JPH0615663A - Cylindrical fluororesin molded piece and production thereof - Google Patents

Cylindrical fluororesin molded piece and production thereof

Info

Publication number
JPH0615663A
JPH0615663A JP19911392A JP19911392A JPH0615663A JP H0615663 A JPH0615663 A JP H0615663A JP 19911392 A JP19911392 A JP 19911392A JP 19911392 A JP19911392 A JP 19911392A JP H0615663 A JPH0615663 A JP H0615663A
Authority
JP
Japan
Prior art keywords
mold
cylindrical
powder
linear expansion
expansion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19911392A
Other languages
Japanese (ja)
Inventor
Keizo Mizobe
敬三 溝部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP19911392A priority Critical patent/JPH0615663A/en
Publication of JPH0615663A publication Critical patent/JPH0615663A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/006Pressing and sintering powders, granules or fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/10Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To form a molded piece having an MD/CD ratio <=1.0 between a linear expansion coefficient MD in parallel to an axis of a cylinder and a coefficient CD vertical to the axis and a dispersion of + or -0.005 or less in apparent specific gravity by a method wherein fluororesin powder is charged between a mold and a cylindrical rubber mold, which are coaxially disposed, the powder is vertically pressurized to be preformed into a cylinder, and the molded piece. CONSTITUTION:A round bar-form mold 2 and a cylindrical rubber mold 3 are coaxially fitted into a lower mold 1. A space between the molds 2, 3 is filled with fluororesin powder 4, thereafter being sealed by fitting an upper mold 5. These are put in a pressurizing device 9 to be pressurized by a pressurizing medium 11 injected through a drain 10. Thus, the powder 4 is axially and vertically pressurized to be preformed into a cylinder. The preform is removed, heated, and calcined to form a cylindrical fluororesin molded piece. In this method, the fluororesin molded piece has an MD/CD ratio <=1.0 between a linear expansion coefficient MD in a direction (a) in parallel to a cylinder's axis X and a linear expansion coefficient CD in a direction (b) vertical to the axis and a dispersion of + or -0.005 or less in apparent density on the both ends in the direction (a), thus being improved in wearability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、筒状フツ素樹脂成形体
とその製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tubular fluoroplastic molding and a method for producing the same.

【0002】[0002]

【従来の技術】従来より、フツ素樹脂の中でも、特にポ
リテトラフルオロエチレンは、そのすぐれた撥水性、撥
油性、非粘着性、低摩擦性、耐薬品性、安全性などの点
から、成形品、シ―ト、塗料などの種々の形態に加工さ
れ、化学プラントの耐蝕材料、非粘着コ―テイングを行
つた各種家庭用品、軸受けなどの低摩擦性が要求される
機械部品、さらに医療、レジヤ―用品などの幅広い分野
に使用されている。
2. Description of the Related Art Conventionally, among fluororesins, polytetrafluoroethylene, in particular, has been excellent in water repellency, oil repellency, non-adhesiveness, low friction, chemical resistance and safety. Products, sheets, paints, etc., processed into various forms, corrosion resistant materials for chemical plants, non-adhesive coated household products, mechanical parts such as bearings that require low friction, medical treatment, It is used in a wide range of fields such as cash register products.

【0003】このポリテトラフルオロエチレンは、溶融
粘度が非常に高いため、射出成形法では加工できず、一
般に、圧縮成形法により加工されている。圧縮成形法と
は、所定の金型に充てんしたフツ素樹脂粉末をプレスに
より圧縮して予備成形し、この成形物をついで熱風乾燥
炉の中で焼成するものである。
Since this polytetrafluoroethylene has a very high melt viscosity, it cannot be processed by an injection molding method, but is generally processed by a compression molding method. The compression molding method is a method in which fluorine resin powder filled in a predetermined mold is compressed by a press to be preformed, and the molded product is then fired in a hot air drying furnace.

【0004】ところで、近年、フツ素樹脂成形体の使用
分野の拡大に伴い、特殊な条件下での使用検討やそれに
応じた厳密な物性が要求されてきており、特に、ピスト
ンの摺動部材、ピストンリング、シ―ルリングなどに応
用される筒状ないしはリング状のフツ素樹脂成形体が求
められている。
By the way, in recent years, along with the expansion of the field of use of fluorocarbon resin moldings, consideration of use under special conditions and strict physical properties have been demanded. Particularly, sliding members for pistons, There is a demand for tubular or ring-shaped fluororesin moldings applied to piston rings, seal rings and the like.

【0005】このような成形体は、前記の圧縮成形法に
際し、芯型として円筒状金型を用いて、その軸方向より
加圧して筒状の成形体を作製することにより、またこれ
をさらにリング状に裁断することにより、製造される。
この成形体の特徴として、円筒軸つまり圧縮成形時の加
圧方向に対し、平行な方向の線膨張係数が、垂直な方向
の線膨張係数よりも大きくなることが知られている。
In the above compression molding method, such a molded body is produced by using a cylindrical metal mold as a core die and pressurizing it in the axial direction to form a cylindrical molded body. It is manufactured by cutting into a ring shape.
As a characteristic of this molded product, it is known that the linear expansion coefficient in a direction parallel to the cylindrical axis, that is, the compression direction in compression molding is larger than the linear expansion coefficient in the vertical direction.

【0006】[0006]

【発明が解決しようとする課題】しかるに、この従来公
知のフツ素樹脂成形体では、これを軸方向のクリアラン
スがそれほど大きくないピストンなどに装着したとき、
軸方向と平行な方向の線膨張係数が大きいために、稼動
時の系内温度の上昇で軸方向に膨張して、異常摩耗やシ
―ル低下などの問題を起こすことがあつた。
However, in this conventionally known fluorine resin molded body, when it is mounted on a piston or the like having a not so large axial clearance,
Due to the large linear expansion coefficient in the direction parallel to the axial direction, the temperature in the system during operation may cause axial expansion, causing problems such as abnormal wear and reduced seal.

【0007】本発明は、上記従来の事情に鑑み、軸方向
のクリアランスがそれほど大きくないピストンなどに装
着したときでも、熱膨張による異常摩耗やシ―ル低下な
どの問題を生じることのない筒状フツ素樹脂成形体とそ
の製造法を提供することを目的としている。
In view of the above-mentioned conventional circumstances, the present invention has a cylindrical shape which does not cause problems such as abnormal wear due to thermal expansion and a decrease in seal even when mounted on a piston or the like having a small axial clearance. It is an object of the present invention to provide a fluorine resin molded body and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記の目
的を達成するために鋭意検討した結果、ポリテトラフル
オロエチレン粉末の圧縮成形に際し、特定の加圧方式を
採用して筒状に予備成形すると、その後の加熱焼成で、
従来とは線膨張係数の方向性の異なるものとなつて、軸
方向のクリアランスがそれほど大きくないピストンなど
に装着したときでも、熱膨張による異常摩耗やシ―ル低
下などの問題が起こらなくなることを知り、本発明を完
成するに至つた。
Means for Solving the Problems As a result of intensive studies to achieve the above-mentioned object, the inventors of the present invention have adopted a specific pressurizing method to form a cylindrical shape in the compression molding of polytetrafluoroethylene powder. When preformed, the subsequent heating and firing,
Since the linear expansion coefficient has a different directionality from the conventional one, even if it is mounted on a piston with a small axial clearance, problems such as abnormal wear due to thermal expansion and seal decrease will not occur. As a result, I came to complete the present invention.

【0009】すなわち、本発明の第1は、円筒軸に対
し、平行な方向の線膨張係数をMD、垂直な方向の線膨
張係数をCDとしたとき、MD/CD≦1.0の関係に
あることを特徴とする筒状フツ素樹脂成形体に係り、こ
の成形体において、特に円筒軸に平行な方向における一
端側と他端側との間の見掛け密度のばらつきが、その平
均値に対し±0.005以下である構成、ならびにこの
成形体がポリテトラフルオロエチレンからなる構成を、
それぞれ好適な態様としている。
That is, the first aspect of the present invention is such that when the linear expansion coefficient in the direction parallel to the cylinder axis is MD and the linear expansion coefficient in the vertical direction is CD, MD / CD≤1.0. According to a tubular fluorocarbon resin molded body characterized in that, in this molded body, the variation of the apparent density between one end side and the other end side in the direction parallel to the cylindrical axis is especially A structure of ± 0.005 or less, and a structure in which this molded body is made of polytetrafluoroethylene,
Each is made into a suitable mode.

【0010】また、本発明の第2は、金型と、これと同
軸の筒状ゴム型との間に、フツ素樹脂粉末を充てんし、
この粉末を上記金型の軸方向に対し垂直な方向から上記
ゴム型を介して加圧して筒状に予備成形し、その後加熱
焼成して上記金型から離型することを特徴とする筒状フ
ツ素樹脂成形体の製造法に係るものである。
A second aspect of the present invention is to fill fluorine resin powder between a die and a cylindrical rubber die coaxial with the die,
This powder is pressed from the direction perpendicular to the axial direction of the mold through the rubber mold to preform it into a cylinder, and then heated and fired to release it from the mold. The present invention relates to a method for manufacturing a fluorine resin molded body.

【0011】[0011]

【発明の構成・作用】本発明の筒状フツ素樹脂成形体の
製造法においては、まず、図1に示すように、下型1
に、鉄製などの円筒状または丸棒状金型2と、これと同
軸の筒状ゴム型3とを嵌合し、この金型2とゴム型3と
の間に、フツ素樹脂粉末4を充てんしたのち、上型5を
嵌合して密閉する。
In the method for manufacturing a tubular fluoroplastic molding of the present invention, first, as shown in FIG.
Then, a cylindrical or round rod-shaped mold 2 made of iron or the like and a cylindrical rubber mold 3 coaxial therewith are fitted, and a fluorine resin powder 4 is filled between the mold 2 and the rubber mold 3. After that, the upper mold 5 is fitted and sealed.

【0012】筒状ゴム型3としては、天然ゴム、合成ゴ
ム、クロロプレンゴム、ウレタンゴム、シリコ―ンゴ
ム、ニトリルゴムなどからなるものが挙げられ、圧力伝
達が可能な弾性体であればいかなる材質のものであつて
もよいが、通常は、ゴム硬度(Hs)が50〜100、
ゴムの伸びが100%以上、ゴムの厚さが0.1〜3mm
のものが好ましく用いられる。
Examples of the tubular rubber mold 3 include natural rubber, synthetic rubber, chloroprene rubber, urethane rubber, silicone rubber, nitrile rubber, and the like, and any material can be used as long as it is an elastic body capable of transmitting pressure. The rubber hardness (Hs) is usually 50 to 100,
Rubber elongation is 100% or more, rubber thickness is 0.1-3 mm
Those of are preferably used.

【0013】フツ素樹脂粉末4は、モ―ルデイングパウ
ダ―(圧縮成形用粉末をベ―スとしたもの)、あるいは
フアインパウダ―(ペ―スト押出用粉末をベ―スとした
もの)のどちらでもよい。樹脂の種類は、ポリテトラフ
ルオロエチレンが好ましく用いられるが、他のフツ素樹
脂、たとえばテトラフルオロエチレン−ヘキサフルオロ
プロピレン共重合体、テトラフルオロエチレン−パ―フ
ルオロアルキルビニルエ―テル共重合体、エチレン−テ
トラフルオロエチレン共重合体、ポリクロロトリフルオ
ロエチレン、エチレン−クロロトリフルオロエチレン共
重合体、あるいはその変性重合体または2種以上のブレ
ンド物などを用いてもよい。
The fluorine resin powder 4 is either molding powder (based on compression molding powder) or fine powder (based on paste extrusion powder). But it's okay. As the type of resin, polytetrafluoroethylene is preferably used, but other fluorine resins such as tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkylvinylether copolymer, ethylene -Tetrafluoroethylene copolymer, polychlorotrifluoroethylene, ethylene-chlorotrifluoroethylene copolymer, modified polymers thereof or blends of two or more thereof may be used.

【0014】このフツ素樹脂粉末4は、目的に応じて、
上記のフツ素樹脂に各種フイラ―、たとえば、補強用フ
イラ―、摺動性フイラ―、導電性フイラ―、熱伝導性フ
イラ―、吸着性フイラ―、機能性フイラ―などの1種ま
たは2種以上を、タンブラ―ミキサ―、ヘンシエルミキ
サ―、ス―パ―ミキサ―などの公知の混合機を用いて、
均一に混合したものであつてもよい。
This fluorine resin powder 4 is used according to the purpose.
One or two kinds of the above fluorocarbon resins such as various fillers, for example, reinforcing filler, sliding filler, conductive filler, heat conductive filler, adsorptive filler, functional filler, etc. Using the known mixers such as tumbler mixer, Hensiel mixer, and super mixer,
It may be a homogeneous mixture.

【0015】補強用フイラ―としては、ガラス繊維、炭
素繊維、アラミド繊維、アルミナ繊維、ボロン繊維、ガ
ラスビ―ズ、炭化ケイ素ウイスカ―、窒化ケイ素ウイス
カ―、チタン酸カリウムウイスカ―などが挙げられる。
Examples of the reinforcing filler include glass fibers, carbon fibers, aramid fibers, alumina fibers, boron fibers, glass beads, silicon carbide whiskers, silicon nitride whiskers, potassium titanate whiskers and the like.

【0016】摺動性フイラ―としては、黒鉛、二硫化モ
リブデン、二硫化タングステン、窒化ホウ素、雲母、芳
香族ポリエステル樹脂、シリコ―ン樹脂、フツ化カルシ
ウム、フツ化黒鉛、ガラスフレ―ク、カ―ボンブラツ
ク、グラフアイト、青銅などが挙げられる。
As the slidable filler, graphite, molybdenum disulfide, tungsten disulfide, boron nitride, mica, aromatic polyester resin, silicone resin, calcium fluoride, graphite fluoride, glass flake, car Examples include bombrads, grafites, and bronze.

【0017】導電性フイラ―としては、各種金属粉、金
属フレ―ク、金属繊維などが、熱伝導性フイラ―として
は、酸化ベリリウム、窒化アルミニウム、アルミナ、マ
グネシア、チタニアなどが、それぞれ挙げられる。
Examples of the conductive filler include various metal powders, metal flakes and metal fibers, and examples of the thermal conductive filler include beryllium oxide, aluminum nitride, alumina, magnesia and titania.

【0018】吸着性フイラ―としては、シリカゲル、ゼ
オライト、タルク、ベントナイト、チタン酸カリウムな
どが、機能性フイラ―としては、炭酸カルシウム、チタ
ン酸バリウム、カオリン、クレ―などが、それぞれ挙げ
られる
Examples of the adsorptive filler include silica gel, zeolite, talc, bentonite and potassium titanate, and examples of the functional filler include calcium carbonate, barium titanate, kaolin and clay.

【0019】このように金型2とゴム型3との間に充て
んされ、上下型1,5で密閉状態とされたフツ素樹脂粉
末4は、ついで、図1に示すように、高圧円筒容器6と
上下蓋7,8よりなる加圧装置9内において、ドレイン
10より圧入される腐食抑制剤を添加した水、油、空気
などの圧力媒体11により、通常100〜1,000Kg
/cm2 程度の圧力で加圧される。
The fluorine resin powder 4 thus filled between the mold 2 and the rubber mold 3 and sealed in the upper and lower molds 1 and 5 is then, as shown in FIG. In the pressurizing device 9 consisting of 6 and the upper and lower lids 7 and 8, the pressure medium 11 such as water, oil or air, which is press-fitted from the drain 10 to which the corrosion inhibitor is added, is usually 100 to 1,000 kg
Pressurized with a pressure of about / cm 2 .

【0020】ここで、フツ素樹脂粉末4にかかる圧は、
金型2の軸方向が金型自身によつて拘束されるために、
軸方向に対して垂直な方向のみから、ゴム型3を介して
印加されることになり、この印加によつて上記粉末4は
金型2の周面に圧着されて、筒状に予備成形される。
The pressure applied to the fluorine resin powder 4 is
Since the axial direction of the mold 2 is restrained by the mold itself,
The powder 4 is applied only from the direction perpendicular to the axial direction through the rubber mold 3. By this application, the powder 4 is pressure-bonded to the peripheral surface of the mold 2 and preformed into a tubular shape. It

【0021】なお、図1では、金型2の外側に筒状ゴム
型3を配置し、ゴム型3の外側から加圧する構成をとつ
ているが、これとは逆に、金型2を筒状にして、その内
部に筒状ゴム型3を配置させ、両型2,3の間に充てん
したフツ素樹脂粉末4をゴム型3の内側から加圧して、
上記と同様の筒状の予備成形物を得るようにしてもよ
い。
In FIG. 1, the cylindrical rubber mold 3 is arranged outside the mold 2 and pressure is applied from the outside of the rubber mold 3. On the contrary, the mold 2 is cylindrical. Then, the cylindrical rubber mold 3 is placed inside the mold, and the fluorine resin powder 4 filled between the molds 2 and 3 is pressed from the inside of the rubber mold 3,
You may make it obtain the cylindrical preform similar to the above.

【0022】このようにして筒状に予備成形したのち、
加圧装置9内から取り出し、ゴム型3および上下型1,
5を取りはずして、通常360〜400℃の温度に加熱
焼成し、この焼成後、金型2から離型することにより、
目的とする筒状フツ素樹脂成形体が得られる。
After being preformed into a tubular shape in this manner,
It is taken out from the pressurizing device 9, and the rubber die 3 and the upper and lower die 1,
5 is removed and heated and baked at a temperature of usually 360 to 400 ° C., and after the baking, the mold 2 is released.
A target tubular fluoroplastic molded product is obtained.

【0023】この筒状フツ素樹脂成形体は、図2に示す
ように、中空部2sを有する成形体40からなり、円筒
軸xに平行な方向aの線膨張係数をMD、垂直な方向b
の線膨張係数をCDとしたとき、MD/CD≦1.0の
関係、特に好ましくは0.80≦MD/CD≦1.0の
関係にあることを特徴としている。
As shown in FIG. 2, this tubular fluorocarbon resin molded product is composed of a molded product 40 having a hollow portion 2s, and the linear expansion coefficient in the direction a parallel to the cylindrical axis x is MD and the direction b is vertical.
It is characterized in that MD / CD ≦ 1.0, particularly preferably 0.80 ≦ MD / CD ≦ 1.0, where CD is the coefficient of linear expansion.

【0024】このため、この成形体40をそのまま、あ
るいは所定厚みのリング状に裁断して、これを軸方向へ
のクリアランスがそれほど大きくないピストンなどに装
着したとき、稼動時に系内温度が上昇しても、軸方向に
平行な方向の線膨張係数が小さいことから、同方向への
膨張率が小さくなつて、従来のような異常摩耗やシ―ル
低下などの問題をきたすことがない。
Therefore, when the molded body 40 is cut as it is or cut into a ring having a predetermined thickness and mounted on a piston or the like having a small axial clearance, the system temperature rises during operation. However, since the coefficient of linear expansion in the direction parallel to the axial direction is small, the coefficient of expansion in the same direction is small, so that problems such as abnormal wear and reduction in seal as in the past do not occur.

【0025】また、この成形体40は、円筒軸xに平行
な方向aにおける一端側と他端側との間の見掛け密度の
ばらつきが、平均値に対し±0.005以下であるとい
う特徴をも備えている。これは、図1に示すように、軸
方向に垂直な方向から均等に加圧されて、一端側から他
端側への全長にわたつて均等な見掛け密度が得られるた
めであり、従来の圧縮成形法では両端側よりも中央側の
見掛け密度が異常に小さくなつて、加熱使用時に変形や
反りが発生するいつた問題があつたが、上記成形体40
によれば、このような問題をも回避できる。
The molded body 40 is characterized in that the variation in the apparent density between the one end side and the other end side in the direction a parallel to the cylindrical axis x is ± 0.005 or less with respect to the average value. Is also equipped. This is because, as shown in FIG. 1, uniform compression is applied from a direction perpendicular to the axial direction to obtain a uniform apparent density over the entire length from one end side to the other end side. In the molding method, the apparent density of the center side becomes abnormally smaller than that of both ends, which causes a problem that deformation and warpage occur during heating and use.
According to this, such a problem can be avoided.

【0026】[0026]

【発明の効果】以上のように、本発明では、フツ素樹脂
粉末を特定の加圧方式によつて筒状に予備成形したこと
により、従来とは線膨張係数の方向性の異なる筒状フツ
素樹脂成形体を提供でき、この成形体によれば軸方向へ
のクリアランスがそれほど大きくないピストンなどに装
着したときの熱膨張による異常摩耗やシ―ル低下などの
問題を回避することができる。
As described above, according to the present invention, the fluorine resin powder is preformed into a cylindrical shape by a specific pressurizing method, so that a cylindrical shape having a linear expansion coefficient different in directionality from the conventional one. It is possible to provide a base resin molded body, and according to this molded body, it is possible to avoid problems such as abnormal wear and seal reduction due to thermal expansion when mounted on a piston or the like having a small axial clearance.

【0027】[0027]

【実施例】つぎに、本発明の実施例を記載して、より具
体的に説明する。
EXAMPLES Next, examples of the present invention will be described to more specifically describe.

【0028】実施例1 ポリテトラフルオロエチレン(モ―ルデイングパウダ
―)の造粒粉末(平均粒子径350μm、嵩密度0.9
0g/cc)を、図1に示すように、直径14mm、長さ3
30mmの鉄製金型と、これと同軸の内径(直径)30m
m、厚さ1.5mm、長さ350mm、伸び500%の円筒
状ゴム型との間に充てんし、上下型で密閉系としたうえ
で、高圧装置内にセツトし、圧力媒体として水を用い
て、印加圧力300Kg/cm2 、保持時間5分で予備成形
した。
Example 1 Granulated powder of polytetrafluoroethylene (molding powder) (average particle size 350 μm, bulk density 0.9)
0 g / cc), as shown in Fig. 1, diameter 14 mm, length 3
30mm iron mold and 30m coaxial inner diameter (diameter)
m, thickness 1.5 mm, length 350 mm, elongation 500%, filled with a cylindrical rubber mold, the upper and lower molds form a closed system, and then set in a high pressure device, using water as a pressure medium. Then, pre-molding was performed under an applied pressure of 300 kg / cm 2 and a holding time of 5 minutes.

【0029】この予備成形後、高圧装置内から取り出
し、ゴム型および上下型を取りはずして、370℃で4
時間加熱焼成したのち、金型から離型して、図2に示す
ような外径(直径)21mm、内径(直径)14mm、長さ
300mmの円筒状フツ素樹脂成形体を作製した。
After this pre-molding, the rubber mold and the upper and lower molds were taken out from the inside of the high-pressure apparatus and the temperature was changed to 370 ° C.
After heating and firing for a period of time, the mold was released from the mold to produce a cylindrical fluororesin molded product having an outer diameter (diameter) of 21 mm, an inner diameter (diameter) of 14 mm and a length of 300 mm as shown in FIG.

【0030】この円筒状フツ素樹脂成形体につき、円筒
軸に対し平行な方向における一端側と他端側との間を1
5等分に区画し、各区画内の任意の部分を試料として抽
出し、これら試料の見掛け密度と線膨張係数とを、以下
の方法で測定した。その結果を、後記の表1に示す。
With respect to this cylindrical fluororesin molded article, the distance between one end and the other end in the direction parallel to the cylindrical axis is 1
The sample was divided into 5 equal parts, and an arbitrary portion in each of the parts was extracted as a sample, and the apparent density and linear expansion coefficient of these samples were measured by the following methods. The results are shown in Table 1 below.

【0031】<見掛け密度>JIS K−7112に準
じて、水中置換法で測定した。数値は、精度0.1mgの
天秤を用いて、小数点以下3桁まで求めた。
<Apparent Density> The apparent density was measured by an underwater substitution method according to JIS K-7112. Numerical values were obtained up to 3 digits after the decimal point using a balance with an accuracy of 0.1 mg.

【0032】<線膨張係数>試料を5mm角に切り出し、
円筒軸に対し、平行な方向の線膨張係数MDと、垂直な
方向の線膨張係数CDとを、熱機械的分析装置(セイコ
―電子工業株式会社製のTMA20)を用いて、測定温
度30〜250℃、昇温速度10℃/分の条件で測定
し、下記の式にしたがつて算出した。
<Linear expansion coefficient> A sample was cut into a 5 mm square,
The linear expansion coefficient MD in the direction parallel to the cylindrical axis and the linear expansion coefficient CD in the vertical direction were measured with a thermomechanical analyzer (TMA20 manufactured by Seiko Denshi Kogyo Co., Ltd.) at a measurement temperature of 30- The measurement was carried out under the conditions of 250 ° C. and a temperature rising rate of 10 ° C./min, and was calculated according to the following formula.

【0033】 K :装置定数 L :試料長(=5mm) T :温度 β0 :石英ガラスの線膨張係数 β :温度T1 −T2 における平均線膨張係数 ΔL:温度T1 −T2 における試料長の変位量[0033] K: apparatus constant L: sample length (= 5mm) T: Temperature beta 0: linear expansion coefficient of the quartz glass beta: average linear expansion coefficient in a temperature T 1 -T 2 ΔL: displacement of the sample length at a temperature T 1 -T 2 amount

【0034】[0034]

【表1】 [Table 1]

【0035】上記表1の結果から、本発明の円筒状フツ
素樹脂成形体は、MD/CD比が1.0以下であり、ま
た一端側から他端側への全長にわたる見掛け密度のばら
つきが平均値(=2.161)に対し±0.005と全
長にわたりほぼ均等であつて、熱膨張による問題や、熱
的な歪み,変形の起こりにくい、すぐれた特性を備えた
ものであることが明らかである。
From the results shown in Table 1 above, the cylindrical fluororesin molding of the present invention has an MD / CD ratio of 1.0 or less, and a variation in the apparent density over the entire length from one end to the other end. The average value (= 2.161) is ± 0.005, which is almost uniform over the entire length, and has excellent characteristics such that problems due to thermal expansion, thermal distortion and deformation do not easily occur. it is obvious.

【0036】比較例1 実施例1と同様のポリテトラフルオロエチレンの造粒粉
末を、内径(直径)21mm、長さ350mmの円筒状金型
と、その軸芯部に配設した直径14mm、長さ330mmの
鉄製金型との間に充てんし、上下型を介して、軸方向よ
り、印加圧力300Kg/cm2 、保持時間5分で予備成形
した。
Comparative Example 1 The same granulated powder of polytetrafluoroethylene as in Example 1 was used as a cylindrical metal mold having an inner diameter (diameter) of 21 mm and a length of 350 mm, and a diameter of 14 mm and a length arranged at the shaft core. It was filled with a steel mold having a length of 330 mm and was preformed through the upper and lower molds in the axial direction with an applied pressure of 300 kg / cm 2 and a holding time of 5 minutes.

【0037】この予備成形後、上下型などを取りはずし
て、370℃で4時間加熱焼成したのち、鉄製金型から
も離型して、外径(直径)21mm、内径(直径)14m
m、長さ300mmの円筒状フツ素樹脂成形体を作製し
た。
After this preforming, the upper and lower molds were removed, and the mixture was heated and baked at 370 ° C. for 4 hours, and then released from the iron mold to have an outer diameter (diameter) of 21 mm and an inner diameter (diameter) of 14 m.
A cylindrical fluororesin molding having a length of m and a length of 300 mm was produced.

【0038】この円筒状フツ素樹脂成形体につき、円筒
軸に対し平行な方向における一端側と他端側との間を1
5等分に区画し、各区画内の任意の部分を試料として抽
出し、これら試料の見掛け密度と線膨張係数とを、前記
同様の方法で測定した。その結果を、下記の表2に示
す。
With respect to this cylindrical fluororesin molded product, the distance between one end and the other end in the direction parallel to the cylindrical axis is 1
The sample was divided into 5 equal parts, an arbitrary portion in each of the parts was extracted as a sample, and the apparent density and the linear expansion coefficient of these samples were measured by the same method as described above. The results are shown in Table 2 below.

【0039】[0039]

【表2】 [Table 2]

【0040】上記表2の結果から、比較例の円筒状フツ
素樹脂成形体は、MD/CD比が1.1以上で、かつ一
端側から他端側にかけての見掛け密度のばらつきが平均
値(=2.138)に対し±0.03と大きく、特に中
央部側の見掛け密度が極端に小さく、熱的な歪みや変形
を起こしやすいものであることがわかる。
From the results shown in Table 2 above, the cylindrical fluororesin molded article of the comparative example has an MD / CD ratio of 1.1 or more, and an average value of variations in the apparent density from one end side to the other end side ( = 2.138), it is as large as ± 0.03, and in particular, the apparent density on the central side is extremely small, and thermal distortion and deformation are likely to occur.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の筒状フツ素樹脂成形体の製造法に用い
る装置の一構成例を示す断面図である。
FIG. 1 is a cross-sectional view showing one structural example of an apparatus used in a method for manufacturing a tubular fluorine resin molded body of the present invention.

【図2】本発明の筒状フツ素樹脂成形体の一例を示す斜
視図である。
FIG. 2 is a perspective view showing an example of a tubular fluorine resin molded body of the present invention.

【符号の説明】[Explanation of symbols]

2 金型 3 筒状ゴム型 4 フツ素樹脂粉末 9 加圧装置 40 筒状フツ素樹脂成形体 x 円筒軸 a 円筒軸に対し平行な方向 b 円筒軸に対し垂直な方向 2 Mold 3 Cylindrical rubber type 4 Fluorocarbon resin powder 9 Pressurizing device 40 Cylindrical fluorocarbon resin molded product x Cylindrical axis a Direction parallel to cylindrical axis b Direction perpendicular to cylindrical axis

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 円筒軸に対し、平行な方向の線膨張係数
をMD、垂直な方向の線膨張係数をCDとしたとき、M
D/CD≦1.0の関係にあることを特徴とする筒状フ
ツ素樹脂成形体。
1. When the linear expansion coefficient in the direction parallel to the cylindrical axis is MD and the linear expansion coefficient in the vertical direction is CD, M
A tubular fluorocarbon resin molded product having a relationship of D / CD ≦ 1.0.
【請求項2】 円筒軸に平行な方向における一端側と他
端側との間の見掛け密度のばらつきが、その平均値に対
し±0.005以下である請求項1に記載の筒状フツ素
樹脂成形体。
2. The tubular fluorine according to claim 1, wherein the variation in the apparent density between the one end side and the other end side in the direction parallel to the cylindrical axis is ± 0.005 or less with respect to the average value thereof. Resin molding.
【請求項3】 ポリテトラフルオロエチレンからなる請
求項1または請求項2に記載の筒状フツ素樹脂成形体。
3. The cylindrical fluororesin molded article according to claim 1, which is made of polytetrafluoroethylene.
【請求項4】 金型と、これと同軸の筒状ゴム型との間
に、フツ素樹脂粉末を充てんし、この粉末を上記金型の
軸方向に対し垂直な方向から上記ゴム型を介して加圧し
て筒状に予備成形し、その後加熱焼成して上記金型から
離型することを特徴とする筒状フツ素樹脂成形体の製造
法。
4. A fluorine resin powder is filled between a die and a cylindrical rubber die coaxial therewith, and the powder is passed through the rubber die from a direction perpendicular to the axial direction of the die. A method for producing a tubular fluororesin molded article, which comprises pressurizing and preforming into a tubular shape, followed by heating and firing to release from the mold.
JP19911392A 1992-07-01 1992-07-01 Cylindrical fluororesin molded piece and production thereof Pending JPH0615663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19911392A JPH0615663A (en) 1992-07-01 1992-07-01 Cylindrical fluororesin molded piece and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19911392A JPH0615663A (en) 1992-07-01 1992-07-01 Cylindrical fluororesin molded piece and production thereof

Publications (1)

Publication Number Publication Date
JPH0615663A true JPH0615663A (en) 1994-01-25

Family

ID=16402350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19911392A Pending JPH0615663A (en) 1992-07-01 1992-07-01 Cylindrical fluororesin molded piece and production thereof

Country Status (1)

Country Link
JP (1) JPH0615663A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998041386A1 (en) * 1997-03-19 1998-09-24 Daikin Industries, Ltd. Molded polytetrafluoroethylene article and method of production thereof
JP2000094531A (en) * 1998-09-18 2000-04-04 Daikin Ind Ltd Polytetrafluoroethylene block-like molding and its manufacture
WO2001094101A1 (en) * 2000-06-06 2001-12-13 Daikin Industries, Ltd. Polytetrafluoroethylene molded article and method for its production
CN100336651C (en) * 2003-11-26 2007-09-12 中国航天科技集团公司第一研究院第七○三研究所 Die pressing and forming method for polytetrafluoroethylene thin wall crustose products flexible die
CN111716603A (en) * 2020-06-23 2020-09-29 青岛科技大学 Preparation method of powdered fluororesin anti-sticking coating rubber mold
JP2021055647A (en) * 2019-10-01 2021-04-08 株式会社日立産機システム Compressor
EP4279242A1 (en) * 2022-05-18 2023-11-22 Vanéflon nv Method for manufacturing a rod-shaped fluoropolymer product

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6287497B1 (en) 1997-03-19 2001-09-11 Daikin Industries, Ltd. Molded polytetrafluoroethylene article and method of production thereof
EP0970799A1 (en) * 1997-03-19 2000-01-12 Daikin Industries, Ltd. Molded polytetrafluoroethylene article and method of production thereof
EP0970799A4 (en) * 1997-03-19 2003-05-21 Daikin Ind Ltd Molded polytetrafluoroethylene article and method of production thereof
WO1998041386A1 (en) * 1997-03-19 1998-09-24 Daikin Industries, Ltd. Molded polytetrafluoroethylene article and method of production thereof
EP1122053A4 (en) * 1998-09-18 2002-01-09 Daikin Ind Ltd Polytetrafluoroethylene molded product in block form and method for production thereof
EP1122053A1 (en) * 1998-09-18 2001-08-08 Daikin Industries, Ltd. Polytetrafluoroethylene molded product in block form and method for production thereof
JP2000094531A (en) * 1998-09-18 2000-04-04 Daikin Ind Ltd Polytetrafluoroethylene block-like molding and its manufacture
US6899932B1 (en) 1998-09-18 2005-05-31 Daikin Industries, Ltd. Polytetrafluoroethylene molded product in block form and method for production thereof
WO2001094101A1 (en) * 2000-06-06 2001-12-13 Daikin Industries, Ltd. Polytetrafluoroethylene molded article and method for its production
CN100336651C (en) * 2003-11-26 2007-09-12 中国航天科技集团公司第一研究院第七○三研究所 Die pressing and forming method for polytetrafluoroethylene thin wall crustose products flexible die
JP2021055647A (en) * 2019-10-01 2021-04-08 株式会社日立産機システム Compressor
WO2021065038A1 (en) * 2019-10-01 2021-04-08 株式会社日立産機システム Compressor
CN111716603A (en) * 2020-06-23 2020-09-29 青岛科技大学 Preparation method of powdered fluororesin anti-sticking coating rubber mold
EP4279242A1 (en) * 2022-05-18 2023-11-22 Vanéflon nv Method for manufacturing a rod-shaped fluoropolymer product
BE1030544B1 (en) * 2022-05-18 2023-12-18 Vaneflon Nv METHOD FOR MANUFACTURING A ROD-SHAPED FLUOROPOLIMER PRODUCT

Similar Documents

Publication Publication Date Title
JPS633732B2 (en)
EP0583481B1 (en) Polytetrafluoroethylene powder for molding
US5429782A (en) Process for producing polytetrafluoroethylene molded article
US2456621A (en) Method of extruding polytetrafluoroethylene and coating articles therewith
JP5068043B2 (en) Filled fluororesin sheet and method for producing filled fluororesin sheet
JPH0615663A (en) Cylindrical fluororesin molded piece and production thereof
CN1123602C (en) Refractory antiwear polyimide as sealing material and its preparing process and application
KR101065875B1 (en) Filled fluororesin sheet
US3280231A (en) Method for manufacture of low permeability carbonaceous products
JPH01253437A (en) Covering metal body
US4266919A (en) Ram-extrusion apparatus for non-melt fabricable polymeric resins
US2400094A (en) Molding process
JP6961988B2 (en) Method for Producing Composition with High Filler Content and Mold
JPH068266A (en) Spiral powder compression molded object and production tbereof
JPH0437772B2 (en)
KR100441802B1 (en) Polytetrafluoroethylene molded product in block form and method for production thereof
KR20070086795A (en) Modified polytetrafluoroethylene molded article and process for manufacture thereof
JPH06278252A (en) Multilayer fluororesin molded product and manufacture of the same
RU2761336C1 (en) Technology for producing workpieces from powders of composite materials based on ultra-high molecular weight polyethylene
US4942092A (en) Extruded porous articles of polyimide and continuous preparation of the same
RU2734608C2 (en) Method of producing block articles from polytetrafluoroethylene and based composites
JPH08217941A (en) Sliding member
JP3672429B2 (en)   Modified fluororesin powder
JPH06126761A (en) Ring-shaped fluorine resin molded product and its manufacturing method
CN1234764C (en) Preparation method, of mica filled polytetrafluoro-ethylene product material for acroengine