気特性の改善のために粒子サ
イズの微小化が求められているが、かかる微粒子化に伴
い焼成、還元、酸化の熱処理中に粒子間に焼結現象が生
じやすくなり、特に還元工程での焼結現象が著しい。こ
の焼結現象は粒子を微粒子化すればするほど進行し易く
、結果として分散性が悪化し、保磁力、飽和磁化、角形
比、配向比等の磁気特性の悪化、特に保磁力の低下、S
/N比の悪化をもたらし、高密度記録用として不向きな
材料となる。
The needle-shaped or grain-shaped iron oxide powder (maghemite) produced by this process is made smaller in particle size in order to improve recording density and improve magnetic properties such as coercive force, squareness ratio, and orientation ratio. However, as particles become finer, sintering phenomena tend to occur between particles during heat treatments such as firing, reduction, and oxidation, and the sintering phenomenon is particularly noticeable during the reduction process. This sintering phenomenon progresses more easily as the particles are made finer, and as a result, the dispersibility deteriorates, and the magnetic properties such as coercive force, saturation magnetization, squareness ratio, and orientation ratio deteriorate, especially the coercive force decreases.
/N ratio deteriorates, making the material unsuitable for high-density recording.

このため、従来より粒子間焼結を防止する方策が種々試
みられてきている。例えば、含水酸化鉄粉末の合成反応
中又は合成反応後にSj及び/又はPを含む水溶液(例
、メタケイ酸ソーダ、リン酸等)を粒子含有水溶液スラ
リー中に添加して、粒子表面にSi酸化物等のSi化合
物を生成する方法(例、特開昭52−153198、同
53−129158、同55−161007、同55−
161008、同56−26730)、或いは同様にし
てP酸化物等のP化合物を生成する方法(例、特開昭5
5−115902、同55−149138、同56−3
8405、同56−44835)などがある。
For this reason, various measures have been attempted to prevent interparticle sintering. For example, during or after the synthesis reaction of hydrated iron oxide powder, an aqueous solution containing Sj and/or P (e.g., sodium metasilicate, phosphoric acid, etc.) is added to the particle-containing aqueous solution slurry to form Si oxide on the particle surface. Methods for producing Si compounds such as
161008, 56-26730), or a similar method of producing P compounds such as P oxide (e.g., JP-A-5
5-115902, 55-149138, 56-3
8405, 56-44835), etc.

しかし、これらの粒子間焼結防止法では、Sj、P等の
添加量の増加に伴って磁気特性が悪化し、また焼結防止
効果も必ずしも充分とは云えないという欠点があった。
However, these methods for preventing interparticle sintering have the disadvantage that magnetic properties deteriorate as the amount of Sj, P, etc. added increases, and the sintering prevention effect is not necessarily sufficient.

本発明は、粒子間焼結に関する上記従来技術の欠点を解
消し、粒子微細化によっても焼結現象の発生が少なく、
しかもS/N比、分散性の低下を防止でき、磁気特性の
劣化をもたらさない強磁性酸化鉄粉又は強磁性鉄粉の効
率的な製造方法を提供することを目的とするものである
The present invention eliminates the drawbacks of the above-mentioned prior art regarding interparticle sintering, and reduces the occurrence of sintering phenomena even by making the particles finer.
Moreover, it is an object of the present invention to provide an efficient method for producing ferromagnetic iron oxide powder or ferromagnetic iron powder, which can prevent deterioration of the S/N ratio and dispersibility and does not cause deterioration of magnetic properties.

(問題点を解決するための手段) 上記目的を達成するため、本発明者は、従来の粒子間焼
結防止法が磁気特性の中でも特に保磁力や飽和磁化の悪
化をもたらす原因について分析検討を加えたところ、単
にS〕酸化物、P酸化物等の非磁性物質が増加すること
に起因するだけでは説明できず、含水酸化鉄粉末の合成
反応中又は合酸反応後にSj、Pなどの化合物を生成す
るため、これらのSi化合物、P化合物が焼成工程にお
ける結晶成長、気孔の移動、粒子の緻密化に悪影響を及
ぼし、更には還元工程における還元反応速度の低下をも
たらしているものと考えられる。
(Means for Solving the Problems) In order to achieve the above object, the present inventor conducted an analysis and study on the cause of the deterioration of coercive force and saturation magnetization, especially among magnetic properties, due to the conventional interparticle sintering prevention method. In addition, it cannot be explained simply by an increase in non-magnetic substances such as S] oxide and P oxide, but compounds such as Sj and P during the synthesis reaction of hydrated iron oxide powder or after the synthesis reaction. It is thought that these Si compounds and P compounds have a negative effect on crystal growth, pore movement, and particle densification during the calcination process, and also cause a decrease in the reduction reaction rate during the reduction process. .

一方、含水酸化鉄の粒子が焼成、還元、酸化の熱処理中
にどのような粒子形状の変化を来たすかを透過型電子顕
微鏡を用いて調べたところ1粒子間の焼結現象は焼成、
酸化の各工程でも起きるが、還元工程での焼結が最も激
しいことが判明した。
On the other hand, we used a transmission electron microscope to investigate how the particle shape of hydrated iron oxide particles changes during heat treatment of calcination, reduction, and oxidation.
Although sintering occurs during each oxidation step, it was found that sintering was the most severe during the reduction step.

この還元工程での焼結を防止するには、還元温度の低下
、還元時間の短縮、水素ガス流量の減少等々の対策を講
ずればよいが、逆に磁気特性、特に保磁力や飽和磁化が
悪化すると共に効率低下をまねき、根本的な解決策とは
云えない。
To prevent sintering in this reduction process, measures such as lowering the reduction temperature, shortening the reduction time, and reducing the hydrogen gas flow rate can be taken, but on the other hand, the magnetic properties, especially the coercive force and saturation magnetization, This cannot be said to be a fundamental solution as it causes deterioration and a decrease in efficiency.

そこで、本発明者は、従来の粒子間焼結防止法がいわば
湿式法である点に鑑み、乾式による粒子間焼結防止策に
ついて鋭意研究を重ねた結果1粒子間焼結が最も著しい
還元工程で化学蒸着法(CVD)の原理を利用してSj
、P、B等の酸化物皮膜を粒子表面に生成しコーティン
グせしめることにより、可能であることを見い出し、本
発明をなしたものである。
Therefore, in view of the fact that the conventional method for preventing interparticle sintering is a so-called wet method, the inventors of the present invention have conducted intensive research on measures to prevent interparticle sintering using a dry method. Sj using the principle of chemical vapor deposition (CVD)
We have discovered that this is possible by forming and coating the surfaces of particles with oxide films of , P, B, etc., and have accomplished the present invention.

以下に本発明を実施例に基づいて詳細に説明する。The present invention will be explained in detail below based on examples.

前述の如く、焼成工程は針状又は米粒状の含水酸化鉄粒
子を酸化鉄(α−Fe203)粒子に変性する工程であ
り、脱水、焼き絞めを十分に行う必要があるが、従来の
粒子間焼結防止法は含水酸化鉄粒子の合成反応中或いは
反応後に粒子表面コーティングを行うため、磁気特性の
向上に必要な粒子内焼結を阻害するものと考えられる。
As mentioned above, the firing process is a process in which acicular or rice-grain-shaped hydrated iron oxide particles are modified into iron oxide (α-Fe203) particles, and it is necessary to sufficiently dehydrate and sinter the particles. In the sintering prevention method, particle surfaces are coated during or after the synthesis reaction of hydrous iron oxide particles, which is thought to inhibit intraparticle sintering, which is necessary for improving magnetic properties.

そのため、本発明では、焼結工程は通常の条件に従って
粒子内焼結が促進される温度(一般的には430〜48
0℃)で熱処理しても粒子間焼結が少ないことに着目し
て、次の還元工程でCVDの原理を利用して粒子表面を
コーティング処理するものである。
Therefore, in the present invention, the sintering step is carried out according to normal conditions at a temperature that promotes intragranular sintering (generally between 430 and 48
Taking note of the fact that there is little interparticle sintering even when heat-treated at 0° C., the particle surfaces are coated using the principle of CVD in the next reduction step.

一般に還元工程では、焼成により得られた酸化鉄(α−
Fe、03)粒子を還元炉に装入し、水素ガスを炉内に
流しながら300〜550℃で熱処理が施される。
Generally, in the reduction process, iron oxide (α-
Fe, 03) particles are charged into a reduction furnace and heat-treated at 300 to 550°C while flowing hydrogen gas into the furnace.

この還元工程でCVDの原理を利用して酸化反応を遂行
せしめるには、昇温中に炉内にSj、 P又はBの化合
物を含むガスと酸素を含むガス(酸素又は空気)との混
合ガスを流し、酸化反応によってこれらの酸化物皮膜を
粒子表面に生成させコーティング処理する。
In order to carry out the oxidation reaction using the principle of CVD in this reduction process, a mixed gas of a gas containing a compound of Sj, P or B and a gas containing oxygen (oxygen or air) is added to the furnace during temperature rise. is passed through the particles, and an oxidation reaction forms these oxide films on the particle surfaces for coating treatment.

」1記化合物としては、水素化物、炭水素化物等であり
、例えば、5in4.Si2H6,5i3HIl、Si
(CH3)4、S 1H3(CN3)、S j、(CN
3)3(C3H5)、s j、 H2(c H3)2.
5j(C2H5)4、 Sj、H(C,N5)3、(C
H3)30Si(CH3)3などのSj化合物、或いは
B2H6,B4H□。、B(CH3)3、B(C2H5
) 3などのB化合物、 PH3、P 2HいP(CH
3)3、P(zHs)a、P(CH3)N7、P (C
2H5)N2、P(CH3)2H,P(C2H5)2H
,P(C,N5)N2などのP化合物が挙げられる。
Examples of the compound described in item 1 include hydrides, hydrocarbons, etc., such as 5in4. Si2H6, 5i3HIl, Si
(CH3) 4, S 1H3 (CN3), S j, (CN
3) 3(C3H5), s j, H2(c H3)2.
5j(C2H5)4, Sj, H(C,N5)3, (C
H3) Sj compounds such as 30Si(CH3)3, or B2H6, B4H□. , B(CH3)3, B(C2H5
) B compounds such as 3, PH3, P2H P(CH
3) 3, P(zHs)a, P(CH3)N7, P (C
2H5)N2, P(CH3)2H, P(C2H5)2H
, P(C,N5)N2 and the like.

これらの化合物の酸化は、例えば、 SiH4+20□→Si○2  +2H20SiH4+
4PH3+1002→SiO,+2P205+8H20 2B2H,+602→2B20.   +6H20の如
く各成分の単独の酸化反応又はそれらの反応を併用した
酸化反応により行われる。その際、当量以上の02ガス
が必要があり、350〜450℃の温度範囲で反応せし
めるのが好ましい。
Oxidation of these compounds is, for example, SiH4+20□→Si○2 +2H20SiH4+
4PH3+1002→SiO, +2P205+8H20 2B2H, +602→2B20. It is carried out by oxidation reaction of each component alone as in +6H20 or by a combination of these reactions. At that time, an equivalent amount or more of 02 gas is required, and it is preferable to carry out the reaction at a temperature range of 350 to 450°C.

上記化合物の反応ガスは、通常はキャリヤーガス(N2
等)にて希釈し、粒子表面に極く薄い酸化物皮膜が生成
される程度の極く少量を流せばよく、処理時間で調整す
ることができる。
The reaction gas for the above compounds is usually a carrier gas (N2
etc.) and flow a very small amount to the extent that an extremely thin oxide film is formed on the particle surface, and the treatment time can be adjusted.

酸化反応による粒子表面コーティング処理後、N2ガス
を流し、炉内の02ガスをパージした後、速やかに炉内
に水素ガスを流して所定の還元条件で熱処理すればよく
、コーティングと還元を連続的に行うことができる。
After the particle surface coating treatment by oxidation reaction, N2 gas is flowed to purge the 02 gas in the furnace, and then hydrogen gas is immediately flowed into the furnace and heat treatment is performed under the specified reduction conditions.Coating and reduction can be performed continuously. can be done.

(実施例) 次に本発明の実施例を示す。(Example) Next, examples of the present invention will be shown.

実施例1 常法により合成したBET法比表面積SSAが89m2
/gのレピッドクロサイh (γ−FeOOH’)を濾
過、水洗、乾燥し、この乾燥品200gを回転型焼成炉
に装入して、5 Q / m i nの空気を流しつつ
6℃/minの昇温速度で470℃に加熱した後、自然
放冷して焼成した。
Example 1 BET method specific surface area SSA synthesized by conventional method is 89 m2
200g of this dried product was charged into a rotary kiln and heated at 6℃/g while flowing 5Q/min of air. After heating to 470° C. at a temperature increase rate of min, baking was performed by allowing natural cooling.

得られた酸化鉄(α−Fe304)粉末を還元炉に移し
、5Q/minのN2ガスを流しつつ5°C/mj、n
の昇温速度で加熱し、炉内温度が350℃に達したとき
に次の組成の混合ガスを5分間炉内に流してコーティン
グ処理を行った。但し、SiH4はキャリヤーガスN2
で希釈して用いた。
The obtained iron oxide (α-Fe304) powder was transferred to a reduction furnace and heated at 5°C/mj, n while flowing N2 gas at 5Q/min.
When the temperature inside the furnace reached 350° C., a mixed gas having the following composition was flowed into the furnace for 5 minutes to perform coating treatment. However, SiH4 uses carrier gas N2
It was diluted and used.

濃度       流量 SiH410%    0 、5 Q /m1n02 
 100%    0 、50 /mjnN2  10
0%   20.0 Q /mj、nその後、N2ガス
を流し、炉内の02ガスをパージした後、通常の還元条
件に従い、N2ガスで希釈したN2ガスを流しつつ52
0℃まで加熱し、冷却してマグネタイ1〜(F(130
4)粉末を得た。この粉末を通常の方法で酸化してマグ
ヘマイト−8= (γ−Fe2O3)粉末を製造した。
Concentration Flow rate SiH410% 0, 5 Q/m1n02
100% 0, 50/mjnN2 10
0% 20.0 Q /mj, n Then, after flowing N2 gas and purging the 02 gas in the furnace, 52
Heating to 0℃, cooling and magnetite 1~(F(130
4) A powder was obtained. This powder was oxidized in a conventional manner to produce maghemite-8=(γ-Fe2O3) powder.

実施例2 実施例1の場合と同じレピッドクロサイト(γ−FeO
OH)の乾燥品200gを回転型焼成炉に装入して、5
Q/minの空気を流しつつ6℃/minの昇温速度で
470℃加熱した後、自然放冷して焼成した。
Example 2 The same lepidocrocite (γ-FeO
Charge 200g of dried product of OH) into a rotary kiln,
After heating to 470° C. at a temperature increase rate of 6° C./min while flowing air at Q/min, the product was baked by being allowed to cool naturally.

得られた酸化鉄(α−Fe203)粉末を還元炉に移し
、5Q/n+inのN2ガスを流しつつ5°C/ mj
、nの昇温速度で加熱し、炉内温度が350℃に達した
ときに次の組成の混合ガスを3分間炉内に流してコーテ
ィング処理を行った。但し、PH3はキャリヤーガスN
2で希釈して用いた。
The obtained iron oxide (α-Fe203) powder was transferred to a reduction furnace and heated at 5°C/mj while flowing 5Q/n+in of N2 gas.
, n, and when the temperature inside the furnace reached 350° C., a mixed gas having the following composition was flowed into the furnace for 3 minutes to perform coating treatment. However, PH3 is carrier gas N
It was diluted with 2 and used.

濃度       流量 PH310%     0 、50 /m1n02 1
00%     0.5fl/m1nN2 100% 
   20.○Q/minその後、N2ガスを流し、炉
内の02ガスをパージした後、通常の還元条件に従い、
N2ガスで希釈したN2ガスを流しつつ520℃まで加
熱し、冷却してマグネタイト(Fe304)粉末を得た
。この粉末を通常の方法で酸化してマグネタイト粉末を
製造した。
Concentration Flow rate PH310% 0, 50 /m1n02 1
00% 0.5fl/m1nN2 100%
20. ○Q/min Then, after flowing N2 gas and purging the 02 gas in the furnace, according to the normal reduction conditions,
While flowing N2 gas diluted with N2 gas, it was heated to 520°C and cooled to obtain magnetite (Fe304) powder. This powder was oxidized in a conventional manner to produce magnetite powder.

比較例し 実施例1の場合と同じレピッ1くクロサイ1〜につき、
還元工程の昇温中にPH3,02及びN、の混合ガスを
流さず、他の焼成、還元条件を実施例J−と同一にして
熱処理し、得られた酸化鉄(Fe30.)粉末を実施例
1と同様に酸化してマグヘマイト粉末を製造した。
As a comparative example, the same recipe as in Example 1 and 1 black rhinoceros were used.
The iron oxide (Fe30.) powder obtained was heat-treated by not flowing a mixed gas of PH3.02 and N during the temperature rise in the reduction process, and using the same firing and reduction conditions as Example J-. Maghemite powder was produced by oxidation in the same manner as in Example 1.

比較例2 実施例1の場合と同じレピッドクロサイトを合成終了後
、従来法により粒子表面をコーティングした。
Comparative Example 2 After completing the synthesis of the same lepidocrocite as in Example 1, the particle surface was coated by a conventional method.

すなわち、メタケイ酸ソーダ水溶液をレピッドクロサイ
ト当たりSi分でQ、3wt%添加し、該スラリーを混
合撹拌しつつ粒子表面をコーティング処理した。
That is, an aqueous solution of sodium metasilicate was added with an Si content of Q and 3 wt % per lepidocrocite, and the particle surfaces were coated while the slurry was mixed and stirred.

このレピッドクロサイ1〜を比較例1と同じ条件で焼成
し、還元、酸化してマグヘマイト粉末を製造した。
This Lepido black rhinoceros 1~ was calcined under the same conditions as in Comparative Example 1, and was reduced and oxidized to produce maghemite powder.

上記実施例1.2及び比較例1.2により得られたマグ
ヘマイト粉末の比表面積SSAと磁気特性を調べた。そ
の結果を第1表に示す。
The specific surface area SSA and magnetic properties of the maghemite powders obtained in Example 1.2 and Comparative Example 1.2 were investigated. The results are shown in Table 1.

同表より明らかなように、本発明の実施例のように還元
工程でCVDを利用して粒子コーティングすると、比表
面積SSAが大きく焼結現象を防止しつつ微粒化が促進
され、したがって、保磁力He、飽和磁化σS、角形比
SRなど磁気特性の優れたマグヘマイトが得られる。こ
れに対し、従来法の粒子コーティング(比較例2)では
、粒子コーティングしない場合(比較例1)に比べて比
表面積SSAが大きくなるものの、飽和磁化が劣化する
という問題がある。
As is clear from the table, when particles are coated using CVD in the reduction process as in the example of the present invention, the specific surface area SSA is large and atomization is promoted while preventing the sintering phenomenon, and therefore the coercive force Maghemite with excellent magnetic properties such as He, saturation magnetization σS, and squareness ratio SR can be obtained. On the other hand, in the conventional particle coating method (Comparative Example 2), although the specific surface area SSA is larger than in the case without particle coating (Comparative Example 1), there is a problem in that the saturation magnetization deteriorates.

なお、上記実施例ではマグヘマイトの製造の場合を示し
たが、還元により得られる強磁性鉄粉についても同様の
効果が期待できることは云うまでもない。
Although the above example shows the case of manufacturing maghemite, it goes without saying that similar effects can be expected with ferromagnetic iron powder obtained by reduction.

(発明の効果) 以上詳述したように、本発明によれば、強磁性酸化鉄粉
及び強磁性鉄粉の製造に際し、還元工程でCVDの原理
を利用して粒子表面をSi、P又はBの酸化物皮膜にて
コーティングするので、この還元工程並びに酸化工程で
の粒子間焼結を効果的に防止でき、比表面積SSAが4
−0m2/g以上で、しかも優れた磁気特性を有する強
磁性粉を効率的に製造することが可能である。特に従来
の粒子コーティング法のようなS/N比、分散性の低下
或いは保磁力や飽和磁化の悪化などの問題も生じない。
(Effects of the Invention) As detailed above, according to the present invention, in the production of ferromagnetic iron oxide powder and ferromagnetic iron powder, the particle surface is coated with Si, P or B by utilizing the principle of CVD in the reduction step. Since it is coated with an oxide film of
It is possible to efficiently produce ferromagnetic powder with a particle size of -0 m2/g or more and excellent magnetic properties. In particular, problems such as deterioration of S/N ratio, dispersibility, coercive force, and saturation magnetization, which occur in conventional particle coating methods, do not occur.

更に本発明法は乾式であるので通常の熱処理プロセスの
還元工程で支障な〈実施できるので、経済的効果も大き
い。
Furthermore, since the method of the present invention is a dry method, it can be carried out in the reduction step of a normal heat treatment process, which is not a hindrance, and therefore it has great economic effects.

Claims (1)

【特許請求の範囲】[Claims]  含水酸化鉄粉末を焼成後、還元する工程を経て強磁性
酸化鉄粉を得るに際し、前記還元工程において、化学蒸
着法の原理を利用してSi、P及びBのうちの少なくと
も1種の成分を含む化合物を酸素を含むガスのもとで酸
化反応せしめ、該成分の酸化物皮膜を前記粒子表面に生
成することを特徴とする強磁性酸化鉄粉の製造方法。
After firing the hydrated iron oxide powder, when obtaining ferromagnetic iron oxide powder through a reduction step, at least one component of Si, P, and B is added in the reduction step using the principle of chemical vapor deposition. 1. A method for producing ferromagnetic iron oxide powder, which comprises subjecting a compound containing the compound to an oxidation reaction in an oxygen-containing gas to form an oxide film of the component on the particle surface.
JP61214290A 1986-09-11 1986-09-11 Production of ferromagnetic iron oxide powder Pending JPS6369715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61214290A JPS6369715A (en) 1986-09-11 1986-09-11 Production of ferromagnetic iron oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61214290A JPS6369715A (en) 1986-09-11 1986-09-11 Production of ferromagnetic iron oxide powder

Publications (1)

Publication Number Publication Date
JPS6369715A true JPS6369715A (en) 1988-03-29

Family

ID=16653278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61214290A Pending JPS6369715A (en) 1986-09-11 1986-09-11 Production of ferromagnetic iron oxide powder

Country Status (1)

Country Link
JP (1) JPS6369715A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5609789A (en) * 1992-12-29 1997-03-11 Ishihara Sangyo Kaisha, Ltd. Cobalt-containing magnetic iron oxide and process for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5609789A (en) * 1992-12-29 1997-03-11 Ishihara Sangyo Kaisha, Ltd. Cobalt-containing magnetic iron oxide and process for producing the same

Similar Documents

Publication Publication Date Title
US6398863B1 (en) Spindle-shaped hematite particles and process for making spindle-shaped hematite particles
JPH0448732B2 (en)
JPH09295814A (en) Spindle-like geothite particle powder, its production, spindle-like metal magnetic particle powder consisting mainly of iron and obtained by using the same geothite particle powder as starting raw material and its production
JPH0368923B2 (en)
JPS6369715A (en) Production of ferromagnetic iron oxide powder
JPS6369714A (en) Production of ferromagnetic iron oxide powder
JPH10245233A (en) Spindle-like hematite particle and its production and spindle-like metal magnetic particle containing iron as main component and obtained from the hematite particle as starting ram material and its production
JP2000302445A (en) Fusiform goethite particle powder, fusiform hematite particle powder, and fusiform metallic magnetic particle powder consisting mainly of iron, and their production
KR19990077521A (en) Spindle-shaped goethite particles and process for producing the same
JP3446961B2 (en) Method for producing magnetic metal powder for magnetic recording using α-iron oxyhydroxide
JPH10226520A (en) Hydrate iron oxide and production of ferromagnetic iron oxide
JP2001355001A (en) Spindlelike goethite particle powder, spindlelike hematite particle powder, spindlelike metallic magnetic particle powder essentially consisting of iron and their production method
JP2740922B2 (en) Method for producing metal magnetic powder for magnetic recording material
JPH08165501A (en) Fusiform metallic magnetic-grain powder consisting essentially of cobalt and iron and its production
JPH02175806A (en) Manufacture of metal magnetic powder for magnetic recorder
JPS63140005A (en) Production of fine ferromagnetic metal particle powder
JP2805162B2 (en) Method for producing metal magnetic powder for magnetic recording
JP3092649B2 (en) Method for producing spindle-shaped metal magnetic particles containing iron as a main component
JP3171223B2 (en) Method for producing acicular magnetic particle powder
JPH11130439A (en) Fusiform goethite particle powder and its production, fusiform hematite particle powder and its production and fusiform metallic magnetic particle powder consisting essentially of iron and its production
JPH0463210A (en) Manufacture of metal magnetic granular powder having fusiform and iron as essential component
JPS6349722B2 (en)
JPS60170906A (en) Spindle shaped gamma-fe2o3 magnetic powder including co and manufacture of the same
JPS5946281B2 (en) Method for producing acicular Fe-Co alloy magnetic particle powder
JPH05140620A (en) Production of powdery ferromagnetic metal powder