JP2858972B2 - Method for manufacturing ceramic molded body - Google Patents
Method for manufacturing ceramic molded bodyInfo
- Publication number
- JP2858972B2 JP2858972B2 JP3016816A JP1681691A JP2858972B2 JP 2858972 B2 JP2858972 B2 JP 2858972B2 JP 3016816 A JP3016816 A JP 3016816A JP 1681691 A JP1681691 A JP 1681691A JP 2858972 B2 JP2858972 B2 JP 2858972B2
- Authority
- JP
- Japan
- Prior art keywords
- thermoplastic resin
- molded body
- density
- temperature
- molding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Press-Shaping Or Shaping Using Conveyers (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、静水圧加圧成形法を用
いたセラミックス部品の製造方法に関し、部品を成形す
る時のニア・ネット・シェイプ化と高密度成形体を得る
目的で、静水圧加圧時に予め粉末と混ぜ合わされた熱可
塑性樹脂が熱的に軟化する温度域まで昇温できるWIP
装置を用い、部品を成形する時のニア・ネット・シェイ
プ化と高密度の成形体ができるセラミックス部品の製造
方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing ceramic parts using a hydrostatic pressure molding method, and relates to a method for producing a near net shape and a high-density molded body when molding a part. WIP that can be heated up to the temperature range where the thermoplastic resin previously mixed with the powder is thermally softened when pressurized with water
The present invention relates to a method for producing a ceramic part capable of forming a near net shape when forming a part and forming a high-density molded body by using an apparatus.
【0002】[0002]
【従来の技術】従来セラミックス部品の中でも、プレス
成形時に形状の付与し難い、複雑かつ肉厚の大きい部品
等は、泥漿鋳込み(スリップキャスティング)法、射出
成形法により製造されているが、長期で複雑な製造工程
・低歩留り等の理由から、多くは素地の加工工程を経た
ニア・ネット・シェイプ化が多く用いられている。2. Description of the Related Art Among conventional ceramic parts, those parts which are difficult to impart a shape during press forming, are complicated and have a large wall thickness are manufactured by a slip casting method or an injection molding method. For reasons of complicated manufacturing processes, low yield, and the like, near net shaping is often used in many cases through a base material processing process.
【0003】この素地加工を施したニア・ネット・シェ
イプ化の特徴としては、短期の製造工程で、高い歩留り
を有する点で優れている。[0003] The feature of the near net shaping that has been subjected to the base processing is that it has a high yield in a short-term manufacturing process.
【0004】[0004]
【発明が解決しようとする課題】ニア・ネット・シェイ
プ化の問題点としては、以下のことがあげられる。泥
漿鋳込みや射出成形法を用いる製造方法は、複雑形状の
付与や大量生産性は優れているが、部品の肉厚が大きく
なるほど成形・脱脂・焼結時に不良品が発生する割合が
高くなり、歩留まりが低下する。Problems to be solved by near net shaping include the following. The production method using the slip casting or injection molding method is excellent in giving complex shapes and mass productivity, but as the thickness of the part increases, the proportion of defective products generated during molding, degreasing, and sintering increases. Yield decreases.
【0005】バインダー添加による素地加工では、プ
レス成形時にバインダーが充分塑性変形せずに残留応力
がかかることによる加工時や焼結時の割れの発生が問題
である。[0005] In the base processing with the addition of a binder, there is a problem that the binder is not sufficiently plastically deformed at the time of press forming and a residual stress is applied, thereby causing cracks during processing and sintering.
【0006】これらの問題点を解消するために、肉厚の
大きなものでも比較的容易に成形でき、静水圧加圧時に
予め粉末と混ぜ合わされた熱可塑性樹脂が熱的に軟化す
る温度域まで昇温できるように圧力容器内または容器壁
部または容器外壁部に昇温用ヒーターを有するWIP装
置を用いることによって、部品を成形する時のニア・ネ
ット・シェイプ化と成形体の高密度化ができるセラミッ
クス部品の製造方法を本発明によって確立した。[0006] In order to solve these problems, it is possible to relatively easily mold even a thick-walled one, and the temperature rises to a temperature range in which the thermoplastic resin previously mixed with the powder thermally softens when pressed with hydrostatic pressure. By using a WIP device having a heater for raising the temperature inside the pressure vessel or on the vessel wall or the outer wall of the vessel so that the temperature can be increased, near net shaping and high density of the molded body can be achieved when molding the parts. A method for manufacturing ceramic parts has been established according to the present invention.
【0007】ここで、上記記述の静水圧加圧時に熱可塑
性樹脂が熱的に軟化する温度域まで昇温可能な温度調節
可能な静水圧加圧装置をWarm Isostatic Pressの意味を
含むことから、W .I. P. と呼び、以下記述の際にも
WIPと記載する。Here, the above-mentioned hydrostatic pressurizable device capable of adjusting the temperature to a temperature range in which the thermoplastic resin is thermally softened at the time of hydrostatic pressurization can be adjusted to include a warm isostatic press. It is called WIP and is also described as WIP in the following description.
【0008】[0008]
【課題を解決するための手段】これまで、静水圧プレス
による成形法は、CIP(Cold Isostatic Press)と呼ば
れ、室温の水または溶液中で圧縮し成形されていた。Heretofore, a molding method using a hydrostatic press has been called a CIP (Cold Isostatic Press), and has been formed by compressing in water or a solution at room temperature.
【0009】窒化珪素や炭化珪素などのセラミックス粉
末にポリエチレンやポリプロピレン等の熱可塑性樹脂を
混合し、この混合物を一次成形後、ゴム被膜をつけ二次
的に静水圧加圧する成形を行なったり、または、直接ゴ
ム型等にこの混合物を入れることによって静水圧加圧す
るだけで成形していた。A ceramic powder such as silicon nitride or silicon carbide is mixed with a thermoplastic resin such as polyethylene or polypropylene, and the mixture is subjected to primary molding, followed by rubber coating and secondary isostatic pressing, or In this case, the mixture was directly placed in a rubber mold or the like, and the molding was performed only by applying hydrostatic pressure.
【0010】本発明は、静水圧加圧時にポリエチレンや
ポリプロピレン等の熱可塑性樹脂が熱的に軟化する80
〜200℃の範囲の温度域まで昇温後温度保持し、同時
に、100〜7000kgf/cm2 までの静水圧加圧するこ
とを特徴とするセラミックス成形体の製造方法である。According to the present invention, a thermoplastic resin such as polyethylene or polypropylene is thermally softened under hydrostatic pressure.
This is a method for producing a ceramic molded body, which comprises raising the temperature to a temperature range of from about 200 ° C. to about 200 ° C., maintaining the temperature, and simultaneously applying hydrostatic pressure to 100 to 7000 kgf / cm 2 .
【0011】昇温・加圧は、圧力容器内または容器壁部
または容器外壁部に昇温用ヒーターを配している構造を
有する静水圧加圧装置で行なう。The heating and pressurizing are performed by a hydrostatic pressurizing device having a structure in which a heater for raising the temperature is provided in the pressure vessel, the vessel wall or the vessel outer wall.
【0012】上記記述の静水圧加圧時に、熱可塑性樹脂
が熱的に軟化する温度域まで昇温後温度保持が可能な静
水圧加圧装置WIPを用いるのが好適である。It is preferable to use a hydrostatic pressurizing apparatus WIP capable of maintaining the temperature after the temperature is raised to a temperature range where the thermoplastic resin is thermally softened during the hydrostatic pressurization described above.
【0013】このことによって、成形前に予め粉末と混
ぜ合わされたポリエチレンやポリプロピレン等の熱可塑
性樹脂が熱的に軟化する温度域まで昇温可能なWIP装
置を用い、成形体を製造するときのニア・ネット・シェ
イプ化と高密度の成形体ができるようにした。[0013] This makes it possible to use a WIP device capable of raising the temperature of a thermoplastic resin such as polyethylene or polypropylene which has been mixed with powder before molding into a temperature range in which the thermoplastic resin is thermally softened.・ Net shaping and high-density compacts are now possible.
【0014】[0014]
【作用】これまでの室温の水または室温の他媒体中で圧
縮し成形されていた方法では高密度の成形体が得難く、
成形体強度が低く素地加工し難く焼結時の密度も常温焼
結では99%理論密度比を超えることが難しかったが、
本発明では、成形前に予With the conventional method of compacting in water at room temperature or other medium at room temperature, it is difficult to obtain a high-density molded body.
Although the strength of the compact was low, it was difficult to perform the green body processing, and the density during sintering was difficult to exceed the theoretical density ratio by 99% at room temperature sintering.
In the present invention, before molding,
【0015】め窒化珪素や炭化珪素などのセラミックス
粉末と混ぜ合わされたポリエチレンやポリプロピレン等
の熱可塑性樹脂が、熱的に軟化する80〜200℃の範
囲の温度域まで昇温後温度保持し、同時に、100〜7
000kgf/cm2 までの静水圧加圧が可能なWIP装置を
用い、成形体を製造することによって、熱可塑性樹脂がThe thermoplastic resin such as polyethylene or polypropylene mixed with ceramic powders such as silicon nitride and silicon carbide is heated to a temperature range of 80 to 200 ° C. where the thermoplastic resin is thermally softened. , 100-7
By using a WIP device capable of isostatic pressing up to 000 kgf / cm 2 , the thermoplastic resin is
【0016】熱的に流動性を有し、ブリッジング(橋架
けによる空孔生成)が抑えられ、粉体の充填性が促進さ
れるため成形体の高密度化が達成され、高密度化に伴っ
て成形体の強度が増加し、複雑な形状に対してのニア・
ネット・シェイプ化やその成形体加工のために必要であ
る素地加工を施すことが可能になった。[0016] It has thermal fluidity, suppresses bridging (void formation due to bridging), and promotes powder filling, so that high density of the compact can be achieved. As a result, the strength of the molded body increases,
It has become possible to perform the base processing required for forming a net and processing the molded body.
【0017】以下に従来法からの改善点を列記する。
予め粉末と混ぜ合わされた熱可塑性樹脂が熱的に流動で
きるようになる。粉体の充填性が向上し、成形体の高
密度化ができるようになる。高密度化に伴う成形体強
度が増し、素地加工性が向上する。The following is a list of improvements from the conventional method.
The thermoplastic resin previously mixed with the powder becomes thermally flowable. The filling property of the powder is improved, and the density of the compact can be increased. The strength of the compact increases with the increase in density, and the base workability improves.
【0018】[0018]
【実施例】この発明を、以下に示す実施例により説明す
る。窒化珪素粉末(宇部興産製UBE ―SN―E10;平均粒径
0.3 μm) を90重量%として、これに焼結助剤となる各
種酸化物(例えば三菱化成工業製酸化イットリウムや住
友化学製酸化アルミニウム)を総量で10重量%添加混
合する際に、DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to the following embodiments. Silicon nitride powder (Ube Industries UBE-SN-E10; average particle size
0.3 μm) as 90% by weight, and various oxides (for example, yttrium oxide manufactured by Mitsubishi Kasei Kogyo Co., Ltd. and aluminum oxide manufactured by Sumitomo Chemical Co., Ltd.) were added and mixed in a total amount of 10% by weight.
【0019】これらの粉末の体積が75体積%となるよ
うにして、熱可塑性樹脂として、PVA(ポリビニルア
ルコール)が25体積%となるようにして、これらを合
わせて、ボールミルで24時間混合した。The volume of these powders was adjusted to 75% by volume, and as a thermoplastic resin, PVA (polyvinyl alcohol) was adjusted to 25% by volume. These were combined and mixed by a ball mill for 24 hours.
【0020】ここで得られた粉末を、以下の表に示す成
形方法で板材に成形した。このときの成形体の密度と成
形体の強度ならびに常圧焼結後の焼結体密度を示す。The powder obtained here was formed into a sheet material by a forming method shown in the following table. The density of the compact at this time, the strength of the compact, and the density of the sintered compact after normal pressure sintering are shown.
【0021】[0021]
【表1】成形体の密度と成形体強度ならびに常圧焼結後
の焼結体密度 ※T.D.: Theoretical Density 即ち理論密度のこと
で、一般に%T.D. は相対密度を表わす。[Table 1] Density of compact, strength of compact and sintered compact density after normal pressure sintering * TD: Theoretical Density or theoretical density. In general,% TD indicates relative density.
【0022】この結果より、本発明による成形体は成形
時の密度が高く、その成形体は複雑な素地加工時に必要
な強度(20MPa 以上) も有していることが確認された。From these results, it was confirmed that the molded article according to the present invention had a high density at the time of molding, and that the molded article had the necessary strength (20 MPa or more) at the time of complicated substrate processing.
【0023】また、熱可塑性樹脂が軟化し粒子間距離も
近づいていることより、穴開け加工、面出し加工、さら
には種々の加工後のラバープレスによって、部品を成形
する時のニア・ネット・シェイプ化が可能になった。In addition, since the thermoplastic resin is softened and the distance between the particles is approaching, the near-netting process for forming parts by punching, surfacing, and rubber pressing after various processes is performed. Shaping is now possible.
【0024】[0024]
【発明の効果】セラミックス部品の製造方法に関し、複
雑でかつ大型(肉厚)品の要望が多くなってきている。
そこで、部品を成形する時のニア・ネット・シェイプ化
と成形体の高密度化が可能になることが、短期の製造工
程で、高い歩留りを有する点で優れている。As to the method for producing ceramic parts, there is a growing demand for complicated and large (thick) products.
Therefore, the fact that it is possible to achieve near net shaping and high density of a molded body when molding a part is excellent in that a high yield is obtained in a short-term manufacturing process.
【0025】本発明により、これらの要求を満足する成
形体が得られた。これらのことにより、セラミックス部
品の生産性を向上させることが可能となり、その工業的
有用性は非常に大きい。According to the present invention, a molded article satisfying these requirements was obtained. These facts make it possible to improve the productivity of ceramic parts, and their industrial utility is very large.
Claims (1)
し、この混合物を一次成形後ゴム被膜をつけ二次的に静
水圧加圧する成形を行なったり、または直接ゴム型等に
この混合物を入れることによって静水圧加圧成形する場
合において、静水圧加圧時に熱可塑性樹脂が熱的に軟化
する温度域まで昇温することを特徴とするセラミックス
成形体の製造方法。A ceramic powder is mixed with a thermoplastic resin, and the mixture is subjected to a primary molding, followed by a rubber coating and a secondary hydrostatic pressure molding, or by directly placing the mixture in a rubber mold or the like. A method for producing a ceramic molded body, wherein a temperature of a thermoplastic resin is raised to a temperature range in which a thermoplastic resin is thermally softened during hydrostatic pressure pressurization.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3016816A JP2858972B2 (en) | 1991-01-18 | 1991-01-18 | Method for manufacturing ceramic molded body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3016816A JP2858972B2 (en) | 1991-01-18 | 1991-01-18 | Method for manufacturing ceramic molded body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04247904A JPH04247904A (en) | 1992-09-03 |
JP2858972B2 true JP2858972B2 (en) | 1999-02-17 |
Family
ID=11926700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3016816A Expired - Lifetime JP2858972B2 (en) | 1991-01-18 | 1991-01-18 | Method for manufacturing ceramic molded body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2858972B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3567016A1 (en) | 2018-05-11 | 2019-11-13 | Shin-Etsu Chemical Co., Ltd. | Method for preparing ceramic molded body for sintering and method for producing ceramic sintered body |
EP3566842A1 (en) | 2018-05-11 | 2019-11-13 | Shin-Etsu Chemical Co., Ltd. | Method for preparing ceramic molded body for sintering and method for producing ceramic sintered body |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7056624B2 (en) * | 2018-05-11 | 2022-04-19 | 信越化学工業株式会社 | Method for manufacturing ceramic molded body for sintering and method for manufacturing ceramic sintered body |
JP7056625B2 (en) * | 2018-05-11 | 2022-04-19 | 信越化学工業株式会社 | Method for manufacturing ceramic molded body for sintering and method for manufacturing ceramic sintered body |
-
1991
- 1991-01-18 JP JP3016816A patent/JP2858972B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3567016A1 (en) | 2018-05-11 | 2019-11-13 | Shin-Etsu Chemical Co., Ltd. | Method for preparing ceramic molded body for sintering and method for producing ceramic sintered body |
EP3566842A1 (en) | 2018-05-11 | 2019-11-13 | Shin-Etsu Chemical Co., Ltd. | Method for preparing ceramic molded body for sintering and method for producing ceramic sintered body |
US11492294B2 (en) | 2018-05-11 | 2022-11-08 | Shin-Etsu Chemical Co., Ltd. | Method for preparing ceramic molded body for sintering and method for producing ceramic sintered body |
Also Published As
Publication number | Publication date |
---|---|
JPH04247904A (en) | 1992-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5336282A (en) | Zirconia ceramics and a process of producing the same | |
CN101473054B (en) | Process for producing shaped refractory metal bodies | |
EP0152481B1 (en) | A silicon nitride-cordierite ceramic article, and process of manufacture thereof | |
JP2858972B2 (en) | Method for manufacturing ceramic molded body | |
JPH0328348A (en) | Ceramic/metal composite | |
JPH073303A (en) | Production of metallic or ceramic sintered compact | |
JPH036302A (en) | Manufacture of sintered product composed of binder for forming powder and metal powder or ceramic powder | |
JPS6011261A (en) | Manufacture of ceramics sintered body | |
JPH1179845A (en) | Production of silicon carbide having high toughness | |
JPH0235705B2 (en) | ||
JPH06287055A (en) | Production of sintered article of ceramic | |
JP3006263B2 (en) | Method for producing metal powder sintered body | |
JPS62227703A (en) | Method of molding ceramics | |
JPH0246121B2 (en) | SERAMITSUKUSUSHOKETSUTAINOSEIZOHOHO | |
JPH0820803A (en) | Production of sintered compact | |
JPS5832076A (en) | Manufacture of high density ceramic sintered body | |
JPH0873902A (en) | Method for molding powder by metal mold | |
JPS62273809A (en) | Manufacture of thin green ceramic pipe | |
JPH0641601B2 (en) | Molding composition | |
JP3392889B2 (en) | Raw material composition for sintering and method for producing sintered body | |
JPH06316744A (en) | Production of fe-ni-co series alloy parts for sealing | |
JPH01168845A (en) | Iron-iron oxide sintered compact and its production | |
JPH0860272A (en) | Production of aluminum-base composite material | |
JPH10317006A (en) | Production of thermoelectric conversion element | |
Briscoe et al. | Ceramics–the fabrication challenge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19981027 |