JP2000159575A - Glassy carbon pipe and its production - Google Patents

Glassy carbon pipe and its production

Info

Publication number
JP2000159575A
JP2000159575A JP10336313A JP33631398A JP2000159575A JP 2000159575 A JP2000159575 A JP 2000159575A JP 10336313 A JP10336313 A JP 10336313A JP 33631398 A JP33631398 A JP 33631398A JP 2000159575 A JP2000159575 A JP 2000159575A
Authority
JP
Japan
Prior art keywords
pipe
resin
glassy carbon
thermosetting resin
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10336313A
Other languages
Japanese (ja)
Other versions
JP3863308B2 (en
Inventor
Maki Hamaguchi
眞基 濱口
Toshiaki Okumura
俊明 奥村
Setsu Nishizawa
節 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP33631398A priority Critical patent/JP3863308B2/en
Publication of JP2000159575A publication Critical patent/JP2000159575A/en
Application granted granted Critical
Publication of JP3863308B2 publication Critical patent/JP3863308B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a glassy carbon pipe useful as the inner tube of a CVD device for producing semiconductors, etc., not containing a filler contaminating the CVD, and suitable as a large diameter member for which high heat resistance and corrosion resistance are required, and to provide a method for producing the same. SOLUTION: This method for producing a glassy carbon pipe comprises molding pipe raw materials containing a thermoplastic resin 3 by a centrifugal molding method and then applying a carbonization treatment to the obtained thermosetting resin molded product. Therein, the thermosetting resin as the pipe raw material has a curing property that a time for reaching a curing degree of 10% (T10) at 115 deg.C is 5-60 min, and further has a flowing property of >=60 mm at 100 deg.C in the disk type flow test of JIS-K6911. The method can give the glassy carbon pipe having a diameter of >=15 mm and substantially not containing a filler.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガラス状炭素製パ
イプおよびその製造方法に関し、詳細には耐熱性,ガス
不透過性や耐腐蝕性に優れたガラス状炭素製パイプであ
って、半導体製造用CVD装置のインナーチューブとし
て好適なガラス状炭素製パイプとその製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glassy carbon pipe and a method for manufacturing the same, and more particularly, to a glassy carbon pipe excellent in heat resistance, gas impermeability and corrosion resistance, which is used for manufacturing semiconductors. TECHNICAL FIELD The present invention relates to a glassy carbon pipe suitable as an inner tube of a CVD apparatus and a method for producing the same.

【0002】[0002]

【従来の技術】半導体製造用CVD装置のインナーチュ
ーブをはじめとして、耐熱性、ガス不透過性や耐腐蝕性
の要求される部材には、一般に石英ガラスが用いられて
いる。しかしながら、石英ガラスはフッ素系ガスや洗浄
用の硝酸・フッ化水素酸混液に腐蝕されやすく、寿命が
極めて短いという問題を有している。
2. Description of the Related Art Quartz glass is generally used for members requiring heat resistance, gas impermeability and corrosion resistance, such as an inner tube of a CVD apparatus for semiconductor production. However, quartz glass has a problem that it is easily corroded by a fluorine-based gas or a mixed solution of nitric acid and hydrofluoric acid for cleaning, and its life is extremely short.

【0003】そこで石英ガラスに代替する材料としてガ
ラス状炭素が期待されている。ガラス状炭素は、フェノ
ール樹脂やフラン樹脂などの熱硬化性樹脂やセルロース
などを1000℃前後またはそれ以上の高温域で炭素化
することによって得られる炭素材料であって、石英ガラ
ス以上の耐熱性を有すると共に、機械的強度や硬度は石
英ガラスと同等であり、しかもガス透過率が極めて小さ
く、更には前記した様な薬品に対する耐食性が非常に優
れるという特質を有している。
Therefore, glassy carbon is expected as a material to replace quartz glass. Glassy carbon is a carbon material obtained by carbonizing a thermosetting resin such as a phenol resin or a furan resin or cellulose at a high temperature range of about 1000 ° C. or more, and has a heat resistance higher than that of quartz glass. In addition to this, it has the characteristics that the mechanical strength and hardness are equivalent to that of quartz glass, the gas permeability is extremely low, and the corrosion resistance to the above-mentioned chemicals is extremely excellent.

【0004】従って、ガラス状炭素を主な構成成分とす
る材料はこれまで耐熱性の高い構造部材として様々な分
野で使用されている。但し、ガラス状炭素製パイプを得
るためには、その前駆体となる熱硬化性樹脂パイプを製
造する必要があり、熱硬化性樹脂は熱可塑性樹脂と異な
り溶融状態における粘度が低いので、熱硬化性樹脂単独
では熱可塑性樹脂が通常用いられる成形法の押し出し成
形や圧縮成形または射出成形等の方法を用いてパイプ状
成形体を得ることは困難であった。特にCVD装置に用
いられるインナーチューブは、例えば概略直径400m
m、長さ1000mm、厚さ3ないし5mmの両端開放
のパイプ形状を有しており、熱硬化性樹脂だけを用いて
このような形状に成形することは極めて困難であった。
Accordingly, materials containing glassy carbon as a main component have been used in various fields as structural members having high heat resistance. However, in order to obtain a glassy carbon pipe, it is necessary to manufacture a thermosetting resin pipe as a precursor thereof. Unlike a thermoplastic resin, a thermosetting resin has a low viscosity in a molten state. It is difficult to obtain a pipe-shaped molded body by using a method of extrusion molding, compression molding, injection molding or the like of a molding method in which a thermoplastic resin is usually used alone with a thermoplastic resin. In particular, the inner tube used for the CVD apparatus has, for example, an approximate diameter of 400 m.
m, a length of 1000 mm, and a thickness of 3 to 5 mm with open pipes at both ends, and it was extremely difficult to form such a shape using only a thermosetting resin.

【0005】熱硬化性樹脂は成形性がよくないことか
ら、通常は種々の充填剤と混合した上で成形されてい
る。例えば、マグネシア,タルク,マイカなどの無機充
填材を熱硬化性樹脂に高濃度に添加して混合すれば、押
し出し成形により電纜管などに好適な高強度のパイプを
成形することができる。また、炭素繊維不繊布に液状樹
脂を含漬して圧縮成形すると、強度や弾性率の高い炭素
繊維・熱硬化性樹脂複合体が得られる。即ち、炭素化す
ることなく熱硬化性樹脂製成形体として使用する場合に
は、上記充填材の使用は樹脂材料の機械的物性を向上さ
せたり、高価な樹脂の使用量を節約できるので好ましい
ものであった。
[0005] Since thermosetting resins have poor moldability, they are usually molded after being mixed with various fillers. For example, if an inorganic filler such as magnesia, talc, mica, or the like is added to a thermosetting resin at a high concentration and mixed, a high-strength pipe suitable for a cable tube or the like can be formed by extrusion molding. Further, when a carbon fiber non-woven fabric is impregnated with a liquid resin and compression-molded, a carbon fiber / thermosetting resin composite having high strength and elastic modulus can be obtained. That is, when used as a thermosetting resin molded article without carbonization, the use of the above filler is preferable because it can improve the mechanical properties of the resin material and can save the amount of expensive resin used. Met.

【0006】しかしながら、ガラス状炭素を得るにあた
っては、これらの熱硬化性樹脂成形体を高温の不活性雰
囲気中で炭素化する必要があり、この場合、充填材を含
有していると次のような問題を引き起こすこととなる。
すなわち、液状樹脂は炭素化時に一般に10%を超える
収縮を起こすため、充填材を含む樹脂複合パイプを炭素
化処理すると、ガラス状炭素部分と、寸法変化の少ない
充填材部分の界面にクラックが生じてしまい、その結
果、ガラス状炭素の特徴であるガス不透過性や耐腐食性
が著しく阻害されるという問題があった。例えば、前記
した炭素繊維−熱硬化性樹脂複合体(いわゆる炭素・炭
素複合材の前駆体)の場合には、これを炭素化して得ら
れる部材が亀裂やボイドを多く含むことから、樹脂の含
浸と炭素化を複数回繰り返す必要があった。
However, in order to obtain glassy carbon, it is necessary to carbonize these thermosetting resin molded products in a high-temperature inert atmosphere. In this case, if a filler is contained, the following problem occurs. Cause serious problems.
That is, since liquid resin generally shrinks by more than 10% during carbonization, when a resin composite pipe containing a filler is carbonized, cracks occur at the interface between the glassy carbon portion and the filler portion with little dimensional change. As a result, there is a problem that gas impermeability and corrosion resistance, which are characteristics of glassy carbon, are significantly impaired. For example, in the case of the above-mentioned carbon fiber-thermosetting resin composite (so-called precursor of carbon-carbon composite material), a member obtained by carbonizing the composite contains many cracks and voids. And carbonization had to be repeated several times.

【0007】また、充填材成分は、ガラス状炭素に比べ
て耐腐蝕性が小さく、しかも、充填材自身に起因する不
純物をCVD装置内に飛散させCVD膜を汚染するおそ
れがあるので、CVD装置のインナーチューブ等に使用
することは適さない。
Further, the filler component has a lower corrosion resistance than glassy carbon, and furthermore, there is a possibility that impurities caused by the filler itself may be scattered in the CVD apparatus to contaminate the CVD film. It is not suitable for use in inner tubes and the like.

【0008】従って、充填剤を含まないガラス状炭素製
パイプの開発が強く要望されており、ガラス状炭素の含
有率が95%以上、さらに好ましくは実質的にガラス状
炭素のみからなるパイプであって、特にCVD装置に好
適に利用できるガラス状炭素製パイプおよびその製法の
開発が望まれていた。
[0008] Accordingly, there is a strong demand for the development of a glassy carbon pipe containing no filler, and a pipe having a glassy carbon content of 95% or more, more preferably a pipe consisting essentially of glassy carbon. Therefore, development of a glassy carbon pipe which can be suitably used particularly for a CVD apparatus and a method for producing the same have been desired.

【0009】そこで本発明者らは、充填剤を含まない熱
硬化性樹脂の成形法を従来技術に基づき鋭意検討した。
その結果、従来よく用いられる射出成形や圧縮成形でパ
イプ状熱硬化性樹脂成形体を得ることが可能であるとの
知見を得た。但し、型からの樹脂部材の取り出しを容易
にするために、パイプ内面に少なくとも角度0.5度、
好ましくは1度のテーパーをつける必要があり、さら
に、成形後の炭素化工程における寸法や形状の変化も加
わるため、最終製品であるガラス状炭素製パイプの内径
は均一ではなく、両端部の内径で比較すると、内径の変
動は長さの1%を超えることが判明した。このことは、
工業的に有用な寸胴の、つまり全体に亘って内径の等し
い円筒形の部材を成形することができないという点で好
ましくない。また、射出成形や圧縮成形はもともとパイ
プ成形には適さない方法であるために生産性が悪く、さ
らに、上に述べたような大口径のガラス状炭素製パイプ
の前駆体となる樹脂パイプを成形するには、極めて大き
な金型が必要であり、工業的な規模で安価に製造するこ
とは事実上困難であった。
Accordingly, the present inventors have intensively studied a molding method of a thermosetting resin containing no filler based on the prior art.
As a result, they have found that it is possible to obtain a pipe-shaped thermosetting resin molded article by injection molding or compression molding, which are conventionally used. However, in order to facilitate removal of the resin member from the mold, at least an angle of 0.5 °
Preferably, it is necessary to form a taper of one degree, and furthermore, the size and shape change in the carbonization step after molding are added. Therefore, the inner diameter of the glassy carbon pipe as the final product is not uniform, and the inner diameter of both ends is not uniform. It was found that the variation in the inner diameter exceeded 1% of the length. This means
It is not preferable because it is impossible to form a cylindrical member having an industrially useful cylindrical body, that is, a cylindrical member having the same inner diameter throughout. In addition, since injection molding and compression molding are originally unsuitable for pipe molding, productivity is low, and furthermore, resin pipes which are the precursors of large-diameter glassy carbon pipes as described above are molded. To do so, an extremely large mold was required, and it was practically difficult to manufacture it on an industrial scale at low cost.

【0010】以上のような事情により、充填材を含まな
いガラス状炭素製パイプに関しては、圧縮成形や射出成
形を用いて一定の内径を有する寸胴パイプを得ようとす
ると、型抜きのためのテーパー加工を型に施す必要がな
いほどに短く、かつ細いパイプ、具体的には長さが60
mm以下で直径が15mm未満のものが製造技術上の限
界である。これを超える直径や長さのパイプについては
型にテーパー加工を施す必要があるため、必然的に長さ
の1%を超えるパイプの内径差が生じる。なお、充填材
を含まない熱硬化性樹脂を押し出し成形でパイプ状に成
形することは困難であった。
[0010] Due to the above-mentioned circumstances, in the case of a glassy carbon pipe containing no filler, if it is attempted to obtain a cylindrical pipe having a constant inner diameter by compression molding or injection molding, a taper for die cutting is required. A pipe that is so short and thin that processing does not need to be performed on the mold,
Those having a diameter of less than 15 mm and a diameter of less than 15 mm are the limits in manufacturing technology. For a pipe having a diameter or length exceeding this, it is necessary to apply a taper process to the mold, so that there is inevitably a difference in the inner diameter of the pipe exceeding 1% of the length. In addition, it was difficult to form a thermosetting resin containing no filler into a pipe by extrusion.

【0011】上に挙げた成形法以外に、パイプ成形に適
した方法として遠心成形法が特開平6−247770号
公報および特開平4−149067号公報に開示されて
いる。しかしながら、これらの公報で開示されている方
法は、充填剤を用いる方法であり、充填剤を用いない方
法もしくはその方法を示唆する記載はない。事実、本発
明者らが、これら公報に開示されている方法から単に充
填剤を除いてガラス状炭素製パイプの成形を試みたが成
形体が発泡しやすく、これを防ぐために極めて長時間の
成形と厳密な温度管理が必要であり、空隙のない成形体
を生産性と再現性良く得ることは困難であった。また、
良好な成形体が得られた場合でも、あとの硬化あるいは
炭素化工程で残存する溶媒の蒸気や発生するガスのため
成形体中には多くの空隙が生成し、ガス不透過性や耐食
性に優れたガラス状炭素を得ることは困難であった。
In addition to the molding methods mentioned above, centrifugal molding methods are disclosed in JP-A-6-247770 and JP-A-4-149067 as methods suitable for pipe molding. However, the methods disclosed in these publications are methods using a filler, and there is no method using no filler or a description suggesting the method. In fact, the present inventors have attempted to form a glassy carbon pipe simply by removing the filler from the methods disclosed in these publications, but the formed body is liable to foam. Strict temperature control was required, and it was difficult to obtain a molded article without voids with good productivity and reproducibility. Also,
Even when a good molded product is obtained, many voids are formed in the molded product due to the vapor of the solvent remaining in the subsequent curing or carbonization process and the generated gas, and it is excellent in gas impermeability and corrosion resistance It was difficult to obtain vitreous carbon.

【0012】さらに、文献(「Carbon」,1996,vo
l.34, No.6, p.789 〜 796)では、回転する金属円筒の
外表面に液状フェノール樹脂を連続的にスプレー状に塗
布しながら溶媒の除去と樹脂の硬化反応を行うことによ
ってガラス状炭素の前駆体樹脂パイプを得る方法が開示
されている。しかしながら、上記技術文献が例示するガ
ラス状炭素製パイプは内径12.7mmのものであり、
それよりも大口径のパイプの製造法に関しては明らかに
されていない。本発明者らが、この方法を試みたとこ
ろ、樹脂の供給速度、円筒型の回転速度、樹脂の硬化反
応や溶媒の蒸発量を制御するための温度、など多くの因
子を精密に制御しても、均一な肉厚の樹脂パイプを得る
ことはできなかった。
Further, a reference ("Carbon", 1996, vo
l.34, No.6, pp.789-796), a liquid phenolic resin is continuously applied to the outer surface of a rotating metal cylinder in a spray form while removing the solvent and performing a curing reaction of the resin. A method for obtaining a precursor resin pipe of carbonaceous carbon is disclosed. However, the glassy carbon pipe exemplified in the above technical literature has an inner diameter of 12.7 mm,
There is no disclosure of a method for producing larger diameter pipes. When the present inventors tried this method, they precisely controlled many factors such as resin supply speed, cylindrical rotation speed, resin curing reaction and temperature for controlling the amount of solvent evaporation, and the like. However, a resin pipe having a uniform thickness could not be obtained.

【0013】以上のようにガラス状炭素製パイプの製法
は種々検討がなされているが、未だ充填剤が少なくても
成形でき且つ大口径に対応できるパイプの製法は十分で
なく、更に、それに起因して耐熱性、ガス不透過性、耐
腐蝕性、耐久性を併せ持ち且つ汚染の少ないCVD装置
のインナーチューブは提供されていなかった。
As described above, various methods of producing a glassy carbon pipe have been studied. However, a method of producing a pipe which can be formed even with a small amount of filler and can cope with a large diameter is not sufficient. In addition, there has not been provided an inner tube of a CVD apparatus which has both heat resistance, gas impermeability, corrosion resistance, and durability and has low contamination.

【0014】[0014]

【発明が解決しようとする課題】本発明は上記事情に着
目してなされたものであって、半導体製造用CVD装置
のインナーチューブとして最適な汚染の少ないガラス状
炭素製パイプを提供しようとするものであり、更には、
従来法では製造が不可能であった大口径で且つ均一な厚
さを有するガラス状炭素製パイプ及びその製造方法を提
供するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and is intended to provide a glass pipe made of glassy carbon with low contamination which is optimal as an inner tube of a CVD apparatus for semiconductor production. And furthermore,
An object of the present invention is to provide a glassy carbon pipe having a large diameter and a uniform thickness, which cannot be manufactured by a conventional method, and a method for manufacturing the same.

【0015】[0015]

【課題を解決するための手段】上記課題を解決した本発
明の製造方法とは、熱硬化性樹脂を含むパイプ原料を遠
心成形法により熱硬化性樹脂成形体とし、上記熱硬化性
樹脂成形体に炭素化処理を施すことによりガラス状炭素
製パイプを製造する方法であって、上記パイプ原料の熱
硬化性樹脂として、115℃における硬化度10%(T
10)の到達時間が5〜60分間である硬化性を有する
とともに、JIS−K6911の円板式流れ試験におい
て100℃で60mm以上の流動性を有する熱硬化性樹
脂を用いることを要旨とするものであり、本発明方法に
よれば前記パイプ原料の99重量%以上を熱硬化性樹脂
としてもパイプ状に成形することが可能である。
Means for Solving the Problems The manufacturing method of the present invention which has solved the above-mentioned problems is that a pipe material containing a thermosetting resin is formed into a thermosetting resin molded product by a centrifugal molding method, and the thermosetting resin molded product is produced. A pipe made of glassy carbon by subjecting the pipe to a carbonization treatment, wherein the thermosetting resin as a raw material of the pipe is a degree of cure at 115 ° C. of 10% (T
The gist of the present invention is to use a thermosetting resin having a curability of 10) of 5 to 60 minutes and a flowability of not less than 60 mm at 100 ° C. in a disk flow test of JIS-K6911. In addition, according to the method of the present invention, even if 99% by weight or more of the pipe raw material is a thermosetting resin, it can be formed into a pipe shape.

【0016】また上記課題を解決した本発明のガラス状
炭素製パイプとは、直径が15mm以上であり、且つ実
質的に充填材を含有していないことを要旨とするもので
ある。
Further, the glass-like carbon pipe of the present invention which has solved the above-mentioned problems has a gist of 15 mm or more in diameter and substantially containing no filler.

【0017】[0017]

【発明の実施の形態】本発明者らは上記課題を解決する
ことを目的として、鋭意研究を重ねた結果特定の硬化性
と流動性を有する熱硬化性樹脂であれば、充填材を混合
しなくとも遠心成形法でパイプ状の成形体とすることが
できることを見出し、本発明に想到した。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have conducted intensive studies with the aim of solving the above-mentioned problems, and as a result, if a thermosetting resin having a specific curability and fluidity is used, a filler is mixed. The present inventors have found that a pipe-shaped molded body can be obtained by a centrifugal molding method, and have arrived at the present invention.

【0018】本発明においてパイプ原料として用いる熱
硬化性樹脂は、樹脂硬化度10%(T10)の到達時間
が115℃において5分以上60分以内である硬化性を
有するとともに、JIS−K6911の円板式流れ試験
において100℃で60mm以上の流動性を有する熱硬
化性樹脂である。
The thermosetting resin used as a raw material for the pipe in the present invention has a curability of not less than 5 minutes and not more than 60 minutes at 115 ° C. at a resin curing degree of 10% (T10), and the JIS-K6911 circle. It is a thermosetting resin having a fluidity of 60 mm or more at 100 ° C. in a plate-type flow test.

【0019】熱硬化性樹脂の硬化性としては、パイプ原
料が硬化反応を完了する前に、型に沿った円筒状に塑性
変形することが必要であることから115℃におけるT
10で5分以上であることが必要である。上記T10が
5分に満たない場合には、パイプ原料が型に沿った円筒
状に変形する前に樹脂の硬化が完了したり、あるいは原
料中に内包されていたガス成分や成形中に発生するガス
成分が散逸する前に、樹脂の硬化が完了してしまうため
に、所望の形状を有し、かつ気泡や割れのない樹脂成形
体を得ることはできない。T10は10分以上であるこ
とが望ましく、硬化完了までの時間を長くすれば、より
小さい遠心力(少ない回転数)で成形することが可能と
なる。但し、硬化時間が長過ぎる樹脂は、回転型内にお
ける硬化反応時に大量のガスを発生して成形体が発泡し
気泡を含有しやすいため好ましくなく、上記T10は6
0分以内であることが必要であり、40分以内であれば
より好ましい。
As the curability of the thermosetting resin, it is necessary that the raw material of the pipe be plastically deformed into a cylindrical shape along the mold before completing the curing reaction.
It is necessary that 10 is 5 minutes or more. If the above T10 is less than 5 minutes, curing of the resin is completed before the pipe raw material is deformed into a cylindrical shape along the mold, or a gas component contained in the raw material or generated during molding. Since the curing of the resin is completed before the gas components dissipate, a resin molded body having a desired shape and free from bubbles and cracks cannot be obtained. T10 is desirably 10 minutes or more, and if the time until the completion of curing is increased, molding can be performed with a smaller centrifugal force (small number of rotations). However, a resin having an excessively long curing time is not preferable because a large amount of gas is generated at the time of the curing reaction in the rotary mold to cause the molded body to foam and easily contain bubbles.
It is necessary to be within 0 minutes, more preferably within 40 minutes.

【0020】本発明の方法では、樹脂の硬化反応が起こ
る温度よりも高い温度に成形原料を加熱しながら遠心成
形を行うことから、原料に用いる熱硬化性樹脂は成形温
度で適当な流動性を有する必要がある。本発明ではJI
S−K6911の円板式流れ試験を100℃で行ったと
きの流動性の値が60mm以上のものを用いる。ここ
で、流れ試験を100℃で行うのは以下の理由による。
通常、熱硬化性樹脂の硬化反応は100℃前後で始ま
り、反応の進行に伴い樹脂の流動性は次第に低下してい
く。従って、樹脂を円筒状に賦形するためには、この温
度で樹脂が一定の流動変形を起こしうることが必須であ
り、この性質を評価するために、JIS−K6911の
円板式流れ試験を100℃で行う。
In the method of the present invention, centrifugal molding is performed while heating the molding raw material to a temperature higher than the temperature at which the curing reaction of the resin occurs, so that the thermosetting resin used as the raw material has appropriate fluidity at the molding temperature. Must have. In the present invention, JI
S-K6911 having a fluidity value of 60 mm or more when subjected to a disk-type flow test at 100 ° C. is used. Here, the flow test is performed at 100 ° C. for the following reason.
Usually, the curing reaction of a thermosetting resin starts at about 100 ° C., and the fluidity of the resin gradually decreases as the reaction proceeds. Therefore, in order to shape the resin into a cylindrical shape, it is essential that the resin undergoes a certain flow deformation at this temperature, and in order to evaluate this property, a disk-type flow test of JIS-K6911 must be performed. Perform at ° C.

【0021】成形原料の流動性の値が60mmに満たな
い場合には、加熱しながら大きな遠心力を与えても所望
の円筒形状に賦形することは極めて困難である。成形原
料の流動性が60mm以上であれば遠心成形により円筒
形に成形することができるが、上記流動性の値が100
mm以上であれば、より小さい回転数で、且つ短時間で
の成形が可能であるので好ましい。
When the value of the fluidity of the forming raw material is less than 60 mm, it is extremely difficult to form a desired cylindrical shape even when a large centrifugal force is applied while heating. If the fluidity of the molding material is 60 mm or more, it can be formed into a cylindrical shape by centrifugal molding.
mm or more is preferable because molding can be performed at a lower rotation speed and in a shorter time.

【0022】成形原料の流動性の値にとくに上限はな
い。ただし、流動性が著しく大きい樹脂は、一般に低分
子量のオリゴマー成分を比較的多く含むため回転型内に
おける硬化反応時に大量のガスを発生して成形体が発泡
しやすく、また、硬化反応に長時間を要して工業的に不
利であるため、流動性の値は150mm以下であること
が望ましい。
There is no particular upper limit on the value of the fluidity of the forming raw material. However, since a resin having extremely high fluidity generally contains a relatively large amount of a low molecular weight oligomer component, a large amount of gas is generated during a curing reaction in a rotary mold to easily foam a molded body, and the curing reaction takes a long time. Therefore, the value of the fluidity is desirably 150 mm or less.

【0023】以上のように、パイプ原料の硬化反応性と
流動性を特定の範囲にすることで、従来遠心成形では不
可能とされていた充填材を含まず、実質的にガラス状炭
素のみからなるパイプであっても製造することが可能に
なった。
As described above, by setting the curing reactivity and fluidity of the raw material of the pipe to a specific range, a filler material which has been impossible by centrifugal molding conventionally is not contained, and substantially no glassy carbon is used. It has become possible to manufacture even pipes.

【0024】本発明で利用されるパイプ原料は、流動性
と硬化度が上記の範囲であればよく、粉末状あるいは溶
媒を含んだ液体もしくは溶液状のものでもよいが、特に
本発明に係る製造方法においては粉末のパイプ原料が好
ましい。その理由は、液状のパイプ原料または溶媒に溶
けた溶液状のパイプ原料を使用すると、流動性と硬化度
が上記の範囲にあっても、遠心成形工程で発生するガス
や溶媒の蒸気のために成形体が発泡しやすく、最終製品
であるガラス状炭素製パイプに空隙が生じやすいからで
ある。
The raw material for the pipe used in the present invention may have a fluidity and a degree of hardening within the above ranges, and may be in the form of a powder or a liquid or a solution containing a solvent. In the method, powdered pipe feedstock is preferred. The reason is that if a liquid pipe raw material or a solution pipe raw material dissolved in a solvent is used, even if the fluidity and the degree of hardening are within the above range, the gas and solvent vapor generated in the centrifugal molding process may cause This is because the molded body is easily foamed, and voids are easily generated in the glassy carbon pipe as the final product.

【0025】また、本発明方法により、CVD装置のイ
ンナーチューブに最適なガラス状炭素製パイプを得る場
合には、上記した流動性及び硬化度を持った熱硬化性樹
脂が95%以上含有するパイプ原料を用いれば良く、更
に熱硬化性樹脂が99%以上残部が不可避不純物からな
るパイプ原料を用いると使用時の汚染が低減でき更に望
ましい。
In order to obtain a glassy carbon pipe suitable for an inner tube of a CVD apparatus by the method of the present invention, a pipe containing 95% or more of a thermosetting resin having the above-mentioned fluidity and curing degree is used. It is preferable to use a raw material, and it is more preferable to use a pipe raw material in which the thermosetting resin is 99% or more and the remainder is inevitable impurities because contamination during use can be reduced.

【0026】パイプ原料に含まれる熱硬化性樹脂として
は、フェノール樹脂やフラン樹脂などの一般的に知られ
ている熱硬化性樹脂は全て使用でき、特に限定されるも
のではないが、フェノール樹脂が以下に述べる理由のた
めより好ましい。即ち、フェノール樹脂は、炭素化後の
材料収率がほかの樹脂に比べて高く、したがって寸法変
化も少ない。そのため、所望の形状・寸法のガラス状炭
素製パイプを得る上で好適である。パイプ原料の流動性
と硬化度は、含まれる熱硬化性樹脂の量や触媒量、重合
反応時間を調節することによって制御すること可能であ
り、また、充填剤,溶媒の種類や量によっても調節可能
である。
As the thermosetting resin contained in the raw material of the pipe, all generally known thermosetting resins such as a phenol resin and a furan resin can be used, and the phenol resin is not particularly limited. It is more preferable for the reasons described below. That is, the phenolic resin has a higher material yield after carbonization than other resins, and therefore has less dimensional change. Therefore, it is suitable for obtaining a glassy carbon pipe having a desired shape and dimensions. The fluidity and degree of cure of the pipe raw material can be controlled by adjusting the amount of thermosetting resin, the amount of catalyst, and the polymerization reaction time, and also by the type and amount of filler and solvent. It is possible.

【0027】遠心成形法により熱硬化性樹脂成形体を製
造するにあたっては、周方向に回転可能な略円筒状の型
内部に、熱硬化性樹脂を含有するパイプ原料を装填し,
該略円筒形状の型を回転させながら樹脂の硬化温度まで
加熱して略円筒状の熱硬化性樹脂成形体を製造すればよ
い。
In producing a thermosetting resin molded article by a centrifugal molding method, a pipe raw material containing a thermosetting resin is charged into a substantially cylindrical mold rotatable in a circumferential direction,
The substantially cylindrical mold may be heated to the curing temperature of the resin while rotating to produce a substantially cylindrical thermosetting resin molded body.

【0028】上記熱硬化性樹脂製パイプを作製するにあ
たっては、図1に示したような遠心成形装置を用いるこ
とが推奨される。図1において1は円筒の型であり、少
なくとも一方の端部は樹脂硬化反応時に発生するガスが
外部へ抜けるように開口部を有することが必要である。
この型1は、モーターまたはプーリーにより高速回転さ
せることができる。また樹脂製パイプの取り出しを容易
にするという観点から分割可能な構造とすることが望ま
しい。型の材料としては、金属やセラミツク,または樹
脂などを用いることができるが、強度や加工しやすさの
点で金属が好適である。
In manufacturing the thermosetting resin pipe, it is recommended to use a centrifugal molding apparatus as shown in FIG. In FIG. 1, reference numeral 1 denotes a cylindrical mold, and at least one end thereof needs to have an opening so that gas generated during a resin curing reaction can escape to the outside.
This mold 1 can be rotated at high speed by a motor or a pulley. In addition, it is desirable to adopt a structure that can be divided from the viewpoint of facilitating removal of the resin pipe. As the material of the mold, metal, ceramic, resin, or the like can be used, but metal is preferable in terms of strength and ease of processing.

【0029】図2において、4は両端にフランジ加工が
なされたパイプを得るための金型の概略説明図である。
この型4を用いて成形すれば、両端にフランジ加工がな
された樹脂パイプ5を得ることができ、それを炭素化す
ることによって、両端にフランジ加工がなされたガラス
状炭素製パイプを安価に得ることができる。本発明方法
によれば、ガラス状炭素製パイプの外径と長さは円筒型
の金型の内径と長さのみに規定されるので、外径の大き
な長いパイプを容易に製造できる。また、パイプの肉厚
は型に装填される樹脂の量を変えることによって容易に
制御することができる。
In FIG. 2, reference numeral 4 is a schematic explanatory view of a mold for obtaining a pipe having flanges formed at both ends.
By molding using this mold 4, a resin pipe 5 having both ends flanged can be obtained, and by carbonizing the same, a glassy carbon pipe having both ends flanged can be obtained at low cost. be able to. According to the method of the present invention, the outer diameter and length of the glassy carbon pipe are determined only by the inner diameter and length of the cylindrical mold, so that a long pipe having a large outer diameter can be easily manufactured. Also, the thickness of the pipe can be easily controlled by changing the amount of resin loaded in the mold.

【0030】パイプ原料3は、図1に示されるように円
筒金型1の内部に装填される。樹脂の装填は、金型を静
止させた状態で行うか、或いは回転させながら行っても
よい。金型の回転速度は、型の直径や樹脂の性状・反応
性によって異なるが、重力の2倍以上、好ましくは10
G以上の重力が発生するように設定することが望まし
い。
The pipe raw material 3 is loaded into the cylindrical mold 1 as shown in FIG. The loading of the resin may be performed with the mold stationary or while rotating. The rotation speed of the mold varies depending on the diameter of the mold and the properties and reactivity of the resin, but is at least twice the gravity, preferably 10 times.
It is desirable to set so that gravity of G or more is generated.

【0031】本発明においては、遠心成形の型内にパイ
プ原料を装填し、型を回転させながら、樹脂を硬化反応
の進行する温度以上に加熱する。パイプ原料が上記の性
状を有する場合、樹脂が加熱により溶融し、型の回転に
よって発生する遠心力によって圧縮力が働き、内径のほ
ぼ一定な均一な肉厚のパイプ形状に成形される。樹脂が
含んでいる揮発成分や成形過程で発生するガス状成分
は、型に接しない樹脂表面から散逸させることができ
る。また、パイプの外側の樹脂は回転する型の内面に直
接接触するため、パイプの外面は型の内表面とほぼ等し
い形状に賦形することができる。
In the present invention, the raw material for the pipe is charged into a centrifugal molding die, and the resin is heated to a temperature at which the curing reaction proceeds while rotating the die. When the pipe raw material has the above properties, the resin is melted by heating, and a compressive force acts by centrifugal force generated by rotation of the mold, whereby the pipe is formed into a pipe shape having a substantially constant inner diameter and a uniform wall thickness. Volatile components contained in the resin and gaseous components generated during the molding process can be dissipated from the resin surface not in contact with the mold. In addition, since the resin on the outside of the pipe directly contacts the inner surface of the rotating mold, the outer surface of the pipe can be formed into a shape substantially equal to the inner surface of the mold.

【0032】本発明の成形方法においては、樹脂を装填
した型を回転させながら、樹脂の硬化反応が開始する温
度以上に金型を加熱するものであり、円筒型1の外周に
配置されたヒータ(加熱炉)2により加熱すればよい。
In the molding method of the present invention, the mold is heated to a temperature higher than the temperature at which the curing reaction of the resin starts while rotating the mold loaded with the resin. (Heating furnace) 2 may be used.

【0033】尚、熱硬化性樹脂の硬化反応時には水蒸気
をはじめとする種々のガスが発生するために、成形時に
はガス抜きが重要である。インナーチューブのような大
口径管を圧縮成形などの一般的な方法で成形する場合に
は、ガス抜きは事実上不可能である。また、ガスの発生
を抑えるために硬化反応が不十分な段階で成形体を金型
から取り出すと、硬化工程で変形するため、その形状を
保つことができない。
Since various gases including steam are generated during the curing reaction of the thermosetting resin, degassing is important during molding. When a large-diameter pipe such as an inner tube is formed by a general method such as compression molding, degassing is practically impossible. Further, if the molded body is taken out of the mold at a stage where the curing reaction is insufficient to suppress generation of gas, the molded body is deformed in the curing step, so that the shape cannot be maintained.

【0034】これに対して、本発明の方法では、型の回
転による遠心力で樹脂に圧縮力が作用するために、均一
な肉厚のパイプを成形することができ、また、樹脂パイ
プの金型に接しない面は大気に開放されているので生成
するガスは容易に成形体外部に散逸することができる。
また、回転成形しながら樹脂は硬化反応が起こる温度ま
で加熱されるため、金型から取り出したあとも、変形す
ることなくパイプ形状を保って焼成することが可能とな
る。成形の温度は樹脂の性状・反応性によって異なる
が、100℃以上、好ましくは120℃以上とする。
On the other hand, in the method of the present invention, since a compressive force acts on the resin by centrifugal force due to the rotation of the mold, a pipe having a uniform thickness can be formed. Since the surface not in contact with the mold is open to the atmosphere, the generated gas can be easily dissipated outside the molded body.
In addition, since the resin is heated to a temperature at which a curing reaction occurs while being rotationally molded, it is possible to keep the shape of the pipe without being deformed even after being taken out of the mold. The molding temperature depends on the properties and reactivity of the resin, but is set to 100 ° C. or higher, preferably 120 ° C. or higher.

【0035】また、熱硬化性樹脂のパイプ成形に続いて
行われる炭素化処理の方法にはとくに制限はなく、非酸
化性雰囲気中で、樹脂成形体を800℃以上、好ましく
は1000℃以上の温度にて加熱処理することによりお
こなうことができる。また、必要に応じて、炭素化処理
の前に、空気あるいは非酸化性雰囲気中で、樹脂成形体
を100℃ないし300℃で加熱する後硬化処理をおこ
なってもよい。
There is no particular limitation on the method of the carbonization treatment performed after the pipe formation of the thermosetting resin, and the resin molded body is heated to 800 ° C. or more, preferably 1000 ° C. or more in a non-oxidizing atmosphere. The heat treatment can be performed at a temperature. Further, if necessary, before the carbonization treatment, a post-curing treatment may be performed in which the resin molded body is heated at 100 ° C. to 300 ° C. in air or a non-oxidizing atmosphere.

【0036】この様な本発明方法によれば、直径が15
mm以上(更には60mm以上)の大口径のガラス状炭
素製パイプであり、且つ実質的に充填材を含有していな
いガラス状炭素製パイプを製造することが可能である。
According to the method of the present invention, the diameter is 15
It is possible to manufacture a vitreous carbon pipe having a large diameter of not less than mm (further, not less than 60 mm) and substantially containing no filler.

【0037】以下、本発明を実施例によって更に詳細に
説明するが、下記実施例は本発明を限定する性質のもの
ではなく、前・後記の主旨に徴して設計変更することは
いずれも本発明の技術的範囲内に含まれるものである。
Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following Examples are not intended to limit the present invention, and any changes in the design based on the gist of the preceding and following aspects will be described. Are included within the technical scope of

【0038】[0038]

【実施例】実施例1 硬化度10%(T10)への到達時間が115℃におい
て25分であり、100℃におけるJIS−K6911
の円板式流れ試験値が140mmである粉末状フェノー
ル樹脂を原料として用いた。
EXAMPLE 1 The time to reach a degree of cure of 10% (T10) was 25 minutes at 115 ° C., and JIS-K6911 at 100 ° C.
A powdery phenol resin having a disk flow test value of 140 mm was used as a raw material.

【0039】使用した金型は、両端が開放された内径8
0mm、長さ300mm、厚さ15mmの円筒形で、中
心線を含む平面で2分割することができる構造のもので
ある。この金型内部に樹脂300gを装填し、毎分25
00回転の速度で回転させながら、金型外部に設置した
ヒーターにより室温から120℃まで30分で昇温した
後、この温度で10分間保持し、さらに160℃まで6
0分で昇温し、160℃で30分間硬化反応をおこなっ
た。その後、放冷し、80℃で回転を停止し、脱型し
た。これにより、厚さ約2mmの肉厚のほぼ均一な割れ
のないパイプを得ることができた。
The mold used had an inner diameter of 8 with both ends open.
It has a cylindrical shape of 0 mm, a length of 300 mm, and a thickness of 15 mm, and has a structure that can be divided into two by a plane including a center line. 300 g of resin is charged into the mold, and 25 g / min.
While rotating at a speed of 00 rotations, the temperature was raised from room temperature to 120 ° C. for 30 minutes by a heater installed outside the mold, then maintained at this temperature for 10 minutes, and further increased to 160 ° C. for 6 minutes.
The temperature was raised in 0 minutes, and a curing reaction was performed at 160 ° C. for 30 minutes. Thereafter, the mixture was allowed to cool, stopped at 80 ° C., and removed from the mold. As a result, a pipe having a thickness of about 2 mm and a substantially uniform thickness without cracks could be obtained.

【0040】このパイプを230℃で48時間のキュア
リングを行ったが、キュアリングによる黒化以外に割れ
や空隙などの外観の変化は認められなかった。さらに、
1500℃で炭素化処理をおこなったところ、キュアリ
ング時の形状を保ったガラス状炭素製パイプを得ること
ができた。
The pipe was cured at 230 ° C. for 48 hours, and no change in appearance such as cracks or voids was observed except for blackening due to the curing. further,
When the carbonization treatment was performed at 1500 ° C., a glassy carbon pipe having the shape at the time of curing was obtained.

【0041】更に、パイプの均一性を評価することを目
的として、以下の方法で内径の変動を測定した。即ち、
パイプを長さ方向に4等分し、各部の内径の最大値と最
小値の差を求め、パイプの全長で除した値(百分率)を
内径の変動とした。本実施例のパイプの内径の変動は
0.4%であった。
Further, for the purpose of evaluating the uniformity of the pipe, the variation of the inner diameter was measured by the following method. That is,
The pipe was divided into four equal parts in the length direction, the difference between the maximum value and the minimum value of the inner diameter of each part was determined, and the value (percentage) divided by the entire length of the pipe was defined as the change in the inner diameter. The variation in the inner diameter of the pipe of this example was 0.4%.

【0042】実施例2 直径350mm,長さ1000mmの2分割金型を用い
たこと以外は実施例1と同じ樹脂原料と装置を用いてフ
ェノール樹脂パイプを成形した。得られたパイプは、形
状を保ったままで硬化することができ、1500℃で炭
素化すると、収縮による寸法の変化以外は、外観上の変
化なく、均一な肉厚の欠縮のないガラス状炭素製パイプ
とすることができた。また、このパイプの内径の変動は
0.8%であった。
Example 2 A phenol resin pipe was molded using the same resin raw material and apparatus as in Example 1 except that a two-piece mold having a diameter of 350 mm and a length of 1000 mm was used. The obtained pipe can be cured while keeping its shape, and when carbonized at 1500 ° C., there is no change in appearance except for the change in dimensions due to shrinkage, and there is no shrinkage of uniform wall thickness. It could be made as a pipe. The variation in the inner diameter of this pipe was 0.8%.

【0043】実施例3 触媒濃度あるいは重合時間を変えて、硬化反応性と流動
性の異なるフェノール樹脂を調製し、実施例1と同じ装
置を用いて樹脂パイプを成形し、空気中230℃で48
時間のキュアリングをおこない、さらに1500℃で炭
素化した。原料樹脂の特性[硬化性(T10)及び流動
性]と、得られたガラス状炭素製パイプの特性を表1に
示す。
Example 3 A phenolic resin having different curing reactivity and fluidity was prepared by changing the catalyst concentration or the polymerization time, and a resin pipe was molded using the same apparatus as in Example 1;
Time curing was performed, and carbonization was further performed at 1500 ° C. Table 1 shows the properties [curability (T10) and fluidity] of the raw material resin and the properties of the obtained glassy carbon pipe.

【0044】[0044]

【表1】 [Table 1]

【0045】No.1〜4は本発明に係る樹脂を用いた
実施例であり、いずれの場合にも、内径の変動が1.0
%以内であり、亀裂のないガラス状炭素製パイプを得る
ことができた。
No. Examples 1 to 4 are examples using the resin according to the present invention.
%, And a crack-free glassy carbon pipe could be obtained.

【0046】No.5〜7は本発明に係る条件を満足し
ない樹脂を用いた比較例であり、No.5の樹脂は、T
10が4分で硬化速度が大き過ぎるため、円筒形状に変
形する前に硬化が完了し、均一な肉厚のパイプを得るこ
とはできなかった。また、樹脂からのガス抜きも不十分
であり、炭素化後のパイプにも割れが発生しており、パ
イプ内径も不均一であった。
No. Nos. 5 to 7 are comparative examples using resins that do not satisfy the conditions according to the present invention. The resin of No. 5 is T
Since the curing speed was too high in 10 minutes for 4 minutes, the curing was completed before it was deformed into a cylindrical shape, and a pipe having a uniform thickness could not be obtained. In addition, degassing from the resin was insufficient, cracks occurred in the pipe after carbonization, and the inside diameter of the pipe was uneven.

【0047】No.6の樹脂はT10は13分で本発明
の範囲内にあるが、円板式流れ試験値が58mmで本発
明の範囲よりも小さい比較例であり、原料樹脂の流動性
が小さいため、硬化完了時点においても、円筒形状に成
形されておらず、均一な肉厚のパイプを得ることはでき
なかった。また、樹脂からのガス抜きも不十分であり、
樹脂成形体には多くの気泡が含まれていた。炭素化処理
後のパイプにも割れが発生した。
No. Resin No. 6 is within the range of the present invention at T10 of 13 minutes, but is a comparative example having a disc-type flow test value of 58 mm, which is smaller than the range of the present invention. Also, the pipe was not formed into a cylindrical shape, and a pipe having a uniform thickness could not be obtained. In addition, degassing from the resin is insufficient,
The resin molding contained many air bubbles. Cracks also occurred in the pipe after the carbonization treatment.

【0048】No.7の樹脂は、T10が62分と、硬
化時間が長過ぎる場合の比較例であり、成形時に発生し
たガスにより成形体内部に大量の発泡が生じ、パイプ内
径にも著しく大きな不均一が生じた。また、キュアリン
グと炭素化時に亀裂と発泡が生じたため、ガラス状炭素
製パイプを得ることはできなかった。
No. Resin No. 7 was a comparative example in which the curing time was too long, with T10 being 62 minutes, and a large amount of foaming occurred inside the molded body due to the gas generated at the time of molding, and significantly large unevenness also occurred in the pipe inner diameter. . In addition, cracks and foaming occurred during curing and carbonization, so that a glassy carbon pipe could not be obtained.

【0049】実施例4 T10への到達時間が115℃において24分であり、
100℃におけるJIS−K6911の円板式流れ試験
値が104mmである粉末状フェノール樹脂を原料とし
て用いたこと以外は、実施例1と同様にして熱硬化性樹
脂成形体を製造した。
Example 4 The time to reach T10 was 24 minutes at 115 ° C.
A thermosetting resin molded body was manufactured in the same manner as in Example 1 except that a powdery phenol resin having a disk-type flow test value of JIS-K6911 of 104 mm at 100 ° C was used as a raw material.

【0050】このパイプを230℃で48時間のキュア
リングをおこなったが、キュアによる黒化以外に割れや
空隙などの外観の変化は認められなかった。さらに、1
500℃で炭素化処理をおこなったところ、キュアリン
グ時の形状を保ったガラス状炭素製パイプを得ることが
できた。
The pipe was cured at 230 ° C. for 48 hours, but no change in appearance such as cracks or voids was observed other than blackening due to curing. In addition, 1
When the carbonization treatment was performed at 500 ° C., a glassy carbon pipe having the shape at the time of curing could be obtained.

【0051】ところで、樹脂原料が内包するガス成分及
び成形中に発生するガス成分が完全に除かれて緻密な樹
脂パイプが成形された場合、成形されたパイプの嵩密度
と樹脂の真密度は一致すると考えられる。従って、樹脂
パイプの嵩密度の樹脂の真密度に対する比(比密度)
は、成形性の指標となる。本実施例で得られた熱硬化性
樹脂成形体の比密度は0.99を超えていた。よって本
実施例で得られた樹脂パイプは、樹脂原料が内包するガ
ス成分及び成形中に発生するガス成分がほぼ完全に除去
されたものと考えられる。また、この実施例で得られた
炭素パイプの内径の変動は0.1%であった。
When a dense resin pipe is formed by completely removing the gas component contained in the resin raw material and the gas component generated during the molding, the bulk density of the molded pipe and the true density of the resin match. It is thought that. Therefore, the ratio of the bulk density of the resin pipe to the true density of the resin (specific density)
Is an index of moldability. The specific density of the thermosetting resin molded product obtained in this example was more than 0.99. Therefore, it is considered that the resin pipe obtained in the present example had gas components contained in the resin raw material and gas components generated during molding almost completely removed. The variation in the inner diameter of the carbon pipe obtained in this example was 0.1%.

【0052】実施例5 直径350mm,長さ1000mmの2分割金型を用い
たこと以外は実施例4と同じ樹脂原料と装置を用いてフ
ェノール樹脂パイプを成形した。このパイプは、形状を
保ったままで硬化することができ、1500℃で炭素化
すると、収縮による寸法の変化以外は、外観上の変化な
く、均一な肉厚の欠縮のないガラス状炭素製パイプとす
ることができた。
Example 5 A phenol resin pipe was formed using the same resin raw material and apparatus as in Example 4 except that a two-piece mold having a diameter of 350 mm and a length of 1000 mm was used. This pipe can be hardened while maintaining its shape, and when carbonized at 1500 ° C, there is no change in appearance except for dimensional change due to shrinkage, and there is no shrinkage of uniform thickness and glass-like carbon pipe. And could be.

【0053】本実施例で得られた熱硬化性樹脂成形体の
比密度は0.99を超えており、実施例4の炭素パイプ
と同様、成形後のパイプの外観は良好であった。またこ
のパイプの内径の変動は0.4%であった。
The specific density of the thermosetting resin molded article obtained in this example exceeded 0.99, and the appearance of the molded pipe was good as in the case of the carbon pipe of Example 4. The variation in the inner diameter of this pipe was 0.4%.

【0054】実施例6 触媒濃度あるいは重合時間を変えて、硬化反応性と流動
性の異なるフェノール樹脂を調製し、実施例1と同じ装
置を用いて樹脂パイプを成形し、空気中230℃で48
時間のキュアリングを行い、さらに1500℃で炭素化
した。樹脂の性状とガラス状炭素製パイプの製造の結果
を表2に示す。
Example 6 A phenolic resin having different curing reactivity and fluidity was prepared by changing the catalyst concentration or the polymerization time, and a resin pipe was molded using the same apparatus as in Example 1;
Curing was performed for an hour, and carbonization was further performed at 1500 ° C. Table 2 shows the properties of the resin and the results of manufacturing the glassy carbon pipe.

【0055】[0055]

【表2】 [Table 2]

【0056】No.1〜5は本発明に係る樹脂を用いた
実施例であり、いずれの場合にも、内径の変動が1%以
内であり、且つ亀裂のないガラス状炭素製パイプを得る
ことができた。
No. Examples 1 to 5 are examples using the resin according to the present invention. In each case, a pipe made of glassy carbon having a variation in inner diameter of 1% or less and having no crack was obtained.

【0057】No.6〜9は本発明に係る条件を満足し
ない樹脂を用いた比較例であり、No.6とNo.8の
樹脂は、T10が4分で硬化速度が大き過ぎるため、円
筒形状に変形する前に硬化が完了し、均一な肉厚のパイ
プを得ることはできなかった。また、樹脂からのガス抜
きも不十分であり、炭素化後のパイプにも割れが発生し
ており、パイプ内径も不均一であった。
No. Nos. 6 to 9 are comparative examples using resins that do not satisfy the conditions according to the present invention. 6 and no. For the resin No. 8, the curing speed was too high at T10 of 4 minutes, so that the curing was completed before the resin was deformed into a cylindrical shape, and a pipe having a uniform thickness could not be obtained. In addition, degassing from the resin was insufficient, cracks occurred in the pipe after carbonization, and the inside diameter of the pipe was uneven.

【0058】No.7の樹脂は、T10が63分と、硬
化時間が長過ぎる場合の比較例であり、成形時に発生し
たガスにより成形体内部に大量の発泡が生じ、パイプ内
径にも著しく大きな不均一が生じた。また、キュアリン
グと炭素化時に亀裂と発泡が生じたため、ガラス状炭素
製パイプを得ることはできなかった。
No. Resin No. 7 is a comparative example in which T10 is 63 minutes and the curing time is too long, and a large amount of foaming occurs inside the molded body due to gas generated at the time of molding, and extremely large unevenness also occurs in the pipe inner diameter. . In addition, cracks and foaming occurred during curing and carbonization, so that a glassy carbon pipe could not be obtained.

【0059】No.9の樹脂はT10は8分で本発明の
範囲内にあるが、円板式流れ試験値が58mmで本発明
の範囲よりも小さい比較例であり、原料樹脂の流動性が
小さいため、硬化完了時点においても、円筒形状に成形
されておらず、均一な肉厚のパイプを得ることはできな
かった。また、樹脂からのガス抜きも不十分であり、樹
脂成形体には多くの気泡が含まれていた。炭素化処理後
のパイプにも割れが発生した。
No. The resin of No. 9 is within the range of the present invention at T10 of 8 minutes, but is a comparative example having a disk-type flow test value of 58 mm, which is smaller than the range of the present invention. Also, the pipe was not formed into a cylindrical shape, and a pipe having a uniform thickness could not be obtained. Further, degassing from the resin was insufficient, and the resin molded body contained many air bubbles. Cracks also occurred in the pipe after the carbonization treatment.

【0060】[0060]

【発明の効果】本発明は以上のように構成されているの
で、半導体製造用CVD装置のインナーチューブをはじ
めとするガラス状炭素製パイプであって、CVD装置の
汚染の原因となる充填材を含まないことと高い耐熱・耐
食性が要求される大口径部材として好適なガラス状炭素
製パイプおよびその製造方法が提供できることとなっ
た。
Since the present invention is constructed as described above, the present invention relates to a glassy carbon pipe including an inner tube of a CVD apparatus for manufacturing a semiconductor, and a filler which causes contamination of the CVD apparatus. It is possible to provide a glassy carbon pipe suitable as a large-diameter member that does not contain the component and that is required to have high heat resistance and corrosion resistance, and a method for producing the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法に用いることのできる遠心成形装置
を示す説明図である。
FIG. 1 is an explanatory view showing a centrifugal molding apparatus that can be used in the method of the present invention.

【図2】本発明方法に用いることのできる成形用金型
(a)と、上記金型により得られるガラス状炭素製パイ
プ(b)を示す説明図である。
FIG. 2 is an explanatory view showing a molding die (a) that can be used in the method of the present invention and a glassy carbon pipe (b) obtained by the above-mentioned die.

【符号の説明】[Explanation of symbols]

1 金型 2 ヒータ 3 熱硬化性樹脂 4 フランジ付き樹脂パイプの成形用金型 5 フランジ付き樹脂パイプ DESCRIPTION OF SYMBOLS 1 Mold 2 Heater 3 Thermosetting resin 4 Mold for molding resin pipe with flange 5 Resin pipe with flange

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西澤 節 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 Fターム(参考) 4G032 AA07 AA13 BA04 GA06  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Setsu Nishizawa 1-5-5 Takatsukadai, Nishi-ku, Kobe F-term in Kobe Steel Research Institute Kobe Research Institute (reference) 4G032 AA07 AA13 BA04 GA06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 熱硬化性樹脂を含むパイプ原料を遠心成
形法により熱硬化性樹脂成形体とし、上記熱硬化性樹脂
成形体に炭素化処理を施すことによりガラス状炭素製パ
イプを製造する方法であって、 上記パイプ原料の熱硬化性樹脂として、115℃におけ
る硬化度10%(T10)の到達時間が5〜60分間で
ある硬化性を有するとともに、JIS−K6911の円
板式流れ試験において100℃で60mm以上の流動性
を有する熱硬化性樹脂を用いることを特徴とするガラス
状炭素製パイプの製造方法。
1. A method for producing a glassy carbon pipe by forming a pipe material containing a thermosetting resin into a thermosetting resin molded article by centrifugal molding, and subjecting the thermosetting resin molded article to a carbonization treatment. The thermosetting resin as a raw material of the pipe has a curability of reaching a curing degree of 10% (T10) at 115 ° C. of 5 to 60 minutes, and has a hardness of 100 in a disk flow test of JIS-K6911. A method for producing a glassy carbon pipe, characterized by using a thermosetting resin having a fluidity of 60 mm or more at a temperature of ° C.
【請求項2】 前記パイプ原料の99重量%以上が熱硬
化性樹脂からなる請求項1に記載の製造方法。
2. The method according to claim 1, wherein 99% by weight or more of the raw material for the pipe is made of a thermosetting resin.
【請求項3】 直径が15mm以上であり、且つ実質的
に充填材を含有していないことを特徴とするガラス状炭
素製パイプ。
3. A glassy carbon pipe having a diameter of 15 mm or more and substantially containing no filler.
JP33631398A 1998-11-26 1998-11-26 Method for producing glassy carbon pipe Expired - Fee Related JP3863308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33631398A JP3863308B2 (en) 1998-11-26 1998-11-26 Method for producing glassy carbon pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33631398A JP3863308B2 (en) 1998-11-26 1998-11-26 Method for producing glassy carbon pipe

Publications (2)

Publication Number Publication Date
JP2000159575A true JP2000159575A (en) 2000-06-13
JP3863308B2 JP3863308B2 (en) 2006-12-27

Family

ID=18297832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33631398A Expired - Fee Related JP3863308B2 (en) 1998-11-26 1998-11-26 Method for producing glassy carbon pipe

Country Status (1)

Country Link
JP (1) JP3863308B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100755575B1 (en) 2004-03-24 2007-09-06 가부시키가이샤 고베 세이코쇼 Glass-like carbon deformed molded article, process for producing the same, and joint structure for jointing a connecting member to a glass-like carbon hollow molded article
KR20190084636A (en) * 2018-01-09 2019-07-17 중앙대학교 산학협력단 Glassycarbon roll-type mold manufacturing method for micro and nano pattern formation and Glassycarbon roll-type mold manufactured by the method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100755575B1 (en) 2004-03-24 2007-09-06 가부시키가이샤 고베 세이코쇼 Glass-like carbon deformed molded article, process for producing the same, and joint structure for jointing a connecting member to a glass-like carbon hollow molded article
KR20190084636A (en) * 2018-01-09 2019-07-17 중앙대학교 산학협력단 Glassycarbon roll-type mold manufacturing method for micro and nano pattern formation and Glassycarbon roll-type mold manufactured by the method
KR102045138B1 (en) 2018-01-09 2019-11-14 중앙대학교 산학협력단 Glassycarbon roll-type mold manufacturing method for micro and nano pattern formation and Glassycarbon roll-type mold manufactured by the method

Also Published As

Publication number Publication date
JP3863308B2 (en) 2006-12-27

Similar Documents

Publication Publication Date Title
KR100427423B1 (en) Inner tube for cvd apparatus
US20050230859A1 (en) Glass-like carbon deformed molded article, process for producing the same, and joint structure for jointing a connecting member to a glass-like carbon hollow molded article
KR19990088371A (en) Process for manufacturing a product of glassy carbon
JP3863308B2 (en) Method for producing glassy carbon pipe
TW200402404A (en) Method for manufacturing silicon carbide sintered compact jig and silicon carbide sintered compact jig manufactured by the method
JP2001335366A (en) Glassy carbon tube precursor and manufacturing method for the same
JPH1017382A (en) Production of silicon carbide formed body
KR100600919B1 (en) Method for producing glass-like carbon pipe, and glass-like carbon pipe produced by such method
US20060240287A1 (en) Dummy wafer and method for manufacturing thereof
JP3483920B2 (en) Method for producing high-purity β-type silicon carbide sintered body for semiconductor production equipment
KR102045138B1 (en) Glassycarbon roll-type mold manufacturing method for micro and nano pattern formation and Glassycarbon roll-type mold manufactured by the method
JPH04209781A (en) Production of material coated with glassy carbon
JPH0615663A (en) Cylindrical fluororesin molded piece and production thereof
JP3836621B2 (en) Method for producing glassy carbon pipe
RU2558876C1 (en) Silicon carbide reinforced with heat-resistant fibres and method of producing from it hermetic thin-wall products
JPH06211574A (en) Production of silicon carbide sintered compact for producing semiconductor
JP2001334539A (en) Method for manufacturing phenol resin pipe
JP4600703B2 (en) Method for producing glassy carbon
JP2000154063A (en) Production of silicon carbide sintered body
JPH07277826A (en) Production of glassy carbon molded body
JP3198120B2 (en) Method for producing glassy carbon plate
JP2006069819A (en) Bent pipe made from glassy carbon and its forming method
JP4171220B2 (en) Method for producing glassy carbon molded product
JP4527705B2 (en) Manufacturing method of glassy carbon cylindrical body for semiconductor manufacturing apparatus chamber and glassy carbon cylindrical body for semiconductor manufacturing apparatus chamber obtained by the manufacturing method
JP2006045011A (en) Glassy carbon-made component, and its production method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060705

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060928

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees