JP3392889B2 - Raw material composition for sintering and method for producing sintered body - Google Patents

Raw material composition for sintering and method for producing sintered body

Info

Publication number
JP3392889B2
JP3392889B2 JP32200992A JP32200992A JP3392889B2 JP 3392889 B2 JP3392889 B2 JP 3392889B2 JP 32200992 A JP32200992 A JP 32200992A JP 32200992 A JP32200992 A JP 32200992A JP 3392889 B2 JP3392889 B2 JP 3392889B2
Authority
JP
Japan
Prior art keywords
raw material
sintering
material composition
thermoplastic binder
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32200992A
Other languages
Japanese (ja)
Other versions
JPH06172807A (en
Inventor
俊二 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP32200992A priority Critical patent/JP3392889B2/en
Publication of JPH06172807A publication Critical patent/JPH06172807A/en
Application granted granted Critical
Publication of JP3392889B2 publication Critical patent/JP3392889B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/12Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled
    • F01K23/16Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled all the engines being turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属微粒子と熱可塑性
結合剤との混合物である焼結用原料組成物、および当該
焼結用原料組成物を使用した焼結体の製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a raw material composition for sintering which is a mixture of fine metal particles and a thermoplastic binder, and a method for producing a sintered body using the raw material composition for sintering. is there.

【0002】[0002]

【従来の技術】金属粉末を焼結して希望の形状の焼結体
を得る従来の方法は、次の二つに大別することができ
る。その一つは、古くから実施されているもので、粉末
原料を加圧成形してから焼結する方法である。また、他
の一つは、比較的新しい技術で、主原料の微粒子に熱可
塑性結合剤を混合した熱可塑性の原料組成物を成形し、
その成形体から結合剤を除去した後に焼結する方法であ
る。
2. Description of the Related Art Conventional methods for sintering a metal powder to obtain a sintered body having a desired shape can be roughly classified into the following two methods. One is a method that has been practiced for a long time, and is a method in which a powder raw material is pressure-molded and then sintered. The other one is a relatively new technique, in which a thermoplastic raw material composition obtained by mixing a thermoplastic binder with fine particles of the main raw material is molded,
This is a method of sintering after removing the binder from the molded body.

【0003】後者の方法による場合、焼結性を良くして
焼結密度を高めるためには、熱可塑性結合剤と混合して
焼結用原料組成物とする主原料は、粒径が約4μm程度
の微粒子であることが必要とされている。このように微
粒子化された主原料を使った焼結用原料組成物を成形
し、結合剤を除去してから周知の方法で焼結することに
よって、引張強度及び伸びが高い焼結体が得られてい
る。
In the latter method, in order to improve the sinterability and increase the sintering density, the main raw material to be mixed with the thermoplastic binder to form the raw material composition for sintering has a particle size of about 4 μm. It is required that the particles be fine particles. By molding the raw material composition for sintering using the main raw material thus finely divided, removing the binder, and then sintering by a known method, a sintered body having high tensile strength and elongation can be obtained. Has been.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、主原料
を4μm程度まで微粒子化する場合には、微粒子化自体
に多大なコストがかかり、前述の微粒子化を行わずに粉
末原料の加圧成形体を焼結するという古くからの方法に
よる場合と比較すると、焼結体の生産コストが著しく上
昇してしまう。
However, when the main raw material is made into fine particles to a size of about 4 μm, it takes a great deal of cost to make the fine particles itself, and the pressure-molded body of the powder raw material is obtained without performing the above-mentioned fine particles. Compared with the old method of sintering, the production cost of the sintered body increases significantly.

【0005】そのため、コスト高になることが許される
特殊な用途にしか利用できないという問題が生じてい
た。
Therefore, there has been a problem that it can be used only for a special purpose which is allowed to increase in cost.

【0006】また、主原料の微粒子に熱可塑性結合剤を
混合させて加圧成形する場合は、熱可塑性結合剤の選択
も生産性や生産コストに関わる重要なポイントとなる。
それは、熱可塑性結合剤は、加圧成形時に必要となる加
圧力や加熱温度を作用する要因となり、また、成形後の
型離れを容易にするか否かの要因ともなる。成形処理で
は、必要な加圧値および加熱温度が高くなるほど環境整
備にコストがかかるようになり、また、型離れの悪化が
製品の歩留りの低下を招き、結果的に生産性の低下や生
産コストの高額化を招く。
Further, when the thermoplastic binder is mixed with the fine particles of the main raw material and pressure molding is performed, selection of the thermoplastic binder is also an important point related to productivity and production cost.
That is, the thermoplastic binder acts as a factor for exerting a pressing force and a heating temperature required for pressure molding, and also as a factor for facilitating mold release after molding. In the molding process, the higher the required pressurization value and heating temperature, the more costly it is to maintain the environment, and the deterioration of the mold release leads to a decrease in product yield, resulting in a decrease in productivity and production cost. Leading to higher prices.

【0007】従って、主原料の微粒子に混合させる熱可
塑性結合剤としては、成形時における加圧値および加熱
温度を低く抑えることができて、しかも型離れの良い特
性を持ち、成形後には容易に除去できることが要求さ
れ、これらを踏まえた上で、熱可塑性の原料組成物を開
発することが要求されている。
Therefore, as a thermoplastic binder to be mixed with the fine particles of the main raw material, the pressurizing value and the heating temperature at the time of molding can be kept low, and the mold releasing property is good, and it is easy to perform after molding. It is required to be removable, and it is required to develop a thermoplastic raw material composition based on these.

【0008】本発明は、前記事情に鑑みてなされたもの
で、原料費等を安価に済ませることができ、しかも成形
性もよく、安価に優れた性能の焼結体を得ることのでき
る焼結用原料組成物及び焼結体の製造方法を提供するこ
とを目的とする。
The present invention has been made in view of the above circumstances, and it is possible to reduce the cost of raw materials and the like, and also to improve the formability and to obtain a sintered body with excellent performance at low cost. An object is to provide a raw material composition for use and a method for producing a sintered body.

【0009】[0009]

【課題を解決するための手段】請求項1に記載の焼結用
原料組成物は、焼結用原料組成物を射出成形して成形体
を形成し、この成形体を燒結することにより所望形状の
焼結体を製造するために用いられる焼結用原料組成物で
あって、粒径が5〜20μm以下のカルボニル鉄と熱可
塑性結合剤との混合物に、液状ガリウムを800〜50
00ppm含有させたことを特徴とするものである。
The raw material composition for sintering according to claim 1 is formed by injection molding the raw material composition for sintering.
Is formed, and the molded body is sintered to obtain a desired shape.
A raw material composition for sintering used for manufacturing a sintered body.
Liquid gallium is added to a mixture of carbonyl iron having a particle size of 5 to 20 μm or less and a thermoplastic binder in an amount of 800 to 50 μm.
It is characterized by containing 00 ppm.

【0010】また、請求項2に記載の焼結体の製造方法
は、請求項1に記載の焼結用原料組成物による焼結体の
製造方法であって、次の第1工程,第2工程,第3工程
を実行することによって、焼結体を得る。
The method for producing a sintered body according to claim 2 is the method for producing a sintered body using the raw material composition for sintering according to claim 1, which comprises the following first step, second step By performing the step and the third step, a sintered body is obtained.

【0011】前記第1工程は、金属微粒子である粒径が
5〜20μm以下のカルボニル鉄と熱可塑性結合剤との
混合物に液状ガリウムを800〜5000ppm含有さ
せた焼結用原料組成物に対して、加熱および加圧をする
ことによって射出成形を行って、所望の形状の成形体を
得る工程である。
In the first step, a raw material composition for sintering is prepared by adding 800 to 5000 ppm of liquid gallium to a mixture of carbonyl iron, which is a fine metal particle having a particle size of 5 to 20 μm or less, and a thermoplastic binder. Then, injection molding is performed by heating and pressurizing to obtain a molded product having a desired shape.

【0012】前記第2工程は、前記第1工程により得た
成形体から熱可塑性結合剤を除去する工程である。
The second step is a step of removing the thermoplastic binder from the molded body obtained in the first step.

【0013】前記第3工程は、第2工程を済ませた成形
体を還元性雰囲気下で焼成して所望形状の焼結体とする
工程である。
The third step is a step of firing the molded body which has been subjected to the second step in a reducing atmosphere to obtain a sintered body having a desired shape.

【0014】[0014]

【作用】請求項1に記載の焼結用原料組成物は、安価な
カルボニル鉄粒子を金属微粒子と使用するもので、ま
た、カルボニル鉄粒子の粒子径も比較的に大きくてよい
ため、4μm程度までの金属微粒子を使用する従来の場
合と比較すると、焼結用原料組成物を安価に提供するこ
とが可能になる。
The raw material composition for sintering according to claim 1 uses inexpensive carbonyl iron particles as fine metal particles, and the particle size of the carbonyl iron particles may be relatively large, so that it is about 4 μm. It becomes possible to provide the raw material composition for sintering at a low cost, as compared with the conventional case using the metal fine particles described above.

【0015】しかも、ガリウムは低融点金属であり、焼
結用原料組成物に添加した液状ガリウムは成形時におけ
る流動性を向上させ、成形時の加圧値を低く抑える効果
と、加熱温度を低く抑える効果を生み、低温での射出成
形を可能にし、高品位の成形が容易になる。
Moreover, gallium is a low melting point metal, and liquid gallium added to the raw material composition for sintering improves the fluidity at the time of molding, keeps the pressure value at the time of molding low, and lowers the heating temperature. It produces the effect of suppressing, enables injection molding at low temperature, and facilitates high-quality molding.

【0016】従って、請求項2に記載のように、請求項
1に記載の焼結用原料組成物を成形後に熱可塑性結合剤
の除去を行い、焼成することによって、安価に優れた性
能の焼結体を得ることが可能になる。
Therefore, as described in claim 2, the thermoplastic binder is removed after the raw material composition for sintering according to claim 1 is molded and fired, so that it is baked at low cost with excellent performance. It becomes possible to obtain a union.

【0017】[0017]

【実施例】まず、本発明に係る焼結用原料組成物の一実
施例を説明し、次に、その一実施例の焼結用原料組成物
を用いての焼結体の製造方法を説明する。
EXAMPLES First, an example of a sintering raw material composition according to the present invention will be described, and then a method for producing a sintered body using the sintering raw material composition of that example will be described. To do.

【0018】一実施例の焼結用原料組成物は、平均粒径
が10〜15μmのカルボニル鉄粉末と熱可塑性結合剤
との混合物に、液状ガリウムを1000ppm含有させ
たものである。
The raw material composition for sintering of one example was obtained by adding 1000 ppm of liquid gallium to a mixture of carbonyl iron powder having an average particle size of 10 to 15 μm and a thermoplastic binder.

【0019】前記熱可塑性結合剤は、アクリロポリマー
とワックスとを容量比で60:40の割合で混合させた
ものである。そして、この熱可塑性結合剤とカルボニル
鉄とは、容量比で40:60の割合でダブル・アーム・
ディスパージョン型ミキサーに入れて混練する。そし
て、この熱可塑性結合剤とカルボニル鉄との混練処理時
には、前述の液状ガリウムを1000ppm添加し、9
0〜150℃の温度で2時間混練処理を続けることによ
り、均一混合された焼結用原料組成物を得る。
The thermoplastic binder is a mixture of acrylopolymer and wax in a volume ratio of 60:40. The thermoplastic binder and carbonyl iron are double armed at a volume ratio of 40:60.
Knead in a dispersion type mixer. Then, during the kneading process of this thermoplastic binder and carbonyl iron, 1000 ppm of the above-mentioned liquid gallium was added,
By continuing the kneading treatment at a temperature of 0 to 150 ° C. for 2 hours, a uniformly mixed raw material composition for sintering is obtained.

【0020】次に、図1に基づいて、一実施例の焼結用
原料組成物を用いての焼結体の製造方法を説明する。
Next, with reference to FIG. 1, a method for producing a sintered body using the raw material composition for sintering of one example will be described.

【0021】まず、前述の一実施例の焼結用原料組成物
を、射出成形機で棒状の成形体(グリーン・ボディ)に
加熱・加圧成形する第1工程を実行する(ステップ10
1)。
First, the first step of heating and pressing the raw material composition for sintering of the above-described embodiment into a rod-shaped compact (green body) by an injection molding machine is performed (step 10).
1).

【0022】射出成形時における成形条件は、加圧値が
116〜117Kgf 、加熱温度が150℃で、加圧値お
よび加熱温度ともに比較的に低い値で良好な成形が可能
である。
The molding conditions at the time of injection molding are a pressure value of 116 to 117 Kgf and a heating temperature of 150 ° C., and both the pressure value and the heating temperature are relatively low values, and good molding is possible.

【0023】次には、オーブン内に無灰紙からなる吸収
体を置き、その上に第1工程で得られたグリーン・ボデ
ィを置き、オーブンの温度をゆっくりと200℃まで上
げ、その200℃の温度をその後3時間保つことによ
り、グリーン・ボディから熱可塑性結合剤を除去する第
2工程を実行する(ステップ102)。
Next, the absorber made of ashless paper is placed in the oven, the green body obtained in the first step is placed thereon, and the temperature of the oven is slowly raised to 200 ° C. Performing a second step of removing the thermoplastic binder from the green body by maintaining the temperature for 3 hours thereafter (step 102).

【0024】次いで、第2工程を済ませたグリーン・ボ
ディを炉に入れ、炉内には1気圧で露点が−59.4℃
の水素ガスを導入することにより、還元性雰囲気下にす
る。そして、この還元性雰囲気下で炉内温度を750℃
まで上昇させて3時間保持した後、室内温度まで冷却し
て棒状の焼結体を得る第3工程を実行する(ステップ1
03)。
Then, the green body which has been subjected to the second step is put into a furnace, and the dew point is -59.4 ° C at 1 atm in the furnace.
A reducing atmosphere is created by introducing the hydrogen gas. And, in this reducing atmosphere, the temperature inside the furnace is 750 ° C.
After the temperature is raised to 3 ° C and held for 3 hours, the third step of cooling to room temperature to obtain a rod-shaped sintered body is performed (Step 1
03).

【0025】前記一実施例の焼結用原料組成物は、安価
なカルボニル鉄粒子を金属微粒子と使用するもので、ま
た、カルボニル鉄粒子の粒子径も比較的に大きくてよい
ため、4μm程度までの金属微粒子を使用する従来の場
合と比較すると、焼結用原料組成物を安価に提供するこ
とが可能になる。
The raw material composition for sintering of the above-mentioned embodiment uses inexpensive carbonyl iron particles as the metal fine particles, and the particle size of the carbonyl iron particles may be relatively large, so that it is up to about 4 μm. It becomes possible to provide the raw material composition for sintering at a low cost as compared with the conventional case using the metal fine particles.

【0026】しかも、ガリウムは低融点金属であり、焼
結用原料組成物に添加した液状ガリウムは成形時におけ
る流動性を向上させ、成形時の加圧値を低く抑える効果
と、加熱温度を低く抑える効果を生み、低温での射出成
形を可能にし、高品位の成形が容易になる。
Further, gallium is a low melting point metal, and liquid gallium added to the raw material composition for sintering improves the fluidity at the time of molding, keeps the pressure value at the time of molding low, and lowers the heating temperature. It produces the effect of suppressing, enables injection molding at low temperature, and facilitates high-quality molding.

【0027】そして、アクリロポリマーとワックスによ
る熱可塑性結合剤は、200゜程度の加熱によって容易
に除去できるため、安価に優れた性能の焼結体を得るこ
とが可能になる。
Since the thermoplastic binder made of acrylopolymer and wax can be easily removed by heating at about 200 °, it becomes possible to obtain a sintered body with excellent performance at low cost.

【0028】本願発明者は、前述の一実施例の諸条件に
対して、カルボニル鉄の粒径や、液状ガリウムの添加量
や、カルボニル鉄と熱可塑性結合剤との混合比などを種
々に変えて、焼結用原料組成物の生成、焼結体の製造を
繰り返し実験し、その結果を評価した。
The inventor of the present invention variously changes the particle size of carbonyl iron, the addition amount of liquid gallium, the mixing ratio of carbonyl iron and the thermoplastic binder, and the like, under various conditions of the above-described embodiment. Then, the production of the raw material composition for sintering and the production of the sintered body were repeatedly tested, and the results were evaluated.

【0029】その結果、次のことが判明した。As a result, the following was found.

【0030】カルボニル鉄粒子としては、できるだけ均
一な粒子を用いることが好ましいが、粒子径は5〜20
μmの範囲にすれば、一実施例と同様の作用・効果を確
認することができた。
As the carbonyl iron particles, it is preferable to use particles which are as uniform as possible, but the particle diameter is 5 to 20.
When the thickness was in the range of μm, it was possible to confirm the same action and effect as in the example.

【0031】また、一般に、原料組成物の粒径が小さく
なるに従って、金属微粒子と熱可塑性結合剤の界面エネ
ルギーに由来する単位体積当りの全自由エネルギーは増
大する。しかし、その反面、粒径が小さくなるに従っ
て、原料組成物は含有可能な粒子の量(容量)が減少
し、その度合いは前述の全自由エネルギーの値によって
定まる。これまで、原料組成物中の金属微粒子と熱可塑
性結合剤との混合比は、容量比で45:55程度が好ま
しいとされていた。
Further, generally, as the particle size of the raw material composition becomes smaller, the total free energy per unit volume derived from the interfacial energy between the metal fine particles and the thermoplastic binder increases. However, on the other hand, as the particle size decreases, the amount (capacity) of particles that can be contained in the raw material composition decreases, and the degree is determined by the value of the total free energy described above. Until now, it has been said that the mixing ratio of the fine metal particles and the thermoplastic binder in the raw material composition is preferably about 45:55 by volume.

【0032】しかし、本発明のように、アクリロポリマ
ーとワックスによる熱可塑性結合剤をカルボニル鉄に混
合する場合には、カルボニル鉄の混合比を容積比で、5
5〜65容積%の範囲とすることができ、熱可塑性結合
剤の混合比を少なくした分だけ、成形後の熱可塑性結合
剤の除去を容易にすることができる。
However, as in the present invention, when the thermoplastic binder composed of acrylopolymer and wax is mixed with carbonyl iron, the mixing ratio of carbonyl iron is 5 by volume.
It can be in the range of 5 to 65% by volume, and removal of the thermoplastic binder after molding can be facilitated as much as the mixing ratio of the thermoplastic binder is reduced.

【0033】また、液状ガリウムの添加量は、前述の一
実施例では1000ppmとしたが、射出成形時におけ
る加圧値および加熱温度を低く抑えるという効果は、8
00〜5000ppmの範囲でも良好に確認できた。
Although the amount of liquid gallium added was 1000 ppm in the above-mentioned embodiment, the effect of suppressing the pressure value and heating temperature during injection molding is 8
Good confirmation was possible even in the range of 00 to 5000 ppm.

【0034】参考までに実験データを示すと、ガリウム
を無添加の場合には加圧値が140Kgf で加熱温度が1
50℃であったのに対し、ガリウムの添加量が3000
ppmの場合には加圧値が71〜99Kgf で加熱温度が
143〜145℃であり、また、ガリウムの添加量が5
000ppmの場合には加圧値が79〜85Kgf で加熱
温度が148な149℃であった。ガリウムの添加量を
800ppmよりも少なくすると成形時の流動性の効果
が消失し、また、5000ppmよりも多くした場合に
は、4000〜5000ppmの添加の場合と比較して
効果の相違が見られず、ガリウム添加量が増すことによ
る原料コストの増加が負担となる。
For reference, the experimental data are as follows. When gallium is not added, the pressure value is 140 Kgf and the heating temperature is 1
Although the temperature was 50 ° C, the amount of gallium added was 3000
In the case of ppm, the pressurization value is 71 to 99 Kgf, the heating temperature is 143 to 145 ° C., and the addition amount of gallium is 5
In the case of 000 ppm, the pressurization value was 79 to 85 kgf and the heating temperature was 148 ° C. at 148 ° C. When the amount of gallium added is less than 800 ppm, the effect of fluidity at the time of molding disappears, and when it is more than 5000 ppm, there is no difference in effect compared with the case of addition of 4000 to 5000 ppm. However, the increase in raw material cost due to the increase in the amount of added gallium is a burden.

【0035】従って、ガリウムの添加量は、800〜5
000ppmとするのが適当であると考えられる。
Therefore, the amount of gallium added is 800 to 5
It is considered appropriate to set it to 000 ppm.

【0036】図2は、ガリウムを3000ppm添加し
た場合の焼結用原料組成物と、ガリウム無添加の焼結用
原料組成物との流動性を比較したものである。図におい
て、縦軸は流動性を示す流れ値(ml/sec )、横軸は加
熱温度(℃)を表し、実線の曲線F1がガリウムを30
00ppm添加した場合の焼結用原料組成物の流動特
性、破線の曲線F2がガリウム無添加の焼結用原料組成
物の流動特性を示している。
FIG. 2 compares the fluidity of the sintering raw material composition containing 3000 ppm of gallium and the sintering raw material composition containing no gallium. In the figure, the vertical axis represents the flow value (ml / sec) showing the fluidity, the horizontal axis represents the heating temperature (° C), and the solid curve F1 represents gallium 30.
The flow characteristics of the sintering raw material composition when adding 00 ppm, and the broken line curve F2 shows the flow characteristics of the sintering raw material composition without addition of gallium.

【0037】また、前述の一実施例では、アクリロポリ
マーとワックスとを容量比で60:40の割合で混合さ
せたものを熱可塑性結合剤として使用したが、熱可塑性
結合剤は一実施例に開示のものに限定するものではな
く、公知の熱可塑性結合剤を使用しても良い。
Further, in the above-mentioned one embodiment, a mixture of acrylopolymer and wax in a volume ratio of 60:40 was used as the thermoplastic binder, but the thermoplastic binder is one of the embodiments. It is not limited to the one disclosed in the above, and a known thermoplastic binder may be used.

【0038】[0038]

【発明の効果】請求項1に記載の焼結用原料組成物は、
安価なカルボニル鉄粒子を金属微粒子と使用するもの
で、また、カルボニル鉄粒子の粒子径も比較的に大きく
てよいため、4μm程度までの金属微粒子を使用する従
来の場合と比較すると、焼結用原料組成物を安価に提供
することが可能になる。
The raw material composition for sintering according to claim 1 is
Since inexpensive carbonyl iron particles are used as the metal fine particles, and the particle size of the carbonyl iron particles may be relatively large, it can be used for sintering as compared with the conventional case of using the metal fine particles up to about 4 μm. The raw material composition can be provided at low cost.

【0039】しかも、ガリウムは低融点金属であり、焼
結用原料組成物に添加した液状ガリウムは成形時におけ
る流動性を向上させ、成形時の加圧値を低く抑える効果
と、加熱温度を低く抑える効果を生み、低温での射出成
形を可能にし、高品位の成形が容易になる。
Moreover, gallium is a low melting point metal, and the liquid gallium added to the raw material composition for sintering improves the fluidity at the time of molding, keeps the pressure value at the time of molding low, and lowers the heating temperature. It produces the effect of suppressing, enables injection molding at low temperature, and facilitates high-quality molding.

【0040】従って、請求項2に記載のように、請求項
1に記載の焼結用原料組成物を成形後に熱可塑性結合剤
の除去を行い、焼成することによって、安価に優れた性
能の焼結体を得ることが可能になる。
Therefore, as described in claim 2, by removing the thermoplastic binder after molding the sintering raw material composition according to claim 1 and firing, the firing is performed at a low cost and with excellent performance. It becomes possible to obtain a union.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の工程説明図である。FIG. 1 is a process explanatory view of an example of the present invention.

【図2】焼結用原料組成物中のガリウムの添加の有無に
よる流れ特性の説明図である。
FIG. 2 is an explanatory diagram of flow characteristics depending on whether gallium is added to the raw material composition for sintering.

【符号の説明】[Explanation of symbols]

101 第1工程 102 第2工程 103 第3工程 101 First step 102 Second step 103 Third step

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】焼結用原料組成物を射出成形して成形体を
形成し、この成形体を燒結することにより所望形状の焼
結体を製造するために用いられる焼結用原料組成物であ
って、 粒径が5〜20μm以下のカルボニル鉄と熱可塑性結合
剤との混合物に、液状ガリウムを800〜5000pp
m含有させたことを特徴とする焼結用原料組成物。
1. A molding is produced by injection molding a raw material composition for sintering.
Formed and sintered this molded body to obtain the desired shape
A raw material composition for sintering, which is used for producing a bonded body.
Then , liquid gallium is added to a mixture of carbonyl iron having a particle size of 5 to 20 μm or less and a thermoplastic binder at 800 to 5000 pp.
A raw material composition for sintering, characterized by containing m.
【請求項2】請求項1に記載の焼結用原料組成物による
焼結体の製造方法であって、金属微粒子である粒径が5
〜20μm以下のカルボニル鉄と熱可塑性結合剤との混
合物に液状ガリウムを800〜5000ppm含有させ
た焼結用原料組成物に対して、加熱および加圧をするこ
とによって射出成形を行って、所望の形状の成形体を得
る第1工程と、前記第1工程により得た成形体から熱可
塑性結合剤を除去する第2工程と、第2工程を済ませた
成形体を還元性雰囲気下で焼成して所望形状の焼結体と
する第3工程とを備えたことを特徴とする焼結体の製造
方法。
2. The method for producing a sintered body using the raw material composition for sintering according to claim 1, wherein the particle size of the fine metal particles is 5
˜20 μm or less of carbonyl iron and a thermoplastic binder, the raw material composition for sintering containing 800 to 5000 ppm of liquid gallium is injection- molded by heating and pressurizing to obtain the desired composition. A first step of obtaining a molded article in the shape of, a second step of removing the thermoplastic binder from the molded article obtained by the first step, and a molded article that has undergone the second step are fired in a reducing atmosphere. And a third step of forming a sintered body having a desired shape.
JP32200992A 1992-12-01 1992-12-01 Raw material composition for sintering and method for producing sintered body Expired - Fee Related JP3392889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32200992A JP3392889B2 (en) 1992-12-01 1992-12-01 Raw material composition for sintering and method for producing sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32200992A JP3392889B2 (en) 1992-12-01 1992-12-01 Raw material composition for sintering and method for producing sintered body

Publications (2)

Publication Number Publication Date
JPH06172807A JPH06172807A (en) 1994-06-21
JP3392889B2 true JP3392889B2 (en) 2003-03-31

Family

ID=18138905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32200992A Expired - Fee Related JP3392889B2 (en) 1992-12-01 1992-12-01 Raw material composition for sintering and method for producing sintered body

Country Status (1)

Country Link
JP (1) JP3392889B2 (en)

Also Published As

Publication number Publication date
JPH06172807A (en) 1994-06-21

Similar Documents

Publication Publication Date Title
US6345663B1 (en) Core compositions and articles with improved performance for use in castings for gas turbine applications
JPH03232937A (en) Manufacture of metallic body by injection molding
JPH03503663A (en) Composite material manufacturing method
US2397831A (en) Production of molded metallic articles
JPS6123257B2 (en)
JP3392889B2 (en) Raw material composition for sintering and method for producing sintered body
US5250254A (en) Compound and process for an injection molding
JP2004156092A (en) Porous metal having excellent energy absorbability, and production method therefor
EP0409646A2 (en) Compound for an injection molding
DE2356921A1 (en) METHOD FOR MANUFACTURING SILICON NITRIDE CERAMICS
JPS5895658A (en) Manufacture of silicon nitride sintered body
JPH06158109A (en) Method for dewaxing and sintering molded body of metal or ceramic powder
JPH06316744A (en) Production of fe-ni-co series alloy parts for sealing
JPH10259404A (en) Calcined compact of carbonyl iron powder and powder injection molding method
JP2949130B2 (en) Method for producing porous metal filter
JPH02290901A (en) Metal fine powder for compacting and manufacture of sintered body thereof
JPH0436428A (en) Manufacture of high toughness tungsten sintered alloy
JPS6121960A (en) Ceramic injection moldings
JPH09255412A (en) Ceramic sintered compact and its production
JPS63274746A (en) Manufacture of ceramics-reinforced aluminum composite material
JPH02200703A (en) Manufacture of metal powder sintered body
JPH0768114A (en) Metallic sintered filter and production thereof
JPH0873901A (en) Raw material composition for sintering and production of sintered parts formed by using this composition
JPH03271302A (en) Manufacture of powder sintered product
JPH01242776A (en) Production of rare earth metal-transition metal target

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080124

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080124

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees