WO2001094101A1 - Polytetrafluoroethylene molded article and method for its production - Google Patents

Polytetrafluoroethylene molded article and method for its production Download PDF

Info

Publication number
WO2001094101A1
WO2001094101A1 PCT/JP2001/004159 JP0104159W WO0194101A1 WO 2001094101 A1 WO2001094101 A1 WO 2001094101A1 JP 0104159 W JP0104159 W JP 0104159W WO 0194101 A1 WO0194101 A1 WO 0194101A1
Authority
WO
WIPO (PCT)
Prior art keywords
molded body
fired
porous
mandrel
compression
Prior art date
Application number
PCT/JP2001/004159
Other languages
French (fr)
Japanese (ja)
Inventor
Osamu Shirasaki
Takashi Inaoka
Shuji Tagashira
Yasuhiko Sawada
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2001094101A1 publication Critical patent/WO2001094101A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/006Pressing and sintering powders, granules or fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/08Surface shaping of articles, e.g. embossing; Apparatus therefor by flame treatment ; using hot gases
    • B29C59/085Surface shaping of articles, e.g. embossing; Apparatus therefor by flame treatment ; using hot gases of profiled articles, e.g. hollow or tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/08Surface shaping of articles, e.g. embossing; Apparatus therefor by flame treatment ; using hot gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/251Particles, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles

Definitions

  • the present invention relates to a method for producing a large, thick calcined polytetrafluoroethylene (PTFE) molded body, particularly having a length of 400 mm or more.
  • PTFE polytetrafluoroethylene
  • a porous sintered body or a solid body of PTFE with low distortion can be produced, and a large-sized porous sheet obtained by cutting and cutting can be produced. It is useful as a material for permeable membranes and shock absorbing sheets.
  • Sintered PTFE molded products are used in various products by utilizing their excellent heat resistance, chemical resistance, electrical insulation, high-frequency properties, non-adhesion, and low friction. .
  • PTFE Since PTFE has the property that it cannot be melted, it is preformed by compression molding or paste extrusion and then fired to obtain a fired molded body. ing .
  • paste extrusion method sheet-shaped or small-diameter rod-shaped or tube-shaped objects cannot be formed, and large-sized compacts can be obtained exclusively by compression molding. Manufactured from preformed molded products.
  • Preforming and firing by the conventional compression preforming method are performed as follows.
  • PTFE powder is uniformly filled in the annular space of a mold having an annular space, and then pressed from above to obtain a compression-molded body.
  • a cylindrical pre-compression molded body is obtained.
  • a calcined PTFE molded body is manufactured.
  • the obtained cylindrical fired PTFE molded body is processed into a sheet by a scribing machine. Cutting is performed by inserting the core rod of a cutting machine into the center hole of the cylindrical fired molded body, and cutting it to a desired thickness from the outside with a byte. Yes.
  • a large-sized molded body is to be manufactured and processed by this method, it is necessary to first heat it for a long time in order to achieve uniform firing. Then, the PTFE preform formed during the heating and sintering is thermally deformed by its own weight, and the lower part expands. Since this deformation hinders the cutting process, it must be cut off until the surface becomes straight, which is wasteful. In addition, since the center hole of the fired compact also deforms, it is necessary to adjust the hole diameter before applying to the cutting machine.
  • the pre-compacted body is placed horizontally and rotated.
  • a method has been proposed in which firing is carried out in a short time so that the firing is uniform and the deformation is reduced.
  • the concrete method is as follows: (1) Put a pre-compression molded body inside a large metal pipe, and make a pipe so that the cylindrical pre-formed body rolls inside the pipe. (2) passing the shaft through the center hole of the pre-compressed molded body, and firing while rotating the shaft. The method is described.
  • the method (1) required a heating furnace large enough to accommodate a large metal pipe, and the preform rolled inside the pipe.
  • the surface of the molded body after firing may be altered.
  • the method of penetrating the shaft of (2) is specifically described in Example 1 of the W098Z41386 pan fret, and the center hole of the preliminary compression-molded article is described. (25 cm in diameter) through a shaft with an outer diameter of 23 cm and sintering while rotating the shaft to obtain a fired molded body with a core hole diameter of 25 cm.
  • the outer diameter of the shaft during firing is smaller than the diameter of the core hole of the molded product, and the shaft is always rotated in a state of line contact with the inner surface of the core hole. Therefore, it is smaller than the center hole diameter of the molded body after firing.
  • the center pore diameter of the PTFE molded body before and after firing does not change, but generally, If the compression ratio during preforming is increased, the PTFE preform may shrink due to firing. This phenomenon is conspicuous when the porous compact is fired.
  • the inventors of the present invention have noticed this shrinkage phenomenon and, by taking the shrinkage phenomenon into account, actively utilize the shrinkage phenomenon, thereby obtaining a sintered PTFE compact with little deformation even if it is large. This led to the completion of the present invention.
  • An object of the present invention is to provide a large-sized calcined PTFE compact having little deformation during sintering.
  • the present invention also provides a large-sized porous fired PTFE molded body that could not be produced conventionally, and a wide porous PTFE sheet obtained by cutting the same. aimed to . Disclosure of invention
  • the present invention provides a cylindrical pre-pressurizing method by compressing PTFE powder.
  • a pre-compression molded body is produced, and a mandrel is passed through a center hole of the obtained pre-compression molded body, and the pre-compression molded body is supported by supporting the mandrel.
  • the method of manufacturing a cylindrical fired polytetrafluoroethylene molded body that is suspended horizontally and fired the same as the core diameter cD after firing of the pre-compression molded body is used.
  • the present invention relates to a manufacturing method characterized by using a mandrel having a large outer diameter Dm.
  • the outer diameter of the mandrel to be used must be the same as or larger than the core hole diameter of the pre-compressed compact after firing as described above. Further, from the viewpoint of the core hole diameter of the pre-compression molded body before firing, although it differs depending on the solid or porous body, the center hole diameter of the pre-compression molded body before firing is 90 to 110%. %, Especially 95 to 105%.
  • the pre-compression molded body may be hung horizontally while being suspended by a mandrel, and may be calcined. Alternatively, the horizontally hung mandrel may be rotated.
  • the pre-compression molded body may be fired. According to the present invention, it is possible to produce a fired molded body with little deformation without rotating the molded body.
  • a PTFE powder a powder obtained by a suspension polymerization method, which has been fired and then ground.
  • a powder obtained by a suspension polymerization method it is preferable to use a powder obtained by a suspension polymerization method as a raw material PTFE powder and pulverized. Sile .
  • the length Lp of the pre-compression molded body is 400 mm or more, or the ratio LpZ Dp of the length Lp of the pre-compression molded body to the outer diameter Dp is 1 or more.
  • Large PTFE moldings can be manufactured. Further, according to the production method of the present invention, it is a porous cylindrical member having a length L of 400 mm or more, and a cylindrical wall thickness H of 50 mm or more. On the other hand, it is possible to produce a large-sized new calcined PTFE porous compact having a ratio L / H of length to wall thickness H of 1 or more.
  • the present invention also relates to a fired PTFE porous molded article obtained by cutting and cutting the new fired porous PTFE molded article, particularly to a width of 400 mm or more and further to a thickness force of 0 mm. Also for porous PTFE porous sheet of 1mm or more.
  • the present invention further relates to the gas permeable membrane or the buffer sheet, which is the above-mentioned fired PTFE porous sheet.
  • FIG. 1 is a schematic side view showing a suspended state of a pre-compression-molded article produced by the production method of the present invention.
  • the greatest feature of the present invention is that a pre-compressed PTFE compact shrinks during sintering, and a mandrel with a specific outer diameter is placed in the center hole of the pre-compressed compact. As a result, at least after firing, the core hole of the fired molded body and the mandrel are brought into close contact with each other.
  • the pre-compression molded body shrinks during firing and embraces the mandrel. As a result, deformation of the molded body due to heating can be suppressed.
  • the outer diameter of the mandrel to be used is the same as the diameter of the core hole after shrinkage generated by firing the pre-compression molded body. Or something big is needed.
  • the outer diameter of the mandrel is determined experimentally by measuring the shrinkage rate of the pre-compression molded body to be fired by firing in advance.
  • the shrinkage rate of the core hole due to the firing of the pre-compression molded body depends on whether the target molded body is solid or porous, whether the pre-compression molded body Reference, compression ratio, pressure, compression speed, compression time, properties of PTFE powder used (particle size, particle size distribution, molecular weight of PTFE, whether PTFE has been modified, Or fired powder, unfired powder, granulated or not), and the cooling rate during firing, etc., 0 to: 15%, usually 0.1 to 10%. Therefore, it is usually sufficient to use a mandrel having an outer diameter of 90% or more, preferably 95% or more of the center hole diameter of the pre-compression molded body before firing.
  • the upper limit of the outer diameter of the mandrel is determined by whether it can be inserted into the pre-compression molded body. Since the pre-compression molded body expands thermally by heating, it is preferably heated to about 50 to 250 ° C, or expanded mechanically if necessary.
  • a mandrel having an outer diameter of up to 110%, preferably up to 105% of the core hole diameter at the time of preforming of the pre-compression molded body can be used.
  • the reason for introducing a larger mandrel up to the extension may be found in the aforementioned W098Z16696 panfret. This is to accommodate the case of a pre-compression molded body that hardly shrinks during sintering. If a mandrel with an excessively large outer diameter is forcibly inserted, the residual stress in the portion near the mandrel of the molded body increases due to firing, and the density becomes non-uniform. Cracks may occur.
  • the material of the mandrel is a material that can withstand the firing temperature. There is no particular limitation, but usually stainless steel, nickel-plated iron, chrome-plated iron, etc. are preferred. Can be used. If necessary, the mandrel may be a cutting core used in the subsequent cutting process. In this case, the cutting operation can be performed without pulling out the mandrel after firing.
  • PTFE tetrafluoroethylene
  • PTFE includes modified PTFE.
  • a perfluorovinyl ether such as that described in the W ⁇ 98 Z 41386 pamphlet is preferred.
  • the polymerization method may be either a suspension polymerization method or an emulsion polymerization method, but a so-called molding powder obtained by pulverizing particles obtained by suspension polymerization is used. I like it.
  • the particle size of the PTFE powder is a number average particle size of 5 to 600 m, preferably 10 to 150 ⁇ .
  • the PTFE powder used in the present invention may be an unfired product or a fired product (including a semi-fired product). However, when producing a porous compact, it is preferable to use calcined PTFE powder, and when producing a solid compact, it is preferable to use unfired PTFE powder.
  • This PTFE powder is then preformed by compression molding.
  • Compression molding can be carried out under the same molding conditions using the same mold as before. Specifically, when producing a porous molded body, the calcined PTFE powder having a number average particle diameter of 10 to 150 ⁇ m is molded into a mold having an annular space (cavity). It is filled and compressed at a compression pressure of 10 to 100 MPa to a compression ratio of 3 to 6, preferably 4 to 5. When manufacturing solid compacts, number average Unfired PTFE powder having a particle size of 10 to 700 ⁇ m is filled into a mold having an annular space (cavity), and a compression ratio of 2 to 8 at a compression pressure of 10 to 50 MPa is preferable. Compression to 3-6.
  • the mold is not particularly limited as long as it can produce a cylindrical preform having a center hole, but is not limited to the mold according to the production method of the present invention.
  • a large-sized fired molded body can be manufactured.
  • the large (preliminary or fired) compacts of the present invention have a length L of 4 OO mm or more, and the longest depends on the size of the mold and firing furnace. It is about 2000mm.
  • the ratio LpZ between the length Lp and the outer diameter (diameter) Dp is 1 or more, especially those having a length of 2 to 20 and more particularly the length Lp and the wall thickness Hp (outside diameter Dp It can be manufactured with a relatively thin wall thickness ratio of Lp / Hp of 1 or more, especially 4 to 10 (difference in center hole diameter (diameter) cDp).
  • the diameter of the core hole of the pre-compression molded body differs depending on the size (length, outer diameter) of the pre-molded body, etc., but it is usually appropriately selected in the range of 10 to 500 mm.
  • 1 is a pre-compression molded body
  • 2 is a mandrel
  • both ends of the mandrel 2 are supported by a suspension base 3.
  • the pre-compression molded body 1 is separated from the floor 4 of the firing furnace.
  • the production method of the present invention may be fired in the state of horizontal suspension as shown in Fig. 1 or described in the W098 / 41386 Nom fret. In this way, firing may be performed while rotating with a rotating mechanism (not shown in FIG. 1).
  • the sintering is performed at the melting point (pre-sintering) 337 to 347 ° C for baked products, 322 to 332 ° C for baked products), preferably 10 to 60 ° C, preferably 15 to 50 ° C. This can be done by heating for ⁇ 200 hours.
  • the rotation speed depends on the firing temperature, firing time, size of the preform, and the like. It may be appropriately selected according to the conditions, but it is usually 1 to 300 rotations Z time, preferably 10 to 100 rotations Z time. According to the present invention, the rotation can be performed smoothly, at least during firing, because the preform is in a state of embracing (adhering to) the mandrel. In addition, uniform sintering can be achieved, and the amount of deformation can be reduced.
  • the production method of the present invention it is possible to obtain a fired PTFE molded article having a small amount of deformation and uniformly fired.
  • the fired PTFE molded body may be a solid body (specific gravity 2.10 to 2.2) or a porous body (specific gravity 0.8 to 1.8).
  • Solid large molded articles can also be obtained by the methods described in the respective non-flats of the aforementioned WO98Z41386 and WO00 / 16968, but the production method of the present invention According to the method, a material having a smaller deformation amount and being able to be used immediately in a post-process cutting process can be obtained.
  • a large-sized porous fired PTFE molded article was obtained for the first time by the manufacturing method of the present invention. Since the pre-compression molded body for a porous body has low mechanical strength, the amount of deformation is too large in the conventional standing firing method, and it is excessive even in the rotary firing method. When the shaft is in line contact with the shaft, the load concentrates and the deformation becomes large. Therefore, a large-scale porous fired molded product at a practical level cannot be manufactured. I didn't.
  • the length L is 400 mm or more and the wall thickness H is 50 mm or less.
  • a cylindrical porous fired PTFE molded article having a ratio L / H of length L to wall thickness H of 1 or more is a novel material.
  • the obtained cylindrical calcined PTFE molded body is subjected to a scribing U (scube) process in the same manner as in the prior art, and is formed into a sheet shape. Since the sintered compact produced by the conventional manufacturing method has a large amount of deformation during firing, a considerable amount (thickness) is cut out before cutting out a sheet to be a product. In addition, it was necessary to correct the shape of the core hole to a perfect circle according to the core rod of the cutting machine. However, since the solid and porous fired PTFE molded articles obtained by the present invention have a small amount of deformation, the amount to be cut off first can be reduced. Since the center hole is round along the shape of the mandrel where the center hole is round, the cutting machine can be left alone or with a small force [1]. I can do it.
  • a porous fired PTFE sheet obtained by cutting from a large fired PTFE molded body with a length of 400 mm or more has a width of 400 mni or more, and such a wide porous hole is used.
  • High quality fired PTFE sheets have not been obtained in the past.
  • the thickness of the sheet can be adjusted by cutting, and a porous fired PTFE sheet having a thickness of 0.1 mm or more, for example, 0.1 to 1 Omm can be easily obtained. be able to .
  • calcined PTFE sheets can be used for various purposes.
  • heat-resistant insulating tapes such as heat-resistant electric wires, motor vehicles, and generators; corrosion-resistant linings such as chemical plants; piping gaskets. It can be used for molds, mold release films, etc.
  • the porous sheet is a gas permeable membrane utilizing the property of transmitting gas such as a gas-liquid separation membrane, a filter, a gas removal membrane, and a gas generation membrane.
  • a gas-liquid separation membrane such as a gas-liquid separation membrane, a filter, a gas removal membrane, and a gas generation membrane.
  • Packs, cushions, and various seals It can be used for cushioning sheets that use the buffering properties of materials, gaskets, etc .; soundproof covering materials, heat-proofing materials, and polishing pads.
  • Modified PTFE unmodified PTFE (Perfluoro (propylene vinyl ether) manufactured by suspension polymerization method), apparent density 0.42 g / cc, melting point 341 (° C) at 350 to 360 ° C, and then pulverized to an average particle size of 125 m to obtain a calcined PTFE powder.
  • the preformed body Ap 1 has a stainless steel (SUS) pipe with an outer diameter of 48.5 mm (97% of the core hole diameter cDp).
  • SUS stainless steel
  • a pre-formed body Ap2 is passed through a SUS mandrel with an outer diameter of 50.
  • Omm (100% of cDp).
  • 3 was passed through a SUS mandrel with an outer diameter of 50.5 mm (101% of cDp)
  • the preform Ap 4 was passed through an outer diameter of 51.0 mm (102% of cDp). I passed.
  • the preforms Ap3 and AP4 were inserted while heating the preform at 200 ° C. None was inserted into the preformed body Ap5.
  • the preforms Ap:! ⁇ Ap4 with mandrels inserted were suspended horizontally between two suspension stands placed in the firing furnace.
  • the preformed body Ap5 was set up in the firing furnace as it was. In this state, the inside of the baking furnace is heated up to 360 ° C at a heating rate of 50 ° CZ for 50 hours, and fired at 360 ° C for 6 hours, and then cooled at a rate of 50 ° CZ. The temperature was lowered to 80 ° C in the furnace, removed from the furnace, and moved to a constant temperature room at 25 ° C.
  • the size was measured by the following method.
  • Outer diameter Five points are measured at equal intervals in the longitudinal direction of the fired molded body, and the average value is determined.
  • Core hole diameter Measure at two points at both ends and calculate the average value.
  • the outer diameter shrinkage ratio indicates the shrinkage ratio of the outer diameter of the preformed body to the outer diameter Dp of the preformed body.
  • the expansion coefficient in the longitudinal direction represents the expansion coefficient of the length in the longitudinal direction of the fired molded body with respect to the length Lp in the longitudinal direction of the preformed body.
  • the diameter of the pre-compressed compact was smaller than the core hole diameter.
  • the porous fired PTFE molded body (Ap 2 to 4) in which the mandrel was entangled was subjected to cutting to obtain a 0.5 mm thick porous fired PTFE sheet.
  • the sheet is prepared, and its pore size (using POROMETER manufactured by Coulter Electric), hardness (AS KER. C) and tensile strength in the width direction of the cutting sheet and tensile elongation (based on JIS K 6891) ) was measured. The results are also shown in Table 1.
  • each of the porous fired PTFE sheets has sufficient mechanical properties.
  • Unfired PTFE modified PTFE modified with perfluoro (propyl vinyl ether) manufactured by suspension polymerization method
  • This calcined PTFE powder (18,400 g) was filled in a mold having a ring-shaped cavity having an outer diameter of 174 mm and an inner diameter of 50 mm.
  • the packing (apparent) density at this time was 0.45 g Zcc.
  • pre-compression molding was prepared by compressing at a compression molding pressure of 49.6 MPa (500 kgf / cm 2 ) for 60 minutes. The size of the product removed from the mold and left for 1 hour is shown below. Length Lp: 453mm
  • a mandrel (length: 50 mm) of stainless steel (SUS) with an outer diameter of 50 mm (100% of center hole diameter cDp) LOOOmm), and suspended horizontally between two suspension stands placed in the firing furnace. In this state, the temperature was raised to 360 ° C in 13 hours, calcined at 360 ° C for 13 hours, lowered to room temperature in 10 hours, and removed from the furnace. It was removed and moved into a constant temperature room at 25 ° C.
  • SUS stainless steel
  • Example 3 Unsintered PTFE (modified PTFE modified with perfluoro (propylene ether) manufactured by suspension polymerization method) Apparent density 0.42 g / 1075 g of cc, melting point of 341 ° C., average particle diameter of 33 ⁇ m) was filled in a mold having an annular cavity with an outer diameter of 100 mm and an inner diameter of 50 mm. The packing (apparent) density at this time was 0.45 g Zcc. Then, compression was performed at a compression molding pressure of 29.4 MPa (300 kgfXcm 2 ) for 10 minutes to produce a pre-compression molded body. The size of the product removed from the mold and left for 1 hour is shown below.
  • the preformed body Ap 6 has a mandrel (length) of stainless steel (SUS) pipe with an outer diameter of 48.5 mm (97% of the center hole diameter cDp).
  • SUS stainless steel
  • the preform Ap 8 was inserted while heating the preform at 100 ° C. Nothing was inserted into the preform Ap9.
  • the preforms Ap 6 to Ap 8 passed through the mandrel were suspended horizontally between two suspension stands placed in a firing furnace. Reserve The molded body Ap9 was kept standing in the sintering furnace as it was. In this state, the inside of the sintering furnace is heated up to 360 t at a heating rate of 50 Z hours to 360 t, and is held at 360 ° C for 6 hours, followed by sintering, and then a cooling rate of 50 ° CZ time The temperature was lowered to 80 ° C by heating and removed from the furnace and moved into a constant temperature room at 25 ° C.
  • Unmodified PTFE modified with PTFE (Propyl vinyl ether) manufactured by suspension polymerization apparent density 0.42 g / cc (Melting point: 342 ° C.) 138 kg was filled in a mold having an annular cavity with an outside diameter of 418 mm and an inside diameter of 150 mm.
  • the packing (apparent) density at this time was 0.67 g / cc.
  • compression was performed at a compression molding pressure of 19.6 MPa (200 kgf / cm 2 ) for 60 minutes to produce a pre-compression molded body. The size of the sample removed from the mold and left for 1 hour is shown below.
  • SUS stainless steel
  • the firing of a large-sized PTFE molded body can be performed while suppressing deformation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

A method for producing fired polytetraferuoroethylene molded article having a cylindrical form wherein a polytetraferuoroethylene powder is subjected to a compression molding to prepare a pre-compression molded material having a cylindrical form, a mandrel is placed through the central hole of the pre-compression molded material, and the pre-compression molded material is suspended in a horizontal position by supporting the mandrel and then fired, characterized in that the mandrel used has an outer diameter (Dm) which is the same as or greater than the central hole diameter (cD) of the pre-compression molded material after the firing; a large fired porous polytetraferuoroethylene molded article and a wide fired porous polytetraferuoroethylene sheet; and a gas-permeable film and a cushion sheet comprising the above sheet. The method has allowed the firing of a large polytetraferuoroethylene molded article to be carried out while suppressing the deformation of the article and also allowed the firing of a large porous polytetraferuoroethylene molded article which has been difficult to be fired by a conventional method.

Description

明 糸田 ポ リ テ ト ラ フ ルォ ロ エチ レ ン 成形体お よ びそ の 製造法 技術分野  Akira Itoda Polytetrafluoroethylene molded body and its manufacturing method Technical field
本発 明 は大型、 特 に長 さ が 400mm以上 の長尺で 肉厚 の 焼成 ポ リ テ ト ラ フ ルォ ロ エチ レ ン ( PTFE) 成形体 の 製 造法 に 関す る 。 本発明 の 製造法 に よ れば、 歪み の 少 な い PTFEの 多孔 質 焼成体 ま た は 中 実体 を 製造 で き 、 切 削加 ェ し て得 ら れ る 大型 の多孔質 シ 一 ト はガ ス 透過性膜や緩 衝用 の シー ト の 材料 と し て有用 で あ る 。 背景技術  The present invention relates to a method for producing a large, thick calcined polytetrafluoroethylene (PTFE) molded body, particularly having a length of 400 mm or more. According to the production method of the present invention, a porous sintered body or a solid body of PTFE with low distortion can be produced, and a large-sized porous sheet obtained by cutting and cutting can be produced. It is useful as a material for permeable membranes and shock absorbing sheets. Background art
PTFEの 焼成成形体は、 そ の優れた耐熱性、 耐薬品性、 電気絶縁性、 高周波特性、 非粘着性、 低摩擦性な ど を利 用 し て 、 各種の 製品 に使用 さ れて い る 。  Sintered PTFE molded products are used in various products by utilizing their excellent heat resistance, chemical resistance, electrical insulation, high-frequency properties, non-adhesion, and low friction. .
PTFEは溶融力 Πェ で き な レ と い う 性質 を も つ て い る た め 、 圧縮成形法や ペー ス ト 押 出法 な どで予備成形 し た の ち 焼成 し て焼成成形体 を 得て い る 。 ペー ス ト 押 出法で は シ一 ト 状 ま た は小 口 径の棒状、 チ ュ ー ブ状 の も の し か成 形で き ず、 大型 の 成形体は専 ら 圧縮成形法で得 ら れた予 備成形体か ら 製造 し て い る 。  Since PTFE has the property that it cannot be melted, it is preformed by compression molding or paste extrusion and then fired to obtain a fired molded body. ing . In the case of the paste extrusion method, sheet-shaped or small-diameter rod-shaped or tube-shaped objects cannot be formed, and large-sized compacts can be obtained exclusively by compression molding. Manufactured from preformed molded products.
従来 の 圧縮予備成形法 に よ る 予備成形お よ び焼成 はつ ぎの よ う に 行な わ れて い る 。  Preforming and firing by the conventional compression preforming method are performed as follows.
ま ず、 環状 の 空 間 を 有す る 金 型 の環状空 間 に PTFE粉 末 を 均一 に充填 し 、 上方か ら 加圧 し て圧縮成形体 を 得、 金型か ら 抜 き取 っ て 円 筒状 の予備圧縮成形体 を得 る 。 こ の 予備成形体 を加熱炉 に 立てた 状態で置 き 、 350〜 380 °C で 3 〜 80時 間 焼成す る こ と に よ り 、 焼成 P T F E成形体 を 製造 し て い る 。 First, PTFE powder is uniformly filled in the annular space of a mold having an annular space, and then pressed from above to obtain a compression-molded body. A cylindrical pre-compression molded body is obtained. Place the preform in a heating furnace and place it at 350-380 ° C. By calcining for 3 to 80 hours, a calcined PTFE molded body is manufactured.
得 ら れた 円 筒 状 の 焼成 PTFE成形体 は切 肖リ (ス カ イ ブ) に よ り シー ト に 加工 さ れ る 。 切 削加工 は、 円 筒状焼成成 形体 の 中 心孔 に 切削機 の芯棒 を揷入 し 、 バイ ト で外側か ら 所望 の厚 さ に 切削す る こ と に よ り 行な わ れて い る 。  The obtained cylindrical fired PTFE molded body is processed into a sheet by a scribing machine. Cutting is performed by inserting the core rod of a cutting machine into the center hole of the cylindrical fired molded body, and cutting it to a desired thickness from the outside with a byte. Yes.
こ の 方法で大型 の 肉厚 の 成形体 を 製造加工 し ょ う と す る と 、 ま ず、 均一 に焼成す る た め に 長時間 の加熱が必要 に な る 。 そ う す る と 、 こ の 加熱焼成時 に立て ら れた P T F E 予備成形体が 自 重 に よ り 熱変形 し 、 下部が膨 ら んで し ま う 。 こ の変形 は切削加工時 に 邪魔 に な る た め 、 表面 が一直線 に な る ま で削 り 取 ら な けれ ばな ら ず、 無駄 に な つ て レゝ る 。 さ ら に 、 焼成成形体 の 中 心孔 も 変形す る た め 、 切削機 に か け る 前 に孔径 を 調整 し てお く 必要 も あ る 。  If a large-sized molded body is to be manufactured and processed by this method, it is necessary to first heat it for a long time in order to achieve uniform firing. Then, the PTFE preform formed during the heating and sintering is thermally deformed by its own weight, and the lower part expands. Since this deformation hinders the cutting process, it must be cut off until the surface becomes straight, which is wasteful. In addition, since the center hole of the fired compact also deforms, it is necessary to adjust the hole diameter before applying to the cutting machine.
こ う し た 問題 を考慮 し て 、 W 0 98ノ 41386号パ ン フ レ ッ ト お よ び W O OOZ 16968号パ ン フ レ ツ ト で は、 予備圧 縮成形体 を 水平 に配置 し 回転 さ せな が ら 焼成す る こ と に よ り 、 焼成 を 均一 に行な う と 共 に 、 変形 を 少な く す る 方 法が提案 さ れて い る 。 そ の 具体 的方法 は 、 ( 1 )大 き な 金 属製 の パ イ プの 内部 に予備圧縮成形体 を入れ、 円 筒 状 の 予備成形体がパ イ プ内 を転が る よ う に パイ プ を 回転 さ せ な が ら 焼成 を 行 な う 方法 、 ( 2 )予備圧縮成形体 の 中 心孔 に シ ャ フ ト を揷通 し 、 シ ャ フ ト を 回転 さ せな が ら 焼成 を 行な う 方法が記載 さ れて い る 。  In consideration of these problems, in the W098 / 41386 and WOOOZ16968 pan fret, the pre-compacted body is placed horizontally and rotated. A method has been proposed in which firing is carried out in a short time so that the firing is uniform and the deformation is reduced. The concrete method is as follows: (1) Put a pre-compression molded body inside a large metal pipe, and make a pipe so that the cylindrical pre-formed body rolls inside the pipe. (2) passing the shaft through the center hole of the pre-compressed molded body, and firing while rotating the shaft. The method is described.
し カゝ し 、 (1)の 方法で は大型 の 金属 パ イ プ を 収容 で き る だ け の 加熱炉が必要で あ り 、 ま た 、 予備成形体がパ ィ プ内 を 転が る た め 焼成後の 成形体 の表面が変質 し て い る こ と が あ る 。 (2)の シ ャ フ ト を 揷通す る 方法 は 、 W 0 98Z 41386号 パ ン フ レ ツ 卜 の 実施例 1 に具体的 に 記載 さ れてお り 、 予 備圧縮成形体 の 中 心孔 (直径 25 c m ) に 外径 23 c mの シ ャ フ ト を通 し て シ ャ フ ト を 回転 さ せな が ら 焼成 し て 中 心孔 直径が 25 c mの 焼成成形体 を得て い る 。 こ の記載 に よ れ ば 焼成時 の シ ャ フ 卜 の外径は成形体 の 中 心孔径 よ り も 小 さ く 、 常 に 中 心孔 内面 と 線接触 し て い る 状態で 回転 し て お り 、 焼成後 の 成形体 の 中心孔径 よ り も 小 さ い 。 However, the method (1) required a heating furnace large enough to accommodate a large metal pipe, and the preform rolled inside the pipe. The surface of the molded body after firing may be altered. The method of penetrating the shaft of (2) is specifically described in Example 1 of the W098Z41386 pan fret, and the center hole of the preliminary compression-molded article is described. (25 cm in diameter) through a shaft with an outer diameter of 23 cm and sintering while rotating the shaft to obtain a fired molded body with a core hole diameter of 25 cm. According to this description, the outer diameter of the shaft during firing is smaller than the diameter of the core hole of the molded product, and the shaft is always rotated in a state of line contact with the inner surface of the core hole. Therefore, it is smaller than the center hole diameter of the molded body after firing.
こ の よ う に 線接触で 回転 さ せなが ら 焼成 を 長時間続 け る と 、 前記 の 立 て置 き の焼成法 ほ ど で はな い が、 や は り 熱に よ る 変形が 生 じ て し ま う こ と が あ る 。  If the baking is continued for a long time while rotating by line contact in this way, the deformation due to heat occurs, although not as in the above-described baking method of standing. There are times when you do.
と こ ろ で 前記 の 国 際公開公報 に は記載 さ れてお ら ず、 ま た 実施例 1 の 記載で は焼成前後で PTFE成形体 の 中 心 孔径は変化 し て い な い が、 一般 に予備成形時 の 圧縮比 を 大 き く す る と 、 焼成 に よ り PTFE予備 成形体 は収縮 を 起 こ し て し ま う 。 こ の現象は多孔質成形体 を 焼成す る 場合 に顕著 に現 れ る 。 本発 明者 ら は こ の 収縮現象 に着 目 し 、 収縮現象 を 考慮 し 積極的 に活用 す る こ と に よ り 、 変形 の 少な い 焼成 P T F E成形体が大型 の も の で も 得 ら れ る こ と を見出 し 、 本発 明 を完成す る に 至 っ た 。  At this time, it is not described in the International Publication, and in the description of Example 1, the center pore diameter of the PTFE molded body before and after firing does not change, but generally, If the compression ratio during preforming is increased, the PTFE preform may shrink due to firing. This phenomenon is conspicuous when the porous compact is fired. The inventors of the present invention have noticed this shrinkage phenomenon and, by taking the shrinkage phenomenon into account, actively utilize the shrinkage phenomenon, thereby obtaining a sintered PTFE compact with little deformation even if it is large. This led to the completion of the present invention.
本発 明 は 、 焼 成時 の 変形が少 な い 大型 の 焼成 PTFE成 形体 を提供す る こ と を 目 的 と す る 。  An object of the present invention is to provide a large-sized calcined PTFE compact having little deformation during sintering.
本発 明 は ま た 、 従来製造がで き な か っ た大型 の多孔質 焼成 P T F E成形体 、 お よ びそ れ を 切削 加工 し て得 ら れ る 幅広 の多孔 質 PTFEシー ト を提供す る こ と を 目 的 と す る 。 発明 の 開 示  The present invention also provides a large-sized porous fired PTFE molded body that could not be produced conventionally, and a wide porous PTFE sheet obtained by cutting the same. aimed to . Disclosure of invention
本発 明 は 、 PTFE粉末 を 圧縮成形 し て 円 筒 状 の 予備圧 縮成形体 を 作製 し 、 得 ら れた予備 圧縮成形体の 中 心孔 に マ ン ド レリレ を通 し 、 こ の マ ン ド レ ル を支持す る こ と に よ つ て 予備圧縮成形体を 水平 に懸架 し 焼成 を行な う 円 筒 状 の焼成ポ リ テ ト ラ フ ルォ ロ エチ レ ン成形体 の製造法 に お い て 、 予備圧縮成形体の 焼成後 の 中 心孔径 c Dと 同 じ か ま た は大 き い外径 Dmのマ ン ド レル を使用 する こ と を特徴 と す る 製造法 に 関す る 。 The present invention provides a cylindrical pre-pressurizing method by compressing PTFE powder. A pre-compression molded body is produced, and a mandrel is passed through a center hole of the obtained pre-compression molded body, and the pre-compression molded body is supported by supporting the mandrel. In the method of manufacturing a cylindrical fired polytetrafluoroethylene molded body that is suspended horizontally and fired, the same as the core diameter cD after firing of the pre-compression molded body is used. The present invention relates to a manufacturing method characterized by using a mandrel having a large outer diameter Dm.
使用 す る マ ン ド レル の外径 と し て は、 前記 の と お り 予 備圧縮成形体 の 焼成後の 中 心孔 径 と 同 じ か ま た は大 き い こ と が必要で あ り 、 ま た予備圧縮成形体の 焼成前 の 中 心 孔径 の観点 か ら は 、 中 実体 ま た は多孔質体 に よ っ て異な る が、 予備圧縮成形体の焼成前 の 中心孔径 の 90〜 110 %、 特 に 95〜 105 %で あ る こ と が好 ま し レ 。  The outer diameter of the mandrel to be used must be the same as or larger than the core hole diameter of the pre-compressed compact after firing as described above. Further, from the viewpoint of the core hole diameter of the pre-compression molded body before firing, although it differs depending on the solid or porous body, the center hole diameter of the pre-compression molded body before firing is 90 to 110%. %, Especially 95 to 105%.
焼成 は 、 予備圧縮成形体 を マ ン ド レル に よ り 水平 に懸 架 し 静置 し た ま ま 焼成 し て も よ い し 、 水平 に懸架 さ れた マ ン ド レル を 回転 さ せな が ら 予備圧縮成形体 を 焼成 し て も よ い 。 本発 明 に よ れ ば、 成形体 を 回転 さ せな く て も 変 形 の 少な い 焼成成形体 を 製造す る こ と がで き る 。  In the firing, the pre-compression molded body may be hung horizontally while being suspended by a mandrel, and may be calcined. Alternatively, the horizontally hung mandrel may be rotated. The pre-compression molded body may be fired. According to the present invention, it is possible to produce a fired molded body with little deformation without rotating the molded body.
多孔質焼成 PTFE成形体 を 製造す る 場合は 、 原料 の PT FE粉末 と し て 、 懸濁重合法で得 ら れ、 かつ 焼成 さ れた後 粉砕 さ れた 粉末 を 使用 す る こ と が好 ま し く 、 中実 の焼成 PTFE成形体 を 製造す る 場合は、 原料 の PTFE粉末 と し て 懸濁重合法 で得 ら れ、 か つ粉砕 さ れた粉末 を使用 す る こ と が好 ま し レ 。  In the case of producing a porous fired PTFE molded body, it is preferable to use, as a raw material, a PTFE powder, a powder obtained by a suspension polymerization method, which has been fired and then ground. In the case of producing a solid calcined PTFE compact, it is preferable to use a powder obtained by a suspension polymerization method as a raw material PTFE powder and pulverized. Sile .
本発 明 の 製造法 に よ れば、 予備圧縮成形体 の長 さ Lpが 400mm以上で あ る か 、 予備圧縮成形体の長 さ Lpと 外径 D pの 比 LpZ Dpが 1 以上で あ る 大型 の PTFE成形体 を 製造 す る こ と がで き る 。 ま た 、 本発 明 の製造法 に よ れ ば、 多孔質で あ っ て 、 か つ 長 さ L が 400mm以上 の 円 筒 状物で あ り 、 円 筒 肉 厚 H が 50mm以 上で あ る か 、 長 さ と 肉厚 H の 比 L / H が 1 以 上で あ る 大型 の 新規な 焼成 PTFE多孔質 成 形 体 を 製造す る こ と がで き る 。 According to the manufacturing method of the present invention, the length Lp of the pre-compression molded body is 400 mm or more, or the ratio LpZ Dp of the length Lp of the pre-compression molded body to the outer diameter Dp is 1 or more. Large PTFE moldings can be manufactured. Further, according to the production method of the present invention, it is a porous cylindrical member having a length L of 400 mm or more, and a cylindrical wall thickness H of 50 mm or more. On the other hand, it is possible to produce a large-sized new calcined PTFE porous compact having a ratio L / H of length to wall thickness H of 1 or more.
本発 明 は ま た 、 こ の 新規 な 焼成多孔質 PTFE成 形体 を 切 削 加 工 し て得 ら れ る 焼成 PTFE多孔 質成形 品 、 特 に 幅 が 400mm以上、 さ ら に は厚 さ 力 0. 1mm以上 の焼成 PTFE 多孔質 シー ト に も 関す る 。  The present invention also relates to a fired PTFE porous molded article obtained by cutting and cutting the new fired porous PTFE molded article, particularly to a width of 400 mm or more and further to a thickness force of 0 mm. Also for porous PTFE porous sheet of 1mm or more.
本発 明 は さ ら に 、 前 記 の 焼成 PTFE多孔 質 シ一 ト カ ら な る ガ ス 透過性膜ま た は緩衝用 シー ト に も 関 す る 。 図面 の簡単な説 明  The present invention further relates to the gas permeable membrane or the buffer sheet, which is the above-mentioned fired PTFE porous sheet. Brief description of the drawing
図 1 は、 本発明 の製造法 に よ る 予備圧縮成形体 の 懸架 状態 を 示す概略側面 図 で あ る 。 発明 を す る た め の 最良 の形態  FIG. 1 is a schematic side view showing a suspended state of a pre-compression-molded article produced by the production method of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発 明 の 最大 の特徴 は、 PTFEの 予 備圧縮 成形 体 が焼 成時 に 収縮す る こ と を 利用 し 、 予備圧縮成形体の 中 心孔 に特定 の外径 の マ ン ド レル を 揷通 し 、 少な く と も 焼成後 に は焼成成形体 の 中 心孔 と マ ン ド レル を 密着 さ せ る 点 に あ る 。  The greatest feature of the present invention is that a pre-compressed PTFE compact shrinks during sintering, and a mandrel with a specific outer diameter is placed in the center hole of the pre-compressed compact. As a result, at least after firing, the core hole of the fired molded body and the mandrel are brought into close contact with each other.
こ の よ う な マ ン ド レ ル を使用 し 、 予備圧縮成形体 を水 平 に 懸架 し て焼成す る と 、 焼成時 に予備成形体が収縮 し て マ ン ド レ ル を 抱 き込む状態 と な り 、 加熱 に よ る 成形体 の変形 を 抑 え る こ と がで き る 。  When such a mandrel is used and the pre-compression molded body is suspended horizontally and fired, the pre-formed body shrinks during firing and embraces the mandrel. As a result, deformation of the molded body due to heating can be suppressed.
し た が っ て 、 使用 す る マ ン ド レル の外径 は 、 予備圧縮 成形体 の 焼成 に よ り 生ず る 収縮後の 中 心孔径 と 同 じ か ま た は大 き い こ と が必要で あ る 。 マ ン ド レル の 外径 の決定 は 、 焼成す る 予備圧縮成形体 の 焼成 に よ る 収縮率 を 予 め 実測 し てお く こ と に よ っ て実験的 に決定 さ れ る 。 Therefore, the outer diameter of the mandrel to be used is the same as the diameter of the core hole after shrinkage generated by firing the pre-compression molded body. Or something big is needed. The outer diameter of the mandrel is determined experimentally by measuring the shrinkage rate of the pre-compression molded body to be fired by firing in advance.
予備圧縮成形体 の 焼成 に よ る 中 心孔 の 収縮率 は、 目 的 と す る 成形体が 中 実体で あ る か 多孔質体で あ る か 、 予備 圧縮成形体 の製造時 の 金型 ク リ ァ ラ ン ス 、 圧縮 比 、 圧力 、 圧縮速度、 圧縮時 間 、 使用 す る P T F E粉末 の 性状 (粒径 、 粒度分布、 P T F Eの 分子量、 P T F Eが変性 さ れて い る か い な い か 、 ま た は焼成粉末か未焼成粉末か 、 造粒 さ れて い る か い な い かな ど) 、 焼成時 の 冷却速度な ど に よ っ て異 な る が、 0 〜 : 1 5 %、 通常 0 . 1〜 1 0 % で あ る 。 し た が っ て 、 通常、 焼成前の予備圧縮成形体 の 中心孔径 の 9 0 %以上、 好 ま し く は 9 5 %以上 の外径 の マ ン ド レル を 使用 すればよ い  The shrinkage rate of the core hole due to the firing of the pre-compression molded body depends on whether the target molded body is solid or porous, whether the pre-compression molded body Reference, compression ratio, pressure, compression speed, compression time, properties of PTFE powder used (particle size, particle size distribution, molecular weight of PTFE, whether PTFE has been modified, Or fired powder, unfired powder, granulated or not), and the cooling rate during firing, etc., 0 to: 15%, usually 0.1 to 10%. Therefore, it is usually sufficient to use a mandrel having an outer diameter of 90% or more, preferably 95% or more of the center hole diameter of the pre-compression molded body before firing.
マ ン ド レルの外径 の 上限は、 予備圧縮成形体 に挿入で き る も のか否かで決 ま る 。 予備圧縮成形体は加熱 に よ り 熱膨張す る の で 、 好 ま し く は 5 0〜 2 5 0 °C程度 にカ卩 熱す る か 、 さ ら に要すれ ば機械的 に拡張 し て 、 予備圧縮成形体 の 予備成形時 の 中 心孔 径 の 1 1 0 %ま で、 好 ま し く は 1 0 5 % ま で の外径 の マ ン ド レルが使用 で き る 。 拡張 ま で し て大 き 目 の マ ン ド レ ル を揷入す る 理 由 は、 前記 W 0 9 8 Z 1 6 9 6 8号パ ン フ レ ツ ト に記載 さ れて い る よ う な焼成時 に殆 ど 収縮 しない予備圧縮成形体 の場合 に対応する た めであ る 。 外径 の大き す ぎ る マ ン ド レル を無理矢理挿入す る と 焼成 に よ り 成形体の マ ン ド レ ル に近 い 部分 の 残留応力 が大 き く な り 、 密度が不均一 に な っ た り 割れが生ず る こ と があ る 。  The upper limit of the outer diameter of the mandrel is determined by whether it can be inserted into the pre-compression molded body. Since the pre-compression molded body expands thermally by heating, it is preferably heated to about 50 to 250 ° C, or expanded mechanically if necessary. In addition, a mandrel having an outer diameter of up to 110%, preferably up to 105% of the core hole diameter at the time of preforming of the pre-compression molded body can be used. The reason for introducing a larger mandrel up to the extension may be found in the aforementioned W098Z16696 panfret. This is to accommodate the case of a pre-compression molded body that hardly shrinks during sintering. If a mandrel with an excessively large outer diameter is forcibly inserted, the residual stress in the portion near the mandrel of the molded body increases due to firing, and the density becomes non-uniform. Cracks may occur.
マ ン ド レ ルの 材質 と し て は焼成温度 に 耐え 得 る 材料で あ れば特 に 限定 さ れな い が、 通常ス テ ン レ ス ス チー ル、 ニ ッ ケル メ ツ キ さ れた鉄、 ク ロ ム メ ツ キ さ れた鉄な どが 好 ま し く 使用 で き る 。 ま た必要 に応 じ て 、 マ ン ド レ ル と し て後工程 の 切 削 工程 で使用 す る 切 削用 の 芯棒 を使用 し て も よ い 。 こ の 場 合 、 焼成後 に マ ン ド レ ル を 引 き 抜 く こ と な く 切削作業 を 行な う こ と がで き る 。 The material of the mandrel is a material that can withstand the firing temperature. There is no particular limitation, but usually stainless steel, nickel-plated iron, chrome-plated iron, etc. are preferred. Can be used. If necessary, the mandrel may be a cutting core used in the subsequent cutting process. In this case, the cutting operation can be performed without pulling out the mandrel after firing.
本発 明で使用 す る PTFEはテ ト ラ フ ルォ ロ エチ レ ン ( T FE) の単独重合体で あ っ て も 、 約 5 モル % ま での他 の単 量体で変性 さ れた 変性 P T F Eで あ っ て も よ レゝ (な お 以下、 特 に 断 ら な い 限 り 、 PTFEに は変性 PTFEも 含む も の と す る ) 。 具体的 に は W 〇 98 Z 41386号パ ン フ レ ッ ト に記載 さ れて い る よ う な パ 一 フ ルォ ロ ビニルエ ー テルが好 ま し い 。 重合法 は懸濁重合法で も 乳化重合法で も よ い が、 懸 濁重合で得 ら れた粒子 を粉枠 し て得 ら れ る い わゆ る モー ルデ ィ ン グパ ウ ダ一 が好 ま し い 。 PTFE粉末 の粒子径 は 数平均粒径で 5 〜 600 m、 好 ま し く は 10〜: 150 μ ιηで あ る 。  Even if the PTFE used in the present invention is a homopolymer of tetrafluoroethylene (TFE), it is modified by up to about 5 mol% with other monomers. Even if it is PTFE (hereinafter, unless otherwise specified, PTFE includes modified PTFE). Specifically, a perfluorovinyl ether such as that described in the W〇98 Z 41386 pamphlet is preferred. The polymerization method may be either a suspension polymerization method or an emulsion polymerization method, but a so-called molding powder obtained by pulverizing particles obtained by suspension polymerization is used. I like it. The particle size of the PTFE powder is a number average particle size of 5 to 600 m, preferably 10 to 150 μιη.
本発 明 で使用 す る PTFE粉末 は未焼成品 で も焼成品(半 焼成品 も含む) で も よ い 。 た だ し 、 多孔質成形体 を 製造 す る 場合 は焼成 PTFE粉末 を 使用 し 、 中 実 成形体 を 製造 す る 場合は未焼成 PTFE粉末 を使用 す る こ と が好 ま し い 。  The PTFE powder used in the present invention may be an unfired product or a fired product (including a semi-fired product). However, when producing a porous compact, it is preferable to use calcined PTFE powder, and when producing a solid compact, it is preferable to use unfired PTFE powder.
こ の P T F E粉末 は つ い で圧縮成形 に よ り 予備成形 さ れ る 。 圧縮成形 は従来 と 同様の金型 を 用 い 同 様 の成形条件 で行な う こ と がで き る 。 具体的 に は、 多孔質成形体 を 製 造す る 場合 は 、 数平均粒径が 10〜 150 μ mの 焼成 P T F E粉 末 を環状 の 空 間 ( キ ヤ ビテ ィ ) を 有す る 金型 に充填 し 、 圧縮圧 力 10〜 100MPaで圧縮 比 3 〜 6 、 好 ま し く は 4 〜 5 ま で圧縮す る 。 中 実成形体 を製造す る 場合は、 数平均 粒径が 10〜 700 μ mの 未焼成 P T F E粉末 を 環状 の 空 間 ( キ ャ ビテ ィ ) を 有す る 金型 に充填 し 、 圧縮圧 力 10〜50MPa で圧縮比 2 〜 8 、 好 ま し く は 3 〜 6 ま で圧縮する 。 This PTFE powder is then preformed by compression molding. Compression molding can be carried out under the same molding conditions using the same mold as before. Specifically, when producing a porous molded body, the calcined PTFE powder having a number average particle diameter of 10 to 150 μm is molded into a mold having an annular space (cavity). It is filled and compressed at a compression pressure of 10 to 100 MPa to a compression ratio of 3 to 6, preferably 4 to 5. When manufacturing solid compacts, number average Unfired PTFE powder having a particle size of 10 to 700 μm is filled into a mold having an annular space (cavity), and a compression ratio of 2 to 8 at a compression pressure of 10 to 50 MPa is preferable. Compression to 3-6.
金型 と し て は 中 心孔 を 有す る 円 筒 状 の 予備成形体 を 作 製で き る も の で あ れ ば特 に 限定 さ れな い が 、 本発明 の 製 造法 に よ れ ば特 に 大型 の 焼成成形体が製造 で き る 。 本発 明 で い う 大型 の ( 予備 ま た は焼成) 成形体 と は長 さ L が 4 OOmm以上 の も の で あ り 、 最長は金型や焼成炉の大 き さ に依存す る が、 2000mm程度で あ る 。 特 に 長 さ L p と 外 径 (直径) Dpと の 比 LpZ Dpが 1 以上 、 特 に 2 〜 20の長 尺 の も の 、 さ ら に は長 さ Lpと 肉厚 Hp (外径 Dpか ら 中 心 孔径 (直径) cDpの差) の 比 Lp/ Hpが 1 以 上、 特 に 4 〜 10の 比較的 肉厚 の 薄 い も の ま で製造で き る 。  The mold is not particularly limited as long as it can produce a cylindrical preform having a center hole, but is not limited to the mold according to the production method of the present invention. For example, a large-sized fired molded body can be manufactured. The large (preliminary or fired) compacts of the present invention have a length L of 4 OO mm or more, and the longest depends on the size of the mold and firing furnace. It is about 2000mm. In particular, the ratio LpZ between the length Lp and the outer diameter (diameter) Dp is 1 or more, especially those having a length of 2 to 20 and more particularly the length Lp and the wall thickness Hp (outside diameter Dp It can be manufactured with a relatively thin wall thickness ratio of Lp / Hp of 1 or more, especially 4 to 10 (difference in center hole diameter (diameter) cDp).
予備圧縮成形体 の 中 心孔 の直径 は予備成形体の大 き さ (長 さ 、 外径) な ど に よ っ て異な る が、 通常 10〜 500 mm の範囲 で適宜選定す る 。  The diameter of the core hole of the pre-compression molded body differs depending on the size (length, outer diameter) of the pre-molded body, etc., but it is usually appropriately selected in the range of 10 to 500 mm.
か く し て得 ら れた 予備圧縮成形体 の 中 心孔 に前記 の マ ン ド レル を 揷通 し 、 焼成炉内 で水平 に懸架す る 。 こ の 状 態 を 図 1 に 示す (概略側面図) 。  The mandrel described above is passed through the center hole of the pre-compressed molded body thus obtained, and is suspended horizontally in a firing furnace. This condition is shown in Figure 1 (schematic side view).
図 1 にお い て 1 は予備圧縮成形体、 2 は マ ン ド レルで あ り 、 マ ン ド レ ル 2 の両端部分が懸架台 3 で支持 さ れて い る 。 予備圧縮成形体 1 は焼成炉 の床面 4 か ら 離 さ れて い る 。  In FIG. 1, 1 is a pre-compression molded body, 2 is a mandrel, and both ends of the mandrel 2 are supported by a suspension base 3. The pre-compression molded body 1 is separated from the floor 4 of the firing furnace.
本発 明 の 製造法 は 、 図 1 に 示す水平懸架状態の ま ま で 焼成 し て も よ い し 、 W 0 98/ 41386号ノ° ン フ レ ツ ト に 記 載 さ れて レゝ る よ う に 、 回転機構 ( 図 1 に は記載 し て い な い ) を 付カロ し て 回転 さ せなが ら 焼成 し て も よ い 。  The production method of the present invention may be fired in the state of horizontal suspension as shown in Fig. 1 or described in the W098 / 41386 Nom fret. In this way, firing may be performed while rotating with a rotating mechanism (not shown in FIG. 1).
焼成 は、 PTFE粉末 の 予備 圧縮成形体 の 融点 ( 未焼成 品で は 337〜 347 °C 、 焼成品で は 322〜 332 °C ) よ り も 10 〜 60 °C 、 好 ま し く は 15〜 50 °C 高 レ 温度 で 1 〜 300時 間 、 通常 10〜 200時間加熱す る こ と に よ り 行な う 。 The sintering is performed at the melting point (pre-sintering) 337 to 347 ° C for baked products, 322 to 332 ° C for baked products), preferably 10 to 60 ° C, preferably 15 to 50 ° C. This can be done by heating for ~ 200 hours.
予備成形体 を 回転 さ せなが ら (マ ン ド レ ル を 回転 さ せ な が ら ) 焼成 を 行な う 場合、 そ の 回転速度 は焼成温度 、 焼成時 間 、 予備成形体 の大き さ な ど に よ っ て適宜選定す れ ばよ い が、 通常 1 〜 300回転 Z時間 、 好 ま し く は 10〜 1 00回転 Z時間 で あ る 。 本発 明 に よ れ ば、 少な く と も 焼成 中 に は予備成形体がマ ン ド レル を抱 き 込む ( 密着す る ) 状態 に な る た め 、 回転 を ス ム ー ズ に 実施で き 、 均一な 焼 成が達成で き る と 共 に変形量 を 低減化で き る 。  When firing while rotating the preform (while rotating the mandrel), the rotation speed depends on the firing temperature, firing time, size of the preform, and the like. It may be appropriately selected according to the conditions, but it is usually 1 to 300 rotations Z time, preferably 10 to 100 rotations Z time. According to the present invention, the rotation can be performed smoothly, at least during firing, because the preform is in a state of embracing (adhering to) the mandrel. In addition, uniform sintering can be achieved, and the amount of deformation can be reduced.
本発 明 の製造法 に よ れ ば、 変形量が少な く 焼成が均一 に施 さ れた焼成 PTFE成形体が得 ら れ る 。 焼成 PTFE成形 体 と し て は 中 実体 (比重 2. 10〜 2. 2) で あ っ て も 、 多孔 質体 ( 比重 0. 8〜 1. 8) の も の で あ っ て も よ い 。 中 実体 の大型成形 品 は前記 W 〇 98Z 41386号お よ び W O 00/ 1 6968号 の各ノ° ン フ レ ツ ト に記載 の方法で も 得 られて い る が、 本発 明 の 製造法 に よ る と き に は、 さ ら に変形量が小 さ く 、 し か も 後工程 の 切削加工 に直 ち に使用 でき る も の が得 ら れ る 。  According to the production method of the present invention, it is possible to obtain a fired PTFE molded article having a small amount of deformation and uniformly fired. The fired PTFE molded body may be a solid body (specific gravity 2.10 to 2.2) or a porous body (specific gravity 0.8 to 1.8). Solid large molded articles can also be obtained by the methods described in the respective non-flats of the aforementioned WO98Z41386 and WO00 / 16968, but the production method of the present invention According to the method, a material having a smaller deformation amount and being able to be used immediately in a post-process cutting process can be obtained.
一方 、 大型 の 多孔 質焼成 PTFE成形体 は 、 本発 明 の 製 造法で初 め て得 ら れた も の で あ る 。 多孔質体用 の 予備圧 縮成形体は機械的強度が小 さ い た め 、 従来 の 立て置 き の 焼成法で は変形量が大 き く な り 過 ぎ、 回転焼成法 に お い て も シ ャ フ ト と 線接触 し て い る 場合 は荷重 が集中 す る た め 、 変形が大 き く な つ て し ま う た め 、 実用 レ ベル の 大型 の多孔質焼成成形体 は製造で き て い な か っ た 。  On the other hand, a large-sized porous fired PTFE molded article was obtained for the first time by the manufacturing method of the present invention. Since the pre-compression molded body for a porous body has low mechanical strength, the amount of deformation is too large in the conventional standing firing method, and it is excessive even in the rotary firing method. When the shaft is in line contact with the shaft, the load concentrates and the deformation becomes large. Therefore, a large-scale porous fired molded product at a practical level cannot be manufactured. I didn't.
し た が つ て 、 長 さ L が 400 m m以上 で 肉厚 H が 50 m m以 上、 ま た長 さ L と 肉厚 H の 比 L / H が 1 以上 の 円 筒状 の 多孔質焼成 PTFE成形体は新規な 材料 で あ る 。 Therefore, the length L is 400 mm or more and the wall thickness H is 50 mm or less. Above, a cylindrical porous fired PTFE molded article having a ratio L / H of length L to wall thickness H of 1 or more is a novel material.
得 ら れた 円 筒 状 の 焼成 PTFE成形 体 は 、 従来 と 同 様 に し て切肖 U (ス カ イ ブ) 加工 さ れ、 シー ト の形状 に さ れ る 。 従来 の製造法で作製 さ れ る 焼成成形体 は焼成時 の変形量 が大き い の で 、 製 品 に な る シー ト を 切 り 出す前 に か な り の量 (厚 さ ) を 切 り 除 く 必要が あ っ た り 、 中 心孔 の 形状 を切削機 の芯棒 に合わせて真 円 に加工修正す る 必要が あ つ た。 し か し 、 本発明 で得 ら れ る 中 実お よ び多孔質焼成 PTFE成形体 は変形量 が少 な い の で 最初 に 切 り 除 く 量 を 少な く す る こ と がで き 、 特 に 中 心孔が真 円 で あ る マ ン ド レルの形状 に 沿 っ て真 円 で あ る た め 、切 削機 にそ の ま ま 、 あ る い は僅か な 力 [1ェでセ ッ 卜 す る こ と がで き る 。  The obtained cylindrical calcined PTFE molded body is subjected to a scribing U (scube) process in the same manner as in the prior art, and is formed into a sheet shape. Since the sintered compact produced by the conventional manufacturing method has a large amount of deformation during firing, a considerable amount (thickness) is cut out before cutting out a sheet to be a product. In addition, it was necessary to correct the shape of the core hole to a perfect circle according to the core rod of the cutting machine. However, since the solid and porous fired PTFE molded articles obtained by the present invention have a small amount of deformation, the amount to be cut off first can be reduced. Since the center hole is round along the shape of the mandrel where the center hole is round, the cutting machine can be left alone or with a small force [1]. I can do it.
長 さ が 400 m m以上 の大型 の焼成 P T F E成形体か ら 切 削 し て得 ら れ る 多孔質焼成 PTFEシ一 ト は 400mni以上 の 幅 を 有 し て お り 、 こ の よ う な 幅広 の 多孔 質 焼成 PTFEシ ー ト は従来で は得 ら れて い な い 。 ま た 、 シー ト の厚 さ は切 削 に よ り 調整で き 、 厚 さ を 0. 1 mm以上 、 た と え ば 0. 1〜 1 Ommの多孔 質焼成 PTFEシ一 卜 を容易 に得 る こ と がで き る 。  A porous fired PTFE sheet obtained by cutting from a large fired PTFE molded body with a length of 400 mm or more has a width of 400 mni or more, and such a wide porous hole is used. High quality fired PTFE sheets have not been obtained in the past. In addition, the thickness of the sheet can be adjusted by cutting, and a porous fired PTFE sheet having a thickness of 0.1 mm or more, for example, 0.1 to 1 Omm can be easily obtained. be able to .
こ れ ら の焼成 P T F Eシー ト は種 々 の 用 途 に利用 で き る 。 た と え ば中 実 シー ト の場合は、 耐熱電線や車両モ ー 夕 、 発電機な ど の耐熱絶縁テー プ ; 化学 プ ラ ン ト な ど の耐蝕 ラ イ ニ ン グ ; 配管ガ ス ケ ッ ト 、 金型離型用 フ ィ ルム な ど に使用 で き る 。  These calcined PTFE sheets can be used for various purposes. For example, in the case of a solid sheet, heat-resistant insulating tapes such as heat-resistant electric wires, motor vehicles, and generators; corrosion-resistant linings such as chemical plants; piping gaskets. It can be used for molds, mold release films, etc.
ま た 、 多孔質 シー ト は気液分離膜や フ ィ ル 夕 一 、 ガ ス 抜 き膜、 ガ ス 発 生膜な ど の ガ ス を透過 さ せ る 性質 を 利 用 し た ガス 透過性膜 ; パ ッ キ ンや ク ッ シ ョ ン 、 各種 シー ル 材 、 ガ ス ケ ッ ト な ど の緩衝性 を 利 用 し た緩衝用 シー ト ; 防音カ バ一 材、 防熱力 バ一材、 研磨用 パ ッ ド な ど に使用 で き る 。 In addition, the porous sheet is a gas permeable membrane utilizing the property of transmitting gas such as a gas-liquid separation membrane, a filter, a gas removal membrane, and a gas generation membrane. Packs, cushions, and various seals It can be used for cushioning sheets that use the buffering properties of materials, gaskets, etc .; soundproof covering materials, heat-proofing materials, and polishing pads.
以下 に 本発 明 を 実施例 に基づ い て説 明 す る が、 本発 明 はかか る 実施例 の み に 限定 さ れ る も の で はな い。  Hereinafter, the present invention will be described based on embodiments, but the present invention is not limited to only the embodiments.
実施例 1 Example 1
未焼成 PTFE (懸濁重合法で 製造 さ れた パ ー フ ル ォ ロ ( プ ロ ピ ル ビ ニ ル エー テ ル) で変性 さ れた 変性 P T F E。 見掛け密度 0. 42 g / c c、 融点 341 °C ) を 350〜 360 °C で焼 成 し た の ち 、 平均粒径 125 mま で粉砕 し て 焼成 PTFE粉 末 を得た 。  Modified PTFE unmodified PTFE (Perfluoro (propylene vinyl ether) manufactured by suspension polymerization method), apparent density 0.42 g / cc, melting point 341 (° C) at 350 to 360 ° C, and then pulverized to an average particle size of 125 m to obtain a calcined PTFE powder.
こ の焼成 P T F E粉末 710 g を外側径 100 m mで内側径が 5 Ommの環状 の キ ヤ ビテ ィ を有す る 金型 に充填 し た 。 こ の と き の 充填 (見掛 け) 密度は 0. 45 g /ccで あ っ た 。 つ い で圧縮成形圧力 49. 6MPa ( 500kgf / cm2) にて 10分 間 圧 縮 し て予備圧縮成形体 を 作製 し た 。 金型か ら 取 り 出 し 、 1 時間放置 し た も の のサイ ズ を つ ぎ に示す。 710 g of the calcined PTFE powder was filled in a mold having an annular cavity with an outer diameter of 100 mm and an inner diameter of 5 Omm. The packing (apparent) density at this time was 0.45 g / cc. Then, compression was performed at a compression molding pressure of 49.6 MPa (500 kgf / cm 2 ) for 10 minutes to produce a pre-compression molded body. The size of the product removed from the mold and left for 1 hour is shown below.
長 さ Lp : 67. 5mm Length Lp: 67.5 mm
外径 Dp : 100. 65mm Outer diameter Dp: 100.65mm
Lp/ Dp : 0. 67 Lp / Dp: 0.67
中 心孔径 c D p : 50mm Center hole diameter c D p: 50mm
肉厚 Hp : 25mm Wall thickness Hp: 25mm
Lp/ Hp : 2. 68 Lp / Hp: 2.68
比重 : 1. 75〜: L . 76 Specific gravity: 1.75 ~: L.76
同 じ 操作 を繰 り 返 し て合計 5 個 の 同 じ サイ ズの 予備圧 縮成形体 ( Apl〜Ap5) を 作製 し た 。  The same operation was repeated to produce a total of five pre-compacted compacts (Apl to Ap5) of the same size.
ま ず、 予備成形体 Ap 1に は外径 48. 5 m m ( 中 心孔 径 c D pの 97% ) の ス テ ン レ ス ス チー ル ( SUS) 製パ イ プ の マ ン ド レ ル (長 さ 300mm) を揷通 し 、 予備成形体 Ap2に は 外径 50. Omm ( cDpの 100%) の SUS製 の マ ン ド レ ル を 揷 通 し 、 予備成形体 A p 3 に は外径 50. 5 m m ( c D pの 101 % ) の S U S製マ ン ド レル を 揷通 し 、 予備成形体 Ap 4に は外径 5 1. 0mm ( cDpの 102% ) を揷通 し た 。 予備成形体 Ap3と A P 4は予備成形体 を 200 °C で加熱 し つ つ 挿入 し た 。 予備成 形体 Ap 5に は何 も 挿入 し なか っ た 。 First, the preformed body Ap 1 has a stainless steel (SUS) pipe with an outer diameter of 48.5 mm (97% of the core hole diameter cDp). After passing through a mandrel (length 300 mm), a pre-formed body Ap2 is passed through a SUS mandrel with an outer diameter of 50. Omm (100% of cDp). 3 was passed through a SUS mandrel with an outer diameter of 50.5 mm (101% of cDp), and the preform Ap 4 was passed through an outer diameter of 51.0 mm (102% of cDp). I passed. The preforms Ap3 and AP4 were inserted while heating the preform at 200 ° C. Nothing was inserted into the preformed body Ap5.
マ ン ド レ ル を 挿通 し た 予備成 形体 Ap:!〜 Ap4を 焼成 炉 内 に置 か れた 2 つ の懸架台 の 間 に水平 に 懸架 し た。 予備 成形体 Ap 5はそ の ま ま 焼成炉 内 に 立て 置 き し た。 こ の 状 態で焼成炉内 を 昇温速度 50 °C Z時 間で 360 °C ま で上 げ、 3 60 °C に 6 時 間保持 し て焼成 し た の ち 、 降温速度 50 °C Z時 間で 80 °C ま で下 げ、 炉カゝ ら 取 り 出 し 25 °C の 恒温室内 に移 し た。  The preforms Ap:! ~ Ap4 with mandrels inserted were suspended horizontally between two suspension stands placed in the firing furnace. The preformed body Ap5 was set up in the firing furnace as it was. In this state, the inside of the baking furnace is heated up to 360 ° C at a heating rate of 50 ° CZ for 50 hours, and fired at 360 ° C for 6 hours, and then cooled at a rate of 50 ° CZ. The temperature was lowered to 80 ° C in the furnace, removed from the furnace, and moved to a constant temperature room at 25 ° C.
24時 間放置 し た の ち 、 各焼成 PTF E成形体 のサイ ズ を 測定 し た 。 結果 を表 1 に示す。  After being left for 24 hours, the size of each fired PTFE molded body was measured. Table 1 shows the results.
サイ ズの測定 はつ ぎ の 方法で行な っ た 。  The size was measured by the following method.
外径 : 焼成成形体 の長手方向 を 等 間 隔 に 5 点測定 し 平均 値 を求 め る 。 Outer diameter: Five points are measured at equal intervals in the longitudinal direction of the fired molded body, and the average value is determined.
中 心孔 径 : 両端 の 2 点 で測定 し 平均値 を求め る 。 Core hole diameter: Measure at two points at both ends and calculate the average value.
ま た 、 表 1 に お い て 、 外径収縮率 は予備成形体の 外径 D pに対す る 焼成成形体 の外径 の 収縮率 を表わ し 、 中 心孔 収縮率 は予備成形体 の 中 心孔 径 c D pに対す る 焼成成形体 の 中 心孔径 の 収縮率 を 表わ し て い る 。 た だ し 、 抱 き 込み が生 じ た場合収縮が測定で き な い の で 「 一 」 で示 し た 。 ま た 、 長手方 向 の膨張率 は予備成形体の長手方向 の 長 さ Lpに対する 焼成成形体 の長手方 向 の長 さ の膨張率 を 表わ し て レ る 。 表 1 Also, in Table 1, the outer diameter shrinkage ratio indicates the shrinkage ratio of the outer diameter of the preformed body to the outer diameter Dp of the preformed body. the shrinkage of Kokoroana径in the fired shaped body against the middle Kokoroana diameter c D p it is Table Wa. However, when hugging occurred, contraction could not be measured. Further, the expansion coefficient in the longitudinal direction represents the expansion coefficient of the length in the longitudinal direction of the fired molded body with respect to the length Lp in the longitudinal direction of the preformed body. table 1
Figure imgf000015_0001
表 1 に 示す よ う に 、 予 備圧縮成形体 の 中 心孔 径 よ り も
Figure imgf000015_0001
As shown in Table 1, the diameter of the pre-compressed compact was smaller than the core hole diameter.
3 % 小 さ い 外径 の マ ン ド レ ル を 使用 し た 場合 ( A p 1 ) 焼成後 に も マ ン ド レ ル の 抱 き 込 み は起 こ ら ず ( 中 心孔 の 収 縮率 : 1 . 4 % ) 、 得 ら れ た 焼成 成形体 の 外 径 はや ゃ 楕 円 に な っ て い た 。 な お 、 立て 置 き 焼 成 し た 場 合 ( A p 5 ) の 中 心孔 収縮率 が 4 . 2 % であ る の も かかわ ら ず A p 1では 1 .When a mandrel with an outer diameter smaller than 3% is used (Ap1), the mandrel does not become entangled even after firing (shrinkage rate of core hole) : 1.4%), and the outer diameter of the obtained fired molded article was slightly elliptical. In addition, when the porcelain was vertically baked (Ap5), the contraction rate of the medial foramen was 4.2%, but it was 1.
4 % し か 中 心 孔 が 収 縮 し な か っ た 理 由 は 、 両端 が フ リ ー の 状態 で 焼成 さ れ て い る た め 長 手方 向 の 膨張 が大 き く な り 、 中 心孔方 向 ( ラ ジ ア ル方 向 ) の 収縮 が抑 制 さ れ た た め と 考 え ら れ る 。 一方、 予備圧縮成形体 の 中 心孔径 と 同 じ か 大 き い 外径 の マ ン ド レル を 使用 し た場合 ( Ap 2〜 4 ) は 、 焼成後 に マ ン ド レル の 抱 き込みが生 じ てお り 、 焼成成形体は ほ ぼ真 円 を維持 し て い た 。 従来 の焼成法で あ る 立て 置き 焼成 を し た場合 ( Ap 5 ) 、 焼成成形体 の 下部 の外径 が上部 よ り も 約 1. 5 % 大 き く な つ て台形 に な り 、 ま た 全体 に 楕 円 に な っ て い た 。 The reason that the center hole did not shrink by only 4% was that the core was fired with both ends free, so that the expansion in the long-hand direction became large, It is considered that the contraction in the hole direction (radial direction) was suppressed. On the other hand, when a mandrel having an outer diameter equal to or larger than the core hole diameter of the pre-compression molded body is used (Ap 2 to 4), the mandrel is caught after firing. As a result, the fired molded body maintained a substantially perfect circle. In the case of vertical firing, which is the conventional firing method (Ap 5), the outer diameter of the lower part of the fired molded body is about 1.5% larger than that of the upper part and becomes a trapezoidal shape. The whole was elliptical.
つ い でマ ン ド レル の 抱 き込みが生 じ た多孔質焼成 P T F E 成形体 ( Ap 2〜 4 ) につ い て 、 切削加工 を 行な い 、 厚 さ 0. 5mmの多孔質焼成 PTFEシー ト を作製 し 、 孔径 ( Co ulter Electric社製 の POROMETERを 使用 ) 、 硬度 ( AS KER. C) お よ び切 削 シー ト の 幅方 向 の 引 張強度 、 引 張 伸び ( JIS K 6891に 準拠) を測定 し た 。 結果 を 表 1 に 併せて示 し て い る 。  Then, the porous fired PTFE molded body (Ap 2 to 4) in which the mandrel was entangled was subjected to cutting to obtain a 0.5 mm thick porous fired PTFE sheet. The sheet is prepared, and its pore size (using POROMETER manufactured by Coulter Electric), hardness (AS KER. C) and tensile strength in the width direction of the cutting sheet and tensile elongation (based on JIS K 6891) ) Was measured. The results are also shown in Table 1.
表 1 に示す よ う に 、 い ずれ の 多孔 質焼成 PTFEシ ー ト も 充分な機械的特性 を 有 し て い る 。  As shown in Table 1, each of the porous fired PTFE sheets has sufficient mechanical properties.
実 施 例 2 Example 2
未焼成 P T F E ( 懸濁 重合法 で 製造 さ れ た パ ー フ ル ォ ロ ( プ ロ ピ ル ビ ニ ルエ ー テル) で 変性 さ れ た 変性 P T F E。 見掛 け密度 0. 42 g /cc、 融点 341°C ) を 350〜 360 °C で焼 成 し た の ち 、 平均粒径 125 mま で粉砕 し て 焼成 PTFE粉 末 を得た。  Unfired PTFE (modified PTFE modified with perfluoro (propyl vinyl ether) manufactured by suspension polymerization method) Apparent density 0.42 g / cc, melting point 341 ° C) at 350 to 360 ° C, and then pulverized to an average particle size of 125 m to obtain a calcined PTFE powder.
こ の 焼成 P T F E粉末 18400 g を 外側径 174 m mで 内側径 が 50mmの 環 状 の キ ヤ ビ テ ィ を 有す る 金型 に 充填 し た 。 こ の と き の 充填 (見掛 け) 密度 は 0. 45 g Zccで あ っ た 。 つ い で圧縮 成 形 圧 力 49. 6 MP a ( 500kgf / cm2) に て 60 分間圧縮 し て 予備圧縮成形体 を 作製 し た 。 金型か ら 取 り 出 し 、 1 時 間放置 し た も の の サイ ズ を つ ぎ に示す。 長 さ Lp : 453mm This calcined PTFE powder (18,400 g) was filled in a mold having a ring-shaped cavity having an outer diameter of 174 mm and an inner diameter of 50 mm. The packing (apparent) density at this time was 0.45 g Zcc. Then, pre-compression molding was prepared by compressing at a compression molding pressure of 49.6 MPa (500 kgf / cm 2 ) for 60 minutes. The size of the product removed from the mold and left for 1 hour is shown below. Length Lp: 453mm
外径 Dp : 174mm Outer diameter Dp: 174mm
Lp / Dp : 2. 6  Lp / Dp: 2.6
中 心孔径 c D p : 50mm Center hole diameter c D p: 50mm
肉厚 Hp : 62mm Wall thickness Hp: 62mm
Lp / Hp : 7. 3  Lp / Hp: 7.3
比重 : 1. 8〜1. 85 Specific gravity: 1.8 to 1.85
こ の予備圧縮成形体 に外径 50. Omm ( 中 心孔径 c D pの 1 00%) の ス テ ン レ ス ス チー ル ( SUS) 製ノ° イ ブの マ ン ド レル (長 さ : LOOOmm) を 揷通 し 、 焼成炉 内 に 置か れた 2 つ の懸架台 の 間 に水平 に懸架 し た 。 こ の 状態で 13時間 か けて 360 °C に ま で 上 げ、 360 °C に 13時 間 保持 し て 焼成 し た の ち 、 10時 間 か けて 室温 ま で下 げ 、 炉か ら 取 り 出 し 2 5 °C の恒温室 内 に 移 し た 。  A mandrel (length: 50 mm) of stainless steel (SUS) with an outer diameter of 50 mm (100% of center hole diameter cDp) LOOOmm), and suspended horizontally between two suspension stands placed in the firing furnace. In this state, the temperature was raised to 360 ° C in 13 hours, calcined at 360 ° C for 13 hours, lowered to room temperature in 10 hours, and removed from the furnace. It was removed and moved into a constant temperature room at 25 ° C.
24時 間放置 し た の ち 、 多孔質焼成 PTFE成形体 の サイ ズ を測定 し た 。  After standing for 24 hours, the size of the porous fired PTFE molded body was measured.
^ d L : 585mm ^ d L: 585mm
外径 D : 162. lmm Outer diameter D: 162. lmm
中 心孔径 c D : 50mm Center hole diameter c D : 50mm
肉厚 H : 56. 0 mm Wall thickness H: 56.0 mm
収縮率 (% ) : 外径 6. 8 % Shrinkage (%): Outer diameter 6.8%
膨張率 (% ) : 長手方 向 29 % Expansion rate (%): 29% in the longitudinal direction
比重 : 1. 68 Specific gravity: 1.68
マ ン ド レリレ の抱 き込み : あ り ( フ リ ー の 場合の 中 心孔 径 収縮率 0. 65 % ) Enclosure of mandrel: Yes (Free center diameter shrinkage 0.65% in case of free)
外形 の変化 : 収縮 は生 じ て い た が、 ほ ぼ真 円 を維持 し て お り 、 長手方 向 の 肉厚 の変化 も 認 め ら れな か っ た 。 Change in external shape: Although shrinkage occurred, the shape remained almost circular, and no change in wall thickness in the longitudinal direction was observed.
実施例 3 未焼 成 P T F E ( 懸濁 重合 法 で 製造 さ れた パ ー フ ル ォ ロ ( プ ロ ピ ル ビ エ ル エ ー テル) で 変 性 さ れ た 変性 P T F E。 見掛 け密度 0. 42 g / c c、 融点 341 °C 、 平均粒径 33 μ m ) 1075 g を外側径 100 m mで内側径が 50 m m.の環状のキ ヤ ビ テ ィ を 有す る 金型 に充填 し た 。 こ の と き の充填 (見掛 け) 密度 は 0. 45 g Zccで あ っ た 。 つ い で 圧縮成形圧力 29. 4 MPa ( 300kgfXcm2) に て 10分 間圧縮 し て予備圧縮成形 体を 作製 し た 。 金型か ら 取 り 出 し 、 1 時間放置 し た も の のサイ ズ を つ ぎ に示す。 Example 3 Unsintered PTFE (modified PTFE modified with perfluoro (propylene ether) manufactured by suspension polymerization method) Apparent density 0.42 g / 1075 g of cc, melting point of 341 ° C., average particle diameter of 33 μm) was filled in a mold having an annular cavity with an outer diameter of 100 mm and an inner diameter of 50 mm. The packing (apparent) density at this time was 0.45 g Zcc. Then, compression was performed at a compression molding pressure of 29.4 MPa (300 kgfXcm 2 ) for 10 minutes to produce a pre-compression molded body. The size of the product removed from the mold and left for 1 hour is shown below.
長 し p : 84. 5mm Length p: 84.5 mm
外径 Dp : 99. 8mm Outer diameter Dp: 99.8mm
Lp/ Dp : 0. 84 Lp / Dp: 0.84
中心孔径 c D p : 50mm Center hole diameter cDp: 50mm
肉厚 Hp : 24. 9mm Wall thickness Hp: 24.9mm
Lp/ Hp : 3. 39 Lp / Hp: 3.39
比重 : 2. 169〜 2. 171 Specific gravity: 2.169 to 2.171
同 じ 操作 を繰 り 返 し て合計 4 個 の 同 じ サイ ズの 予備圧 縮成形体 ( Ap6〜Ap9) を作製 し た 。  The same operation was repeated to produce a total of four pre-compressed compacts (Ap6 to Ap9) of the same size.
ま ず、 予備成形体 Ap 6に は外径 48. 5 mm ( 中心孔 径 c D pの 97%) の ス テ ン レ ス ス チー ル ( SUS) 製パ イ プ の マ ン ド レル (長 さ 300mm) を揷通 し 、 予備成形体 Ap7に は 外径 50. Omm ( cDpの 100%) の SUS製 のマ ン ド レル を揷 通 し 、 予備 成形体 Ap8に は外径 50. 5mm ( cDpの 101 %) の S U S製マ ン ド レル を 揷通 し た 。 予備成形体 Ap 8は予備 成形体 を 100 °C で加熱 し つ つ 挿入 し た 。 予備成形体 Ap 9 に は何 も 挿入 し なか っ た。  First, the preformed body Ap 6 has a mandrel (length) of stainless steel (SUS) pipe with an outer diameter of 48.5 mm (97% of the center hole diameter cDp). Through the preformed body Ap7, through a SUS mandrel with an outer diameter of 50.Omm (100% of cDp), and through the preformed body Ap8 with an outer diameter of 50.5 mm ( (101% of cDp) passed through a SUS mandrel. The preform Ap 8 was inserted while heating the preform at 100 ° C. Nothing was inserted into the preform Ap9.
マ ン ド レ ル を 揷通 し た予備 成形体 Ap 6〜 Ap 8を 焼成 炉 内 に 置かれた 2 つ の懸架台 の 間 に 水平 に懸架 し た 。 予備 成形体 Ap 9はそ の ま ま 焼 成炉 内 に 立 て 置 き し た 。 こ の 状 態で 焼 成 炉 内 を 昇温速度 50 Z時 間 で 360 t ま で 上 げ 、 3 60 °C に 6 時 間 保持 し て 焼 成 し た の ち 、 降温速度 50 °C Z時 間 で 80 °C ま で 下 げ、 炉 か ら 取 り 出 し 25 °C の 恒 温室 内 に 移 し た 。 The preforms Ap 6 to Ap 8 passed through the mandrel were suspended horizontally between two suspension stands placed in a firing furnace. Reserve The molded body Ap9 was kept standing in the sintering furnace as it was. In this state, the inside of the sintering furnace is heated up to 360 t at a heating rate of 50 Z hours to 360 t, and is held at 360 ° C for 6 hours, followed by sintering, and then a cooling rate of 50 ° CZ time The temperature was lowered to 80 ° C by heating and removed from the furnace and moved into a constant temperature room at 25 ° C.
24時 間 放 置 し た の ち 、 各 中 実 焼成 PTFE成 形体 の サ イ ズ を 測 定 し た 。 結果 を 表 2 に 示 す 。  After leaving for 24 hours, the size of each solid calcined PTFE molded body was measured. The results are shown in Table 2.
表 2  Table 2
Figure imgf000019_0001
表 2 に 示す よ う に 、 予 備圧 縮 成 形体 ( Ap 6〜 8 ) は い ず れ も 焼 成後 に マ ン ド レ ル の 抱 き 込 み が 生 じ て お り ( フ リ — の Ap 9 の 中 心孔 径 の 収縮率 4. 8 % ) 、 中 実 焼成成 形体 は ほ ぼ真 円 を 維持 し て い た 。 従来 の 焼成法で あ る 立 て 置 き 焼成 を し た場合 ( Ap 9 ) 、 中 実焼成成形体 の 下部 の 外 径 が上部 よ り も 約 0. 35 % 大 き く な つ て台形 に な り 、 ま た 全体 に楕 円 に な っ て い た 。
Figure imgf000019_0001
As shown in Table 2, all of the pre-compressed compacts (Ap 6 to 8) had mandrels entangled after firing (Fri). The contraction rate of the median pore diameter of Ap 9 was 4.8%), and the solid sintered compact maintained almost a perfect circle. Standing, which is the conventional firing method When firing is performed (Ap 9), the outer diameter of the lower portion of the solid fired molded body becomes approximately 0.35% larger than that of the upper portion to form a trapezoid, and the entire shape becomes an ellipse. It was.
実施例 4 Example 4
未焼成 PTFE (懸濁重 合 法で 製造 さ れた パ 一 フ ル ォ ロ ( プ ロ ピ ル ビ ニ ル エー テ ル) で変性 さ れた 変性 P T F E。 見掛 け密度 0. 42 g / c c、 融点 342 °C ) 138 k gを外側径 41 8mmで内側径が 150mmの環状 のキ ヤ ビティ を有す る 金型 に充填 し た 。 こ の と き の 充填 (見掛 け) 密度は 0. 67 g ノ ccで あ っ た 。 つ い で圧縮成形圧力 19. 6MPa ( 200kgf /c m2) にて 60分間圧縮 し て予備圧縮成形体 を 作製 し た 。 金 型か ら 取 り 出 し 、 1 時間放置 し た も の の サイ ズ を つ ぎ に 示す。 Unmodified PTFE modified with PTFE (Propyl vinyl ether) manufactured by suspension polymerization, apparent density 0.42 g / cc (Melting point: 342 ° C.) 138 kg was filled in a mold having an annular cavity with an outside diameter of 418 mm and an inside diameter of 150 mm. The packing (apparent) density at this time was 0.67 g / cc. Then, compression was performed at a compression molding pressure of 19.6 MPa (200 kgf / cm 2 ) for 60 minutes to produce a pre-compression molded body. The size of the sample removed from the mold and left for 1 hour is shown below.
長 さ Lp : 560. 2mm Length Lp: 560.2 mm
外径 Dp : 18mm Outer diameter Dp: 18mm
Lp / Dp : 1. 34  Lp / Dp: 1.34
中 心孑し径 c D p : 150mm Medium Shiso diameter cDp: 150mm
肉厚 Hp : 134mm Wall thickness Hp: 134mm
Lp / Hp : 4. 18  Lp / Hp: 4.18
比重 : 2. 06 Specific gravity: 2.06
こ の予備圧縮成形体 に外径 146 m m( 中 心孔径 c D pの 97. 26 % ) の ス テ ン レ ス ス チ ー ル ( SUS) 製パ イ プ の マ ン ド レ ル (長 さ 1000mm) を 挿通 し 、 焼成炉 内 に 置か れた 2 つ の 懸架台 の 間 に水平 に 懸架 し た 。 こ の 状態で 22. 5時 間 か けて 360 °C に ま で上 げ、 360 °C に 25時間 保持 し て焼 成 し た の ち 、 25時間 か けて室温 ま で下 げ、 炉か ら 取 り 出 し 25 °C の 恒温室 内 に移 し た 。  A mandrel (length) of a stainless steel (SUS) pipe with an outer diameter of 146 mm (97.26% of the center hole diameter cDp) (1000 mm), and suspended horizontally between two suspension tables placed in the firing furnace. In this state, raise the temperature to 360 ° C in 22.5 hours, hold at 360 ° C for 25 hours, calcine, then lower to room temperature in 25 hours, and place in a furnace. Was taken out and moved into a constant temperature room at 25 ° C.
24時 間 放置 し た の ち 、 得 ら れた大型 の 中 実焼成 PTF E 成形体 のサイ ズ を測定 し た 。 After standing for 24 hours, the resulting large solid fired PTF E The size of the molded body was measured.
長 さ し : 597. 5mm Length: 597.5 mm
外径 D : 400. 7mm Outer diameter D: 400.7 mm
中 心孔径 c D : 146mm Center hole diameter c D: 146mm
肉厚 H : 127. 3mm Wall thickness H: 127.3 mm
収縮率 (% ) : 外径 4. 14 % Shrinkage (%): Outer diameter 4.14%
膨張率 (% ) : 長手方 向 6. 7 % Expansion rate (%): 6.7% in the longitudinal direction
比重 : 2. 169〜 2. 171 Specific gravity: 2.169 to 2.171
マ ン ド レル の 抱 き 込み : あ り ( フ リ ー の 場合 の 中 心孔径 収縮率 4 〜 7 % ) Mandrel embrace: Yes (4 to 7% core hole diameter shrinkage when free)
外形 の変化 : 収縮 は生 じ て い た が、 ほ ぼ真 円 を維持 し て お り 、 長手方向 の 肉厚 の変化 も 認め ら れな か っ た 。 産業上 の利用 可能性 Change in external shape: Shrinkage occurred, but almost a perfect circle was maintained, and no change in wall thickness in the longitudinal direction was observed. Industrial applicability
本発 明 に よ れ ば、 大 型 の PTFE成形体 の 焼成 を 変形 を 抑 え て行な う こ と がで き る 。 特 に焼成 自 体が従来 困難で あ っ た 大型 の 多孔 質 PTFE成形体 の 焼成 を 行 な う こ と が で き 、 幅広 の 多孔 質 焼成 PTFEシー ト を提 供 す る こ と が で き る 。  According to the present invention, the firing of a large-sized PTFE molded body can be performed while suppressing deformation. In particular, it is possible to fire a large-sized porous PTFE molded body, which has conventionally been difficult to fire, and it is possible to provide a wide porous fired PTFE sheet. .

Claims

言青 求 の 範 囲 ポ リ テ ト ラ フ ル ォ ロ エ チ レ ン粉末 を 圧縮成形 し て 円 筒状 の予備圧縮成形体 を 作製 し 、 該予備圧縮成形体 の 中 心孔 に マ ン ド レ ル を 通 し 、 こ の マ ン ド レル を支持す る こ と に よ っ て 予備圧縮成形体 を水平 に 懸架 し 焼成 を 行な う 円 筒 状 の 焼成ポ リ テ ト ラ フ ル ォ ロ エチ レ ン成形 体 の 製造 法で あ っ て、 予備圧縮成形体 の 焼成後 の 中 心 孔径 c Dと 同 じ カゝ ま た は大 き い 外径 の マ ン ド レ ル D mを 使用 す る こ と を 特徴 と す る 製造法。 The range of the wording is as follows: Polytetrafluoroethylene powder is compression-molded to produce a cylindrical pre-compression molded body, and a mandrel is inserted into a center hole of the pre-compression molded body. The pre-compressed body is suspended horizontally by passing through the rail and supporting this mandrel, and calcining is performed. This is a method of manufacturing an ethylene molded body, and uses a mandrel Dm with the same diameter or a large outer diameter as the core hole diameter c D after firing of the pre-compressed molded body. A manufacturing method characterized by this.
予備圧縮成形体 を マ ン ド レル に よ り 水平 に懸架 し 静 置 し た ま ま 焼成す る 請求 の 範囲 第 1 項記載 の 製造法。  2. The method according to claim 1, wherein the pre-compressed body is calcined while being horizontally hung by a mandrel, allowed to stand, and fired.
水平 に 懸架 さ れた マ ン ド レル を 回転 さ せなが ら 予備 圧縮成形体 を焼成する請求 の範 囲第 1 項記載 の製造法。  The method according to claim 1, wherein the pre-compression molded body is fired while rotating the mandrel suspended horizontally.
ポ リ テ ト ラ フ ルォ ロ エチ レ ン粉末 が懸濁重合法で得 ら れ、 か つ 焼成 さ れた後粉砕 さ れた粉末で あ り 、 得 ら れ る 成形体が多孔質 の 成形体で あ る 請求 の 範囲第 1 項 〜第 3 項 の い ずれか に記載の 製造法。  Polytetrafluoroethylene powder is obtained by a suspension polymerization method, and is a powder that has been calcined and then pulverized, and the obtained molded body is a porous molded body. The production method according to any one of claims 1 to 3, which is a claim.
ポ リ テ ト ラ フ ルォ ロ エチ レ ン粉末 が懸濁重合法で得 ら れ、 か つ粉砕 さ れた粉末で あ り 、 得 ら れ る 成形体が 中 実 の成形体で あ る 請求 の 範囲第 1 項 〜 第 3 項 の い ず れか に記載 の 製造法。  Claims in which the polytetrafluoroethylene powder is obtained by a suspension polymerization method, is a pulverized powder, and the obtained molded body is a solid molded body. The production method according to any one of Items 1 to 3.
予備圧縮成形体 の長 さ L p が 4 0 0 m m以上であ る 請求 の範囲第 1 項〜第 5 項 の い ずれか に 記載 の製造法。  The production method according to any one of claims 1 to 5, wherein the length Lp of the pre-compression molded body is 400 mm or more.
予備圧縮成形体 の長 さ L pと 外径 D pの 比 L p / D pが 1 以上で あ る 請求 の 範 囲第 1 項〜 第 6 項 の いずれか に 記 載の 製造法。  The method according to any one of claims 1 to 6, wherein the ratio Lp / Dp of the length Lp and the outer diameter Dp of the pre-compressed body is 1 or more.
多孔質 で あ っ て 、 か つ長 さ L が 4 0 0 m m以上 の 円 筒 状 物 で あ り 、 円 筒 肉 厚 H が 50mm以 上 で あ る 焼成ポ リ テ ト ラ フ ルォ ロ エ チ レ ン多孔質成形体。 It is porous and has a cylindrical shape with a length L of at least 400 mm. A calcined polytetrafluoroethylene porous molded article having a cylindrical wall thickness H of 50 mm or more.
9. 長 さ L と 肉厚 H の 比 L / H が 1 以上で あ る 請求 の 範 囲第 8 項記載 の多孔質成形体。  9. The porous molded article according to claim 8, wherein a ratio L / H of the length L to the thickness H is 1 or more.
10. 請求 の 範 囲第 8 項 ま た は第 9 項記載の 焼成多孔質成 形体 を 切 削 加工 し て得 ら れ る 焼成 ポ リ テ ト ラ フ ル ォ ロ エチ レ ン多孔質成形品 。  10. A fired porous tetrafluoroethylene porous molded article obtained by cutting the fired porous molded body according to claim 8 or 9.
11. 幅が 400mm以上 の焼成ポ リ テ ト ラ フ リレオ 口 エチ レ ン 多孔質 シー 卜 で あ る 請求 の範囲第 10項記載 の多孔質成 形品。  11. The porous molded article according to claim 10, wherein the porous molded article is a fired polytetrafluoroethylene mouth porous sheet having a width of 400 mm or more.
12. 厚 さ が 0. 1mm以 上 の シ 一 ト で あ る 請求 の 範 囲 第 11 項記載 の 多孔質成形品。  12. The porous molded article according to claim 11, which is a sheet having a thickness of 0.1 mm or more.
13. 請求 の範 囲第項 11項 ま たは第 12項記載 の焼成ポ リ テ ト ラ フ ル ォ ロ エチ レ ン多孔質 シ ー ト か ら な る ガ ス 透過 性膜。  13. A gas permeable membrane made of the fired porphyra tetrafluoroethylene porous sheet according to claim 11 or claim 12.
14. 請求 の範 囲第 11項 また は第 12項記載 の焼成ポ リ テ ト ラ フ ルォ ロ エチ レ ン多孔質 シー ト か ら な る 緩衝用 シ 一 h 。  14. A buffering screen made of the fired porphyra tetrafluoroethylene porous sheet according to claim 11 or 12.
PCT/JP2001/004159 2000-06-06 2001-05-18 Polytetrafluoroethylene molded article and method for its production WO2001094101A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000168662A JP2001341138A (en) 2000-06-06 2000-06-06 Polytetrafluoroethylene molded body and producing method for the same
JP2000-168662 2000-06-06

Publications (1)

Publication Number Publication Date
WO2001094101A1 true WO2001094101A1 (en) 2001-12-13

Family

ID=18671635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/004159 WO2001094101A1 (en) 2000-06-06 2001-05-18 Polytetrafluoroethylene molded article and method for its production

Country Status (2)

Country Link
JP (1) JP2001341138A (en)
WO (1) WO2001094101A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5798714B2 (en) 2008-09-26 2015-10-21 日東電工株式会社 Composite semipermeable membrane and method for producing the same
JP5925409B2 (en) 2008-10-23 2016-05-25 日東電工株式会社 Method for producing thermosetting resin porous sheet, thermosetting resin porous sheet, and composite semipermeable membrane using the same
JP2012011646A (en) * 2010-06-30 2012-01-19 Nok Corp Method of manufacturing product made from tetrafluoroethylene
JP2012121943A (en) 2010-12-06 2012-06-28 Nitto Denko Corp Method for producing porous epoxy resin sheet
CN106178992A (en) * 2016-08-23 2016-12-07 李凤荣 A kind of preparation method of macromolecular filter membrane
BE1024586B1 (en) * 2016-12-21 2018-04-12 Vanéflon Nv Method for manufacturing a polytetrafluoroethylene product and polytetrafluoroethylene product
JP7090064B2 (en) 2019-12-20 2022-06-23 日東電工株式会社 Heat-resistant buffer sheet and heat-pressurized treatment method
WO2021200409A1 (en) 2020-04-02 2021-10-07 日東電工株式会社 Heat-resistant release sheet and method for carrying out step involving heating and melting of resin

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222260A (en) * 1992-02-13 1993-08-31 Nitto Denko Corp Fluororesin composition and molded article
JPH0615663A (en) * 1992-07-01 1994-01-25 Nitto Denko Corp Cylindrical fluororesin molded piece and production thereof
JP2877944B2 (en) * 1990-11-20 1999-04-05 日本バルカー工業株式会社 Method for producing polytetrafluoroethylene resin molded article
EP0970799A1 (en) * 1997-03-19 2000-01-12 Daikin Industries, Ltd. Molded polytetrafluoroethylene article and method of production thereof
WO2000016968A1 (en) * 1998-09-18 2000-03-30 Daikin Industries, Ltd. Polytetrafluoroethylene molded product in block form and method for production thereof
JP2000334847A (en) * 1999-06-01 2000-12-05 Nok Corp Production of baked raw material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2877944B2 (en) * 1990-11-20 1999-04-05 日本バルカー工業株式会社 Method for producing polytetrafluoroethylene resin molded article
JPH05222260A (en) * 1992-02-13 1993-08-31 Nitto Denko Corp Fluororesin composition and molded article
JPH0615663A (en) * 1992-07-01 1994-01-25 Nitto Denko Corp Cylindrical fluororesin molded piece and production thereof
EP0970799A1 (en) * 1997-03-19 2000-01-12 Daikin Industries, Ltd. Molded polytetrafluoroethylene article and method of production thereof
WO2000016968A1 (en) * 1998-09-18 2000-03-30 Daikin Industries, Ltd. Polytetrafluoroethylene molded product in block form and method for production thereof
JP2000334847A (en) * 1999-06-01 2000-12-05 Nok Corp Production of baked raw material

Also Published As

Publication number Publication date
JP2001341138A (en) 2001-12-11

Similar Documents

Publication Publication Date Title
US9464342B2 (en) Titanium, titanium alloy and NiTi foams with high ductility
WO2001094101A1 (en) Polytetrafluoroethylene molded article and method for its production
Halldin et al. Powder processing of ultra‐high molecular weight polyethylene I. Powder characterization and compaction
JP2012117125A (en) Method and apparatus for producing powder sintered compact
JP6403421B2 (en) Sintering apparatus and sintering method
JP2002129204A (en) Method for manufacturing porous metal
CN113999015A (en) Light high-strength elastic ceramic and preparation method thereof
KR100638479B1 (en) Fabrication method of bulk amorphous alloy and bulk amorphous composite by spark plasma sintering
JP4429004B2 (en) Manufacturing method of porous ceramic sintered body for sliding member, porous ceramic sintered body for sliding member obtained thereby, and seal ring using the same
WO2008069196A1 (en) Polytetrafluoroethylene molded body and method for producing the same
JP3613996B2 (en) Polytetrafluoroethylene block-shaped molded article and method for producing the same
JPH0593086A (en) Method for producing porous molded article of polytetrafluoroethylene
JPH0641167B2 (en) Manufacturing method of tetrafluoroethylene resin pipe
RU2336973C2 (en) Method of sintered bars production from heavy alloys on basis of tungsten
US5683639A (en) Shortened sintering cycle for molded polytetrafluoroethylene articles
JP2004509784A (en) Cold isostatic pressing
JP2005133091A5 (en)
JP7267391B1 (en) Titanium porous body and method for producing titanium porous body
JP2858972B2 (en) Method for manufacturing ceramic molded body
RU2414329C1 (en) Method of producing sintered porous tungsten-based articles
KR101947423B1 (en) Manufacturing method of porous metal membrane for large flow
JP5782897B2 (en) Method for producing polytetrafluoroethylene molded product, method for producing polytetrafluoroethylene sheet
JPWO2014002127A1 (en) Long light metal billet and manufacturing method thereof
SU1073118A1 (en) Method of fabricating articles of meltable fluor-polymers
JP2003245983A (en) Method for manufacturing ptfe porous material, ptfe porous form and method for manufacturing ptfe porous composite material

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase