JP4527705B2 - Manufacturing method of glassy carbon cylindrical body for semiconductor manufacturing apparatus chamber and glassy carbon cylindrical body for semiconductor manufacturing apparatus chamber obtained by the manufacturing method - Google Patents

Manufacturing method of glassy carbon cylindrical body for semiconductor manufacturing apparatus chamber and glassy carbon cylindrical body for semiconductor manufacturing apparatus chamber obtained by the manufacturing method Download PDF

Info

Publication number
JP4527705B2
JP4527705B2 JP2006304251A JP2006304251A JP4527705B2 JP 4527705 B2 JP4527705 B2 JP 4527705B2 JP 2006304251 A JP2006304251 A JP 2006304251A JP 2006304251 A JP2006304251 A JP 2006304251A JP 4527705 B2 JP4527705 B2 JP 4527705B2
Authority
JP
Japan
Prior art keywords
molded body
thermosetting resin
cylindrical
semiconductor manufacturing
glassy carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006304251A
Other languages
Japanese (ja)
Other versions
JP2007131526A (en
Inventor
眞基 濱口
貴保 藤浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Thermo Systems Co Ltd
Original Assignee
Koyo Thermo Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Thermo Systems Co Ltd filed Critical Koyo Thermo Systems Co Ltd
Priority to JP2006304251A priority Critical patent/JP4527705B2/en
Publication of JP2007131526A publication Critical patent/JP2007131526A/en
Application granted granted Critical
Publication of JP4527705B2 publication Critical patent/JP4527705B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、半導体製造装置チャンバーの部品として好適な半導体製造装置チャンバー用ガラス状炭素製筒状体の製造方法及び該製造方法で得られた半導体製造装置チャンバー用ガラス状炭素製筒状体に関するものである。 TECHNICAL FIELD The present invention relates to a method for producing a glassy carbon cylindrical body for a semiconductor manufacturing apparatus chamber suitable as a component of a semiconductor manufacturing apparatus chamber, and a glassy carbon cylindrical body for a semiconductor manufacturing apparatus chamber obtained by the manufacturing method. It is.

ガラス状炭素は、不活性雰囲気では2000℃以上の耐熱性を有し、フッ化水素やフッ素に対しても優れた耐蝕性を示す。このため、半導体製造装置、なかでもCVD装置など、腐食性ガスを扱い、しかも不純物の発生の少ないことが要求される装置部品へ適用することが考えられている。ガラス状炭素製成形体は、一般に、フラン樹脂やフェノール樹脂などの熱硬化性樹脂の成形体を高温で炭化焼成して製造される。その製造に際しての製造技術上の問題は、原料である前記熱硬化性樹脂の成形性が低いことと、炭化焼成において20%前後の収縮が起こることである。ゆえに、複雑な形状の部品を精度よく成形することは、容易ではない。   Glassy carbon has a heat resistance of 2000 ° C. or higher in an inert atmosphere, and exhibits excellent corrosion resistance against hydrogen fluoride and fluorine. For this reason, it is considered that the present invention is applied to apparatus parts that handle corrosive gas and are required to generate less impurities, such as semiconductor manufacturing apparatuses, especially CVD apparatuses. A glassy carbon molded body is generally produced by carbonizing and firing a molded body of a thermosetting resin such as a furan resin or a phenol resin at a high temperature. The problems in the manufacturing technology at the time of manufacture are that the thermosetting resin as a raw material has low moldability and shrinkage of about 20% occurs during carbonization firing. Therefore, it is not easy to accurately mold a component having a complicated shape.

ところで、本発明が対象とするガラス状炭素製筒状体は、その軸心線方向と垂直な断面の形状が平行をなす2つの直線部と、これらの直線部を繋ぐ2つの円弧状部とを有するレーストラック形状をなしているものである(図2,図3参照)。 By the way, the cylindrical body made of glassy carbon targeted by the present invention has two straight portions whose cross-sectional shapes perpendicular to the axial direction are parallel, and two arc-shaped portions connecting these straight portions. (See FIGS. 2 and 3).

断面が単純な円形のガラス状炭素製成形体(円筒体)であれば、熱硬化性樹脂を用い遠心成形など常法に従って成形した断面円形で円筒状をなす熱硬化性樹脂製成形体を炭素化することで製造することができるが、半導体成膜装置用など多様な部品をガラス状炭素で製作するためには、断面が円形でない、前記の断面がレーストラック形状で筒状をなすガラス状炭素製筒状体も必要とされる。しかし、該ガラス状炭素製筒状体の製造に際し、断面がレーストラック形状で筒状をなす熱硬化性樹脂製成形体を遠心成形で製造することは原理的に不可能である。 If the glass-like carbon molded body (cylindrical body) with a simple cross section is used, a thermosetting resin molded body with a circular cross-section and formed into a cylindrical shape according to a conventional method such as centrifugal molding using a thermosetting resin However, in order to manufacture various parts such as for semiconductor film forming equipment with glassy carbon, the cross section is not circular, and the cross section is a racetrack shape and a glass shape. A carbon cylinder is also required. However, when manufacturing the glassy carbon cylindrical body , it is impossible in principle to manufacture a thermosetting resin molded body having a racetrack-shaped cross section and forming a cylindrical shape by centrifugal molding.

円筒体のガラス状炭素部品を製造する際には、製品の寸法精度を確保するために、一般には中子が使用される。ここで、中子とは、製品形状を保持するための部品であり、その寸法の少なくとも一部は、炭化処理後、すなわち収縮した後の製品の寸法の一部にほぼ等しくなるように設計される。そして、炭化処理前の熱硬化性樹脂製成形体の内部に挿入して使用され、製品を内側から支えることにより製品形状と寸法を所定の範囲に抑える機能を有する(特開2002−179463号公報(特許文献1)参照)。 When manufacturing a glassy carbon part having a cylindrical body, a core is generally used in order to ensure the dimensional accuracy of the product. Here, the core is a part for maintaining the product shape, and at least a part of its dimensions is designed to be approximately equal to a part of the dimension of the product after carbonization, that is, after shrinkage. The And it is used by being inserted into the thermosetting resin molded body before carbonization treatment, and has a function of suppressing the product shape and dimensions within a predetermined range by supporting the product from the inside (Japanese Patent Laid-Open No. 2002-179463). (See Patent Document 1).

例えば、円筒状のガラス状炭素部品を製造する際には、熱硬化性樹脂円筒の内部に、その内径より小さく、炭化処理後のガラス状炭素製円筒の内径にほぼ等しい内径を有する、黒鉛円筒を中子として挿入した状態で炭化処理を行う。   For example, when manufacturing a cylindrical glassy carbon part, a graphite cylinder having an inner diameter that is smaller than the inner diameter of the thermosetting resin cylinder and approximately equal to the inner diameter of the carbonized carbon cylinder after carbonization. Carbonization is performed in a state where is inserted as a core.

特開2000−313666号公報(特許文献2)には、円筒を分割した形状の熱硬化性樹脂製成形体を作り、それらを接合して円筒状成形体とし、それを炭化処理する、というガラス状炭素製円筒の製造方法が提案されている。しかしながら、特許文献2には、断面形状が楕円であったり、部分円と直線部からなるような筒状体の製造については触れられていない。また、前記提案の製造方法の要領で、分割部分を高い寸法精度で製作し、それらを正確に位置決めして接合することはそもそも困難である。また、断面形状がレーストラック形状をなすガラス状炭素製筒状体を半導体製造装置チャンバーの部品として使用する際には、接合された部分はできるだけ少ないか、ないことが望ましい。なぜなら、接合線は、寸法歪み、残留応力や、発塵の原因となることが多いからである。 JP-A-2000-313666 (Patent Document 2) discloses a glass in which a thermosetting resin molded body having a shape obtained by dividing a cylinder is made, and these are joined to form a cylindrical molded body, which is carbonized. A method for producing a cylindrical carbon cylinder has been proposed. However, Patent Document 2 does not mention the production of a cylindrical body having an elliptical cross-sectional shape or a partial circle and a straight portion. In addition, it is difficult in the first place to manufacture the divided portions with high dimensional accuracy and accurately position and join them in the manner of the proposed manufacturing method. In addition, when a glassy carbon tubular body having a racetrack shape in cross section is used as a component of a semiconductor manufacturing apparatus chamber , it is desirable that there are as few as possible no joined portions. This is because the joining line often causes dimensional distortion, residual stress, and dust generation.

また、寸法精度の問題については、中子も問題である。中子を使用する方式の欠点は、炭化処理を開始する時点において、中子と製品である熱硬化性樹脂製成形体の間の空隙が大きいため、中子による寸法矯正効果が十分でないことである。すなわち、中子と製品が接触するのは炭化処理が概ね完了する時点であるので、それまでに製品が大きく変形した場合には、中子によっても寸法を十分矯正することは困難であった。このような困難は、製品が断面がレーストラック形状をなす筒状体の場合に顕著になる。
特開2002−179463号公報 特開2000−313666号公報
As for the problem of dimensional accuracy, the core is also a problem. The disadvantage of the method using the core is that the dimensional correction effect by the core is not sufficient because the gap between the core and the molded product made from the thermosetting resin is large at the time of starting carbonization. is there. That is, since the core and the product come into contact with each other at the time when the carbonization treatment is almost completed, it has been difficult to sufficiently correct the dimensions with the core if the product has been greatly deformed until then. Such a difficulty becomes conspicuous when the product is a cylindrical body having a racetrack shape in cross section.
JP 2002-179463 A JP 2000-313666 A

本発明は、前記の事情に鑑みてなされたものであって、その目的は、半導体製造装置チャンバーの部品として好適で、ガラス状炭素からなり、軸心線方向と垂直な方向の断面の形状がレーストラック形状をなし、寸法精度に優れた半導体製造装置チャンバー用ガラス状炭素製筒状体を得ることができる半導体製造装置チャンバー用ガラス状炭素製筒状体の製造方法及び該製造方法で得られた半導体製造装置チャンバー用ガラス状炭素製筒状体を提供することにある。ここで、半導体製造装置チャンバーとは、半導体ウエハに種々の処理を施すために使用され、半導体ウエハをその内部に収容し、かつ、その内部を所定の雰囲気(真空を含む)に保持する機能を有するものである。 The present invention has been made in view of the above circumstances, and its purpose is suitable as a component of a semiconductor manufacturing apparatus chamber, which is made of glassy carbon and has a cross-sectional shape perpendicular to the axial direction. A manufacturing method of a glassy carbon cylindrical body for a semiconductor manufacturing apparatus chamber, which has a racetrack shape and is excellent in dimensional accuracy, and can be obtained by the manufacturing method. Another object of the present invention is to provide a glassy carbon cylinder for a semiconductor manufacturing apparatus chamber . Here, the semiconductor manufacturing apparatus chamber is used to perform various processes on the semiconductor wafer, and has a function of accommodating the semiconductor wafer therein and maintaining the inside in a predetermined atmosphere (including vacuum). It is what you have.

前記の目的を達成するために、本発明は次のような構成としている。すなわち、請求項1の発明は、熱硬化性樹脂を成形して熱硬化性樹脂製円筒状成形体を得る工程と、前記熱硬化性樹脂製円筒状成形体を加熱しつつ塑性変形して、軸心線方向と垂直な方向の断面の形状がレーストラック形状をなす熱硬化性樹脂製筒状成形体を得る塑性変形工程と、得られた前記熱硬化性樹脂製筒状成形体を炭素化してなる半導体製造装置チャンバー用ガラス状炭素製筒状体を得る炭素化工程とを備え、前記塑性変形工程において、前記熱硬化性樹脂製円筒状成形体のガラス転移点をTg[℃]としたとき、(Tg+5)≦T≦(Tg+100)の関係を満たす温度T[℃]で前記熱硬化性樹脂製円筒状成形体の塑性変形を行い、前記炭素化工程において、前記熱硬化性樹脂製筒状成形体の中空部に、該熱硬化性樹脂製筒状成形体と実質的に同じ材質の熱硬化性樹脂からなる中子を配して炭素化を行うことを特徴とする半導体製造装置チャンバー用ガラス状炭素製筒状体の製造方法である。請求項2の発明は、請求項1記載の製造方法により製造された半導体製造装置チャンバー用ガラス状炭素製筒状体であって、ガラス状炭素からなり、軸心線方向と垂直な方向の断面の形状がレーストラック形状をなしていることを特徴とする半導体製造装置チャンバー用ガラス状炭素製筒状体である。 In order to achieve the above object, the present invention has the following configuration. That is, the invention of claim 1 is a step of forming a thermosetting resin cylindrical molded body by molding a thermosetting resin, and plastically deforming while heating the thermosetting resin cylindrical molded body, A plastic deformation step of obtaining a thermosetting resin cylindrical molded body in which the shape of a cross section perpendicular to the axial direction forms a racetrack shape, and carbonizing the obtained thermosetting resin cylindrical molded body A carbonization step for obtaining a glassy carbon cylindrical body for a semiconductor manufacturing apparatus chamber, wherein, in the plastic deformation step, a glass transition point of the thermosetting resin cylindrical molded body is defined as Tg [° C.]. When the thermosetting resin cylindrical molded body is plastically deformed at a temperature T [° C.] satisfying the relationship of (Tg + 5) ≦ T ≦ (Tg + 100), and in the carbonization step, the thermosetting resin cylinder The cylindrical part made of the thermosetting resin is formed in the hollow part of the molded article. A body and substantially manufacturing method of a semiconductor manufacturing device chamber for the glass-like carbon cylindrical body and performing carbonization by arranging a core made of the same material of the thermosetting resin. The invention of claim 2 is a glassy carbon cylindrical body for a semiconductor manufacturing apparatus chamber manufactured by the manufacturing method of claim 1, which is made of glassy carbon and has a cross section in a direction perpendicular to the axial center line direction. This is a glassy carbon cylinder for a semiconductor manufacturing apparatus chamber, characterized in that the shape is a racetrack shape.

本発明による半導体製造装置チャンバー用ガラス状炭素製筒状体の製造方法によれば、耐食性と強度に優れるガラス状炭素からなり、軸心線方向と垂直な方向の断面の形状がレーストラック形状をなし、寸法精度に優れた半導体製造装置チャンバー用ガラス状炭素製筒状体を得ることができる。また、本発明による半導体製造装置チャンバー用ガラス状炭素製筒状体は、耐食性と強度に優れるガラス状炭素からなり、軸心線方向と垂直な方向の断面の形状がレーストラック形状をなすとともに、寸法精度に優れており、半導体製造装置チャンバーの部品として有用で好適に用いることができる。According to the method for manufacturing a glassy carbon cylindrical body for a semiconductor manufacturing apparatus chamber according to the present invention, it is made of glassy carbon having excellent corrosion resistance and strength, and the shape of the cross section in the direction perpendicular to the axial direction is the racetrack shape. None, it is possible to obtain a glassy carbon cylinder for a semiconductor manufacturing apparatus chamber having excellent dimensional accuracy. In addition, the glassy carbon cylindrical body for semiconductor manufacturing apparatus chamber according to the present invention is made of glassy carbon excellent in corrosion resistance and strength, and the cross-sectional shape in the direction perpendicular to the axial direction is a racetrack, It is excellent in dimensional accuracy, and can be used suitably as a component of a semiconductor manufacturing apparatus chamber.

以下、本発明について具体的に説明する。本発明の半導体製造装置チャンバー用ガラス状炭素製筒状体を製造する方法は、熱硬化性樹脂を成形して熱硬化性樹脂製円筒状成形体を得る工程と、熱硬化性樹脂製円筒状成形体を加熱しつつ塑性変形して断面がレーストラック形状の熱硬化性樹脂製筒状成形体を得る塑性変形工程と、得られた前記熱硬化性樹脂製筒状成形体を炭素化してなる半導体製造装置チャンバー用ガラス状炭素製筒状体を得る炭素化工程と、を含むものである。 Hereinafter, the present invention will be specifically described. The method for producing a glassy carbon cylindrical body for a semiconductor manufacturing apparatus chamber of the present invention includes a step of molding a thermosetting resin to obtain a thermosetting resin cylindrical molded body, and a thermosetting resin cylindrical body and plastic deformation process section by plastic deformation while heating the molded body to obtain a thermosetting resin cylindrical molded bodies of the race track shape, the resulting the thermosetting resin cylindrical molded body by carbonizing And a carbonization step for obtaining a glassy carbon cylindrical body for a semiconductor manufacturing apparatus chamber .

前記熱硬化性樹脂製円筒状成形体を得る工程では、原料樹脂を円筒形に成形するが、この場合の成形法は特に限定されず、遠心成形法、射出成形法、押出成形法など公知の技術を採用することができる。これらの成形法のうち、特に遠心成形法を採用することが好ましい。その理由としては、遠心成形法では、遠心力により溶融状態の原料樹脂を成形型の内面側に流動させて硬化させるため、円筒状物の成形が容易で成形体の寸法精度も高く、更には成形時において内面側が開放されているのでガス抜きも良好に実施できること、更には最終製品である半導体製造装置用ガラス状炭素製チャンバーの態様からして接合線は少ないほど有利であることが挙げられる。なお、原料樹脂としては、例えば、フェノール樹脂やフラン樹脂など、公知の熱硬化性樹脂を好適に採用できる。   In the step of obtaining the cylindrical body made of the thermosetting resin, the raw material resin is molded into a cylindrical shape, but the molding method in this case is not particularly limited, and known methods such as a centrifugal molding method, an injection molding method, and an extrusion molding method are used. Technology can be adopted. Of these molding methods, it is particularly preferable to employ a centrifugal molding method. The reason is that, in the centrifugal molding method, the molten raw material resin is flowed to the inner surface side of the mold by the centrifugal force to be cured, so that the cylindrical product can be easily molded and the dimensional accuracy of the molded body is high. Since the inner surface side is open at the time of molding, it is possible to carry out gas venting well, and further, from the aspect of the glass-like carbon chamber for semiconductor manufacturing equipment that is the final product, it is advantageous that there are fewer bonding lines. . In addition, as a raw material resin, well-known thermosetting resins, such as a phenol resin and a furan resin, can be employ | adopted suitably, for example.

前記の断面がレーストラック形状の熱硬化性樹脂製筒状成形体を得る塑性変形工程では、熱硬化性樹脂製円筒状成形体を加熱しつつ塑性変形するが、その塑性変形の手段は特に限定されず、例えば、チャンバー形状を備える割り型を用い加熱しつつプレスにより荷重を加えて型に嵌めるか、あるいは、熱硬化性樹脂製円筒状成形体の内周面に少なくとも2本の棒状治具を設け、加熱しつつ前記棒状治具を径方向に押し開く手段を挙げることができる。図1は、その後者の塑性加工方法の一態様を示す説明図である。この図1に示す塑性加工は、熱硬化性樹脂製円筒状成形体1の内周面に2本の丸棒治具2を設ける(図1(a)参照)。次いで、熱硬化性樹脂製円筒状成形体1を所定温度に加熱しながら丸棒治具2を、図示省略する押し開き手段によって径方向に押し開く(図1(b)参照)ことで加工が行われる。このように加工して得られる断面がレーストラック形状の熱硬化性樹脂製筒状成形体3を図2に示す。 In the plastic deformation step of obtaining a thermosetting resin cylindrical molded body having a racetrack-shaped cross section, the thermosetting resin cylindrical molded body is plastically deformed while being heated, but the means for the plastic deformation is particularly limited. For example, at least two rod-shaped jigs are attached to the inner peripheral surface of a cylindrical molded body made of a thermosetting resin by applying a load with a press while heating using a split mold having a chamber shape. And a means for pushing the rod-shaped jig in the radial direction while heating. FIG. 1 is an explanatory view showing an embodiment of the latter plastic working method. In the plastic working shown in FIG. 1, two round bar jigs 2 are provided on the inner peripheral surface of a cylindrical body 1 made of a thermosetting resin (see FIG. 1 (a)). Next, while the thermosetting resin cylindrical molded body 1 is heated to a predetermined temperature, the round bar jig 2 is pushed open in the radial direction by a push-opening means (not shown) (see FIG. 1B). Done. FIG. 2 shows a thermosetting resin tubular molded body 3 having a racetrack cross section obtained by processing in this way.

前記の塑性加工について更に詳細に説明する。一般に、熱硬化性樹脂製円筒状成形体は、靭性に乏しいので、機械加工は容易でないことが知られている。したがって、複雑な形状の成形体を複数の部品を接合することによって製造することは容易ではない。そこで、本発明者等は、断面がレーストラック形状の熱硬化性樹脂製筒状成形体の製造について種々検討した結果、熱硬化性樹脂製円筒状成形体をそのガラス転移点(以下Tgという)以上に加熱して力を加えると、容易に塑性変形させられることを見出した。   The plastic working will be described in more detail. In general, it is known that a cylindrical molded body made of a thermosetting resin has poor toughness, so that machining is not easy. Therefore, it is not easy to manufacture a molded body having a complicated shape by joining a plurality of parts. Therefore, as a result of various investigations on the production of a thermosetting resin cylindrical molded body having a racetrack cross section, the present inventors have determined that the thermosetting resin cylindrical molded body has a glass transition point (hereinafter referred to as Tg). It has been found that when a force is applied by heating as described above, it can be easily plastically deformed.

塑性変形させる温度Tとしては、Tgより5℃以上高い温度が好ましい。温度差が5℃より小さい場合には、塑性変形に大きな力を必要とし、しばしば破断に至る。また、その温度の差の上限は、100℃、より好ましくは50℃とする。100℃を超えると、熱硬化性樹脂製円筒状成形体の硬化反応が急速に進行して塑性変形させることができなくなるからである。 The temperature T for plastic deformation is preferably a temperature 5 ° C. higher than Tg. When the temperature difference is smaller than 5 ° C., a large force is required for plastic deformation, and often breaks. The upper limit of the temperature difference is 100 ° C., more preferably 50 ° C. This is because when the temperature exceeds 100 ° C., the curing reaction of the thermosetting resin cylindrical molded body proceeds rapidly and cannot be plastically deformed.

塑性変形に供する熱硬化性樹脂製円筒状成形体はそのTgが100℃以下、好ましくは60℃以下であることが望ましい。Tgが高い場合は、塑性変形のためにより高温に熱する必要がある。このため、変形操作が困難であるばかりでなく、塑性変形操作中に硬化反応が急速に進むため、変形させることが難しくなるためである。Tgの下限は特になく、一般に低い方が望ましい。ただし、過剰に低い場合には室温での強度が不足して取り扱いが困難となるため、室温近傍以上、25℃以上のTgを有することが望ましい。   The cylindrical body made of thermosetting resin to be subjected to plastic deformation has a Tg of 100 ° C. or lower, preferably 60 ° C. or lower. When Tg is high, it is necessary to heat to a higher temperature for plastic deformation. For this reason, not only is the deformation operation difficult, but also the curing reaction proceeds rapidly during the plastic deformation operation, which makes it difficult to deform. There is no particular lower limit of Tg, and generally a lower one is desirable. However, if it is excessively low, the strength at room temperature is insufficient and handling becomes difficult, so it is desirable to have a Tg of around room temperature or higher and 25 ° C. or higher.

塑性変形は、前述したように、熱硬化性樹脂製円筒状成形体を、チャンバー形状を備える割り型を用い加熱しつつプレスにより荷重を加えて型に嵌めるか、あるいは、加熱しつつ内周面に設けた少なくとも2本の棒状治具を径方向に押し開く加工手段によって行われるが、熱硬化性樹脂製円筒状成形体を塑性変形させられる範囲にはもちろん限りがある。つまり、その限界を超えて塑性変形させると、破断や亀裂などの欠陥が生じるような変形限界である。塑性変形前後の曲率半径をそれぞれR、R´、その比(R´/R)をt、肉厚と塑性変形前の半径Rの比(肉厚/R)をwとする。肉厚の中心部が変形に対して中立(寸法が変化しない)で、外側と内側で均等に塑性変形が発生し、肉厚の変化が無視できると仮定すると、外周部、内周部の周方向の長さの変化率lo、liは、次式で表される。
lo=(t+w/2)/[t(1+w/2)]
li=(t−w/2)/[t(1−w/2)]
As described above, plastic deformation is performed by applying a thermosetting resin cylindrical molded body to a mold by applying a load with a press while heating it using a split mold having a chamber shape, or heating the inner peripheral surface. However, the range in which the thermosetting resin cylindrical molded body can be plastically deformed is of course limited. That is, it is a deformation limit that causes defects such as fractures and cracks when plastic deformation is performed beyond that limit. The curvature radii before and after plastic deformation are R, R ′, the ratio (R ′ / R) is t, and the ratio of the wall thickness to the radius R before plastic deformation (wall thickness / R) is w. Assuming that the central part of the wall thickness is neutral with respect to deformation (the dimensions do not change), plastic deformation occurs evenly on the outside and inside, and the change in wall thickness is negligible, the circumference of the outer and inner circumferences The direction length change rates lo and li are expressed by the following equations.
lo = (t + w / 2) / [t (1 + w / 2)]
li = (t−w / 2) / [t (1−w / 2)]

樹脂の性状によっても異なるが、一般に、変化率loないしliが、10%以下、好ましくは5%以下とすることが望ましい。例えば、肉厚の中心直径が320mm、肉厚が3mmの円筒の一部を、肉厚の中心直径が60mmの円弧を有する筒状体に塑性変形するとき、外周、内周の変化率は、およそ4%となる。 Generally, it is desirable that the rate of change lo to li is 10% or less, preferably 5% or less, although it varies depending on the properties of the resin. For example, the center diameter of the wall thickness of 320 mm, a part wall thickness of the cylinder of 3 mm, when the center diameter of the wall thickness is plastically deformed into a cylindrical shape having an arc of 60 mm, an outer peripheral, the rate of change of the inner circumference, About 4%.

前記の式に記したとおり、外周、内周の変化率は肉厚とRの比にも影響を受ける。端的には肉厚が大きいほど変化率が大きくなる。上記の例において、肉厚を3mmから6mmにすると同一の変形で約2倍の変化を生じる。つまり、肉厚は、部品設計上、問題のない範囲で、比較的薄い方が望ましい。10%以上の大きな塑性変形を起こす場合には、樹脂成形体に欠陥が生じるおそれが高いので好ましくない。塑性変形の速度はとくに限定されないが、一般には数分から数時間にわたって荷重をかけておこなうことがよい結果を与える。急激な変形をおこすと、樹脂の劣化が進むことがある   As described in the above formula, the rate of change of the outer periphery and inner periphery is also affected by the ratio of the wall thickness to R. In short, the greater the wall thickness, the greater the rate of change. In the above example, when the wall thickness is changed from 3 mm to 6 mm, the same deformation causes a change of about twice. That is, it is desirable that the wall thickness be relatively thin as long as there is no problem in designing the parts. When large plastic deformation of 10% or more is caused, there is a high possibility that defects will occur in the resin molded body, which is not preferable. The speed of plastic deformation is not particularly limited, but generally, good results are obtained by applying a load over several minutes to several hours. Sudden deformation may cause deterioration of the resin.

このように塑性変形させた後は、さらに高い温度でキュアリング(化学反応を促進するための加熱)を行なうことで、それ以上の好ましくない変形を防止させることができる。キュアリング条件は、塑性変形温度によって異なるが、例えばフェノール樹脂を用いる場合では、空気中で、温度:180〜350℃、時間:10〜100時間、とすることができる。   After plastic deformation in this way, further undesired deformation can be prevented by performing curing (heating for promoting chemical reaction) at a higher temperature. The curing conditions vary depending on the plastic deformation temperature. For example, when a phenol resin is used, the temperature can be set to 180 to 350 ° C. and the time can be set to 10 to 100 hours in the air.

次に、断面がレーストラック形状の熱硬化性樹脂製筒状成形体を炭素化する工程について説明する。この炭素化工程では、前記塑性変形して得た熱硬化性樹脂製筒状成形体に対して炭素化処理を施し、半導体製造装置チャンバー用ガラス状炭素製筒状体とする。炭素化処理の条件としては、例えば、非酸素雰囲気中(不活性ガス雰囲気中など)で、温度:800〜2500℃で熱処理することが一般的である。 Next, the process of carbonizing the thermosetting resin tubular molded body having a racetrack cross section will be described. In this carbonization step, the thermosetting resin tubular molded body obtained by plastic deformation is subjected to carbonization to obtain a glassy carbon tubular body for a semiconductor manufacturing apparatus chamber . As conditions for the carbonization treatment, for example, heat treatment is generally performed at a temperature of 800 to 2500 ° C. in a non-oxygen atmosphere (such as an inert gas atmosphere).

このようにして、図2に示す断面がレーストラック形状をなす熱硬化性樹脂製筒状成形体3と同形状であって炭化処理にて収縮した、断面がレーストラック形状の筒状をなす半導体製造装置チャンバー用ガラス状炭素製筒状体を得ることができる。 In this way, a semiconductor whose cross section shown in FIG. 2 has the same shape as the thermosetting resin cylindrical molded body 3 having a racetrack shape and contracted by carbonization, and whose cross section has a racetrack shape. A glassy carbon cylinder for a manufacturing apparatus chamber can be obtained.

ところで、前記半導体製造装置チャンバー用ガラス状炭素製筒状体をより寸法精度よく得るためには、その製品前駆体である前記熱硬化性樹脂製筒状成形体と実質的に同一の炭化収縮率を有する中子を使用するのが好ましい。この場合、中子の寸法は、製品前駆体の内径(内側形状)の少なくとも一部と実質的に同一の寸法とすることができる。なぜなら、中子も製品前駆体と同様に炭化収縮を生じるためである。この中子は、炭化処理の開始時から終了時まで製品形状をその内部から保持する効果を有する。 By the way, in order to obtain the glassy carbon cylindrical body for the semiconductor manufacturing apparatus chamber with higher dimensional accuracy, the carbonization shrinkage rate is substantially the same as that of the thermosetting resin cylindrical molded body that is the product precursor. It is preferable to use a core having In this case, the dimensions of the core can be substantially the same as at least a part of the inner diameter (inner shape) of the product precursor. This is because the core also undergoes carbonization shrinkage similarly to the product precursor. This core has the effect of maintaining the product shape from the inside until the end of carbonization.

ここで実質的に「同一の炭化収縮率」とは、炭化処理前後の寸法収縮率(%)が、およそ±2ポイント以内、好ましくは1ポイント以内であることを意味する。たとえば100mmの熱硬化性樹脂製成形体を炭化すると概ね80%まで炭化収縮する(樹脂によって多少異なる)。この場合、2ポイントの収縮率差は2mmの寸法差となる。この差より小さければ中子としての効能を発揮する。大きい場合には、その形状を支える効能が十分でなかったり、あるいは製品(半導体製造装置チャンバー用ガラス状炭素製筒状体)を破損させたりすることがある。 Here, “substantially the same carbonization shrinkage” means that the dimensional shrinkage (%) before and after carbonization is within about ± 2 points, preferably within 1 point. For example, if a 100 mm thermosetting resin molded body is carbonized, it is carbonized and shrunk to approximately 80% (varies slightly depending on the resin). In this case, the two-point shrinkage rate difference is a dimensional difference of 2 mm. If it is smaller than this difference, the effect as a core is exhibited. If it is large, the effect of supporting the shape may not be sufficient, or the product ( glass-like carbon cylindrical body for semiconductor manufacturing apparatus chamber ) may be damaged.

更に、中子を同じ材質としてその炭化収縮率を製品とほぼ同じくするだけでなく、黒鉛と熱硬化性樹脂など、2種以上の材質を組合せて中子を作り、中子全体としての収縮率を製品に合わせることでも同じ効能を得ることができる。   Furthermore, not only does the core have the same material and the carbonization shrinkage rate is almost the same as the product, but the core is made from a combination of two or more materials, such as graphite and thermosetting resin. The same effect can be obtained by adjusting to the product.

また、「実質的に同じ材質」とは、同じ樹脂系の材質を意味する。例えば、半導体製造装置チャンバー用ガラス状炭素製筒状体の出発原料がフェノール樹脂であり、中子は安価でほぼ同じ炭化収縮率の発泡フェノール樹脂を使用することができる。 Further, “substantially the same material” means the same resin material. For example, the starting material of the glass-like carbon cylindrical body for a semiconductor manufacturing apparatus chamber is a phenol resin, and the core can be a foamed phenol resin that is inexpensive and has substantially the same carbonization shrinkage.

前記中子は、断面がレーストラック形状をなす熱硬化性樹脂製筒状成形体の中空部分と同じ断面形状であって、該熱硬化性樹脂製筒状成形体の長手方向に延びる柱状体であっても良いが、高さが熱硬化性樹脂製筒状成形体の平行平面間距離を有し、任意の幅を有して熱硬化性樹脂製筒状成形体の長手方向に延びる直方体形状であって、該熱硬化性樹脂製筒状成形体の平行平面間に任意の間隔で断面長手方向に複数個配されるものであると、中子用の樹脂が少量で済むと共に、炭素化後に取り出すのが容易になるために、好ましい。   The core is a columnar body having the same cross-sectional shape as the hollow portion of the thermosetting resin tubular molded body having a racetrack shape in cross section, and extending in the longitudinal direction of the thermosetting resin cylindrical molded body. There may be a rectangular parallelepiped shape whose height has a distance between parallel planes of the thermosetting resin cylindrical molded body and has an arbitrary width and extends in the longitudinal direction of the thermosetting resin cylindrical molded body When a plurality of the thermosetting resin tubular molded bodies are arranged in the longitudinal direction of the cross section at an arbitrary interval between parallel planes, a small amount of resin for the core is required, and carbonization is performed. Since it becomes easy to take out later, it is preferable.

また、中子と製品の間に、黒鉛製フェルトや軟質のセラミックシートなど、可撓性を有する材料を挟みこむことは、中子と製品の過剰な接触、更には中子の破損を防ぐために有効である。   In addition, sandwiching a flexible material such as graphite felt or a soft ceramic sheet between the core and the product is to prevent excessive contact between the core and the product, and damage to the core. It is valid.

また、半導体製造装置チャンバー用ガラス状炭素製筒状体は、一方の端部又は両方の端部にフランジが形成されてあってもよく、そのフランジを形成する工程について説明する。フランジの成形は、公知の方法、例えば下記3法が使える。 Moreover, the glass-like carbon cylindrical body for semiconductor manufacturing apparatus chambers may have a flange formed at one end or both ends, and the process of forming the flange will be described. A known method, for example, the following three methods can be used for forming the flange.

(1)プレス成形ないし射出成形
フランジ形状の金型を用いて、フェノール樹脂などの熱硬化性樹脂を高圧成形し、フランジ部を成形する。それを、既に塑性変形された断面がレーストラック形状をなす熱硬化性樹脂製筒状成形体の端部に接着する。
(1) Press molding or injection molding Using a flange-shaped mold, a thermosetting resin such as a phenol resin is molded under high pressure to mold the flange portion. It is bonded to the end portion of the thermosetting resin tubular molded body in which the already plastically deformed cross section forms a racetrack shape.

(2)遠心成形
熱硬化性樹脂(粒状または液体)を遠心成形し、フランジ部と同じ厚さの樹脂パイプを成形し、当該パイプを平面に展開し、その後、加熱しながら上記塑性変形と同様の条件で荷重をかけて、平板状に塑性変形させる。その平板からフランジ形状の部品を切り出す。それを、既に塑性変形された熱硬化性樹脂製筒状成形体の管端に接着する。
(2) Centrifugal molding Thermosetting resin (granular or liquid) is centrifugally molded to form a resin pipe having the same thickness as the flange, and the pipe is developed on a flat surface. The plate is plastically deformed by applying a load under the following conditions. A flange-shaped part is cut out from the flat plate. It is bonded to the tube end of a thermosetting resin tubular molded body that has already been plastically deformed.

(3)注型成形
フランジ部のキャビティを有する金型に液状熱硬化性樹脂を注入し、熱硬化させてフランジ部を形成する。そのフランジ部品を、既に塑性変形された熱硬化性樹脂製筒状成形体の端部に接着する。あるいは、熱硬化性樹脂製筒状成形体を前記金型に挿入してから液状熱硬化性樹脂を注入して、熱硬化させることにより、フランジ部を熱硬化性樹脂製筒状成形体の端部に一体化させることもできる。
(3) Casting molding A liquid thermosetting resin is injected into a mold having a cavity in the flange portion and thermally cured to form the flange portion. The flange part is bonded to the end portion of the thermosetting resin tubular molded body that has already been plastically deformed. Alternatively, by inserting a thermosetting resin cylindrical molded body into the mold and then injecting a liquid thermosetting resin and thermosetting it, the flange portion becomes the end of the thermosetting resin cylindrical molded body. It can also be integrated into the part.

前記のフランジ部と熱硬化性樹脂製筒状成形体との接着は、液状熱硬化性樹脂を接着剤として使用する方法や、粉体樹脂を接合部に充填して、荷重をかけながら加熱して溶融させる方法など、公知の技術を用いて行なうことができる。また、前記3つの成形法いずれも、フランジ部、熱硬化性樹脂製筒状成形体、接着剤の材質は、それぞれ異なる熱硬化性樹脂を用いてもよいが、炭化時の収縮率ができるだけ近くなるように、同じ樹脂を使うことが望ましい。そうすることによって、炭素化処理時の寸法の不均一な変化(精度の低下)を防ぐことができる。 Adhesion between the flange portion and the thermosetting resin tubular molded body can be achieved by using a liquid thermosetting resin as an adhesive, or by filling the joint with powder resin and heating it while applying a load. It can be performed using a known technique such as a melting method. In any of the above three molding methods, the flange portion, the thermosetting resin cylindrical molded body, and the adhesive may be made of different thermosetting resins, but the shrinkage rate during carbonization is as close as possible. It is desirable to use the same resin. By doing so, the nonuniform change (decrease in precision) of the dimension at the time of carbonization processing can be prevented.

このように、本発明による半導体製造装置チャンバー用ガラス状炭素製筒状体は、軸心線方向と垂直な方向の断面の形状がレーストラック形状をなし、かつ、前記断面に接合部を有しないもの(筒状体長手方向と平行な方向に接合線のないもの)であることから、前記断面に接合部を有しないことで、接合部の存在に起因する寸法歪み、残留応力及び発塵が発生しないものとなる。 As described above, the glassy carbon cylindrical body for a semiconductor manufacturing apparatus chamber according to the present invention has a racetrack shape in a cross section perpendicular to the axial direction , and has no joint in the cross section. because it is things (those without the cylindrical body longitudinal direction parallel to the welding line), the by section has no joint, the dimensions distortion due to the presence of the junction, the residual stress and dust It will not occur .

参考例1)
市販の液状フェノール樹脂(群栄化学製レジトップPL−4804)を、減圧下100℃で1時間熱処理して、水分率を調整し、ガラス状炭素の原料とした。この原料を、内径325mm×長さ1600mmの遠心成形金型を用いて遠心成形法により成形し、直径320mm、厚さ3.5mmのフェノール樹脂製円筒状成形体を得た。ガラス転移点は65℃であった。
( Reference Example 1)
A commercially available liquid phenol resin (Regitop PL-4804 manufactured by Gunei Chemical Co., Ltd.) was heat-treated at 100 ° C. under reduced pressure for 1 hour to adjust the moisture content, and used as a raw material for glassy carbon. This raw material was molded by a centrifugal molding method using a centrifugal molding die having an inner diameter of 325 mm and a length of 1600 mm to obtain a phenol resin cylindrical molded body having a diameter of 320 mm and a thickness of 3.5 mm. The glass transition point was 65 ° C.

前記得られたフェノール樹脂製円筒状成形体を長さ600mmに切断した。この切断されたフェノール樹脂製円筒状成形体の内部に、図1に示すように、外径60mm×長さ600mmのステンレス管(棒状治具)2本を入れた。1本は、フェノール樹脂製円筒状成形体を支えるごとく、他の1本は、該円筒状成形体の内側底部に荷重として置いた(図1a参照)。この状態にて90℃で5時間加熱を行って、断面がレーストラック形状をなすフェノール樹脂製筒状成形体が得られた(図1(b)参照)。そして、この後、前記フェノール樹脂製筒状成形体を常法により炭素化処理を行って、断面における半円部の半径が24mm、断面における平行部の長さ(平行をなす2つの各直線部の長さ)が340mm、全長が480mmの、断面に接合部を有しない(長さ方向に接合線のない)、半導体製造装置チャンバー用ガラス状炭素製筒状体を得ることができた。 The obtained phenol resin cylindrical molded body was cut to a length of 600 mm. As shown in FIG. 1, two stainless steel tubes (rod-shaped jigs) having an outer diameter of 60 mm and a length of 600 mm were placed inside the cut phenolic cylindrical molded body. As one supported the cylindrical molded body made of phenol resin, the other one was placed as a load on the inner bottom of the cylindrical molded body (see FIG. 1a). In this state, heating was performed at 90 ° C. for 5 hours, and a phenol resin tubular molded body having a cross-section in a racetrack shape was obtained (see FIG. 1B). Thereafter, the phenol resin tubular molded body is carbonized by a conventional method, the radius of the semicircular portion in the cross section is 24 mm, and the length of the parallel portion in the cross section (two linear portions that are parallel) The glassy carbon cylindrical body for a semiconductor manufacturing apparatus chamber was obtained which had a junction of the cross section (no joining line in the length direction) and a length of 340 mm and a total length of 480 mm.

参考例2)端部にフランジを接合した場合の例
前記参考例1と同様の製造方法で、断面がレーストラック形状をなすフェノール樹脂製筒状成形体を得た。一方、前記参考例1と同じ原料を用いて、遠心成形法により厚さ3mmのフェノール樹脂製の管状体を成形し、これを切り開いて展開し、厚さ3mmのフェノール樹脂製の板状体を得た。この板状体から、幅86mm×平行部の長さ425mm×半円部の半径33mmで、その中心部に中空部(孔)が形成され、該中空部の周縁形状が前記フェノール樹脂製筒状成形体の外形と等しい形状である、レーストラック型ドーナツ状の樹脂板を切り出した。これら二つの部品をフェノール樹脂で接合し、前記参考例1と同様に常法により炭素化処理したところ、断面における半円部の半径が24mm、断面における平行部の長さが340mm、全長が480mmで、片端に幅8mmのフランジを有する、半導体製造装置チャンバー用ガラス状炭素製筒状体を得ることができた。
( Reference Example 2) Example in which a flange is joined to the end portion A phenol resin tubular molded body having a racetrack shape in cross section was obtained by the same manufacturing method as in Reference Example 1. On the other hand, using the same raw material as in Reference Example 1, a 3 mm-thick phenolic resin tubular body was formed by centrifugal molding, and this was cut open and expanded to obtain a 3 mm-thick phenolic resin plate-like body. Obtained. From this plate-like body, a width 86 mm × a length of a parallel part 425 mm × a radius of 33 mm of a semicircular part, a hollow part (hole) is formed in the center part, and the peripheral shape of the hollow part is the above-mentioned phenolic resin cylindrical shape A racetrack donut-shaped resin plate having a shape equal to the outer shape of the molded body was cut out. When these two parts were joined with a phenol resin and carbonized by a conventional method in the same manner as in Reference Example 1, the radius of the semicircular part in the cross section was 24 mm, the length of the parallel part in the cross section was 340 mm, and the total length was 480 mm. Thus, a glassy carbon cylindrical body for a semiconductor manufacturing apparatus chamber having a flange with a width of 8 mm at one end could be obtained.

実施例)中子を用いた場合の例
市販の液状フェノール樹脂(群栄化学製レジトップPL−4804)を、減圧下100℃で1時間熱処理して、水分率を調整し、ガラス状炭素の原料とした。この原料を、内径325mm×長さ1600mmの遠心成形金型を用いて遠心成形法により成形し、直径320mm、厚さ3.5mmのフェノール樹脂製円筒状成形体を得た。ガラス転移点は65℃であった。
( Example ) Example in which a core is used A commercially available liquid phenol resin (Regitop PL-4804 manufactured by Gunei Chemical Co., Ltd.) is heat-treated at 100 ° C. for 1 hour under reduced pressure to adjust the moisture content, and glassy carbon. As a raw material. This raw material was molded by a centrifugal molding method using a centrifugal molding die having an inner diameter of 325 mm and a length of 1600 mm to obtain a phenol resin cylindrical molded body having a diameter of 320 mm and a thickness of 3.5 mm. The glass transition point was 65 ° C.

前記得られたフェノール樹脂製円筒状成形体を長さ500mmに切断した。この切断されたフェノール樹脂製円筒状成形体の内部に、図1に示すように、外径60mm×長さ600mmのステンレス管(棒状治具)2本を入れた。1本は、フェノール樹脂製円筒状成形体を支えるごとく、他の1本は、該円筒状成形体の内側底部に荷重として置いた(図1(a)参照)。この状態にて90℃で5時間加熱を行って、断面がレーストラック状をなすフェノール樹脂製筒状成形体を得た(図1(b)参照)。   The obtained phenolic resin cylindrical molded body was cut into a length of 500 mm. As shown in FIG. 1, two stainless steel tubes (rod-shaped jigs) having an outer diameter of 60 mm and a length of 600 mm were placed inside the cut phenolic cylindrical molded body. One was placed as a load on the inner bottom of the cylindrical molded body, as one supported the cylindrical molded body made of phenol resin (see FIG. 1 (a)). In this state, heating was performed at 90 ° C. for 5 hours to obtain a phenol resin tubular molded body having a racetrack cross section (see FIG. 1B).

前記フェノール樹脂製筒状成形体の内部に、中子として、厚さ3mm×幅60mm×長さ500mmのフェノール樹脂製の板状体8枚を図3に示すように所定間隔で挿入した。この後、これらの中子とともにフェノール樹脂製筒状成形体を不活性雰囲気中1000℃に加熱処理して炭素化させ、半導体製造装置チャンバー用ガラス状炭素製筒状体を得た。得られた該ガラス状炭素製筒状体は、平行部の間隔が48mmの平均値に対して±0.6mm以内に収まっており、半導体製造装置チャンバーの部品として好適であった。なお、図3(a)は炭素化処理前、図3(b)は炭素化処理後を示す。また、図において、4はフェノール樹脂製筒状成形体、5はフェノール樹脂製板状体(中子)、6は中子が取り外される前の、半導体製造装置チャンバー用ガラス状炭素製筒状体を示す。 As shown in FIG. 3, eight phenol resin plate-like bodies each having a thickness of 3 mm, a width of 60 mm, and a length of 500 mm were inserted into the tubular molded body made of phenol resin as a core. After that, the phenol resin cylindrical molded body was heat-treated at 1000 ° C. in an inert atmosphere together with these cores and carbonized to obtain a glassy carbon cylindrical body for a semiconductor manufacturing apparatus chamber . The obtained glass-like carbon cylindrical body was suitable as a component of a semiconductor manufacturing apparatus chamber because the interval between the parallel portions was within ± 0.6 mm with respect to the average value of 48 mm. 3A shows the state before the carbonization treatment, and FIG. 3B shows the state after the carbonization treatment. Also, in the figure, 4 is a phenolic resin cylindrical molded body, 5 is a phenolic resin plate (core), and 6 is a glassy carbon cylindrical body for a semiconductor manufacturing apparatus chamber before the core is removed. Indicates.

また、比較のため、厚さ48mm×幅320mm×長さ400mmの直方体に形成した黒鉛製中子7を、前記フェノール樹脂製筒状成形体4の内部に図4に示すように挿入し、黒鉛製中子7とともにそのフェノール樹脂製筒状成形体4を不活性雰囲気中1000℃に加熱処理して炭化させ、ガラス状炭素製筒状成形体8を得た。得られたガラス状炭素製筒状成形体8は、平行部の幅が45mmの平均値に対して±1.6mmもの変動があり、半導体製造装置チャンバーの部品として使用するには寸法精度の点で満足のいく寸法ものではなかった。 For comparison, a graphite core 7 formed in a rectangular parallelepiped having a thickness of 48 mm, a width of 320 mm, and a length of 400 mm is inserted into the phenol resin tubular molded body 4 as shown in FIG. The phenol resin tubular molded body 4 together with the core made core 7 was heat-treated at 1000 ° C. in an inert atmosphere and carbonized to obtain a glassy carbon tubular molded body 8. Glass-like carbon cylindrical molded body 8 obtained, it is ± 1.6 mm ones variation to the average value of the width of the parallel portion is 45 mm, the point of dimensional accuracy to be used as part of a semiconductor manufacturing apparatus chamber The dimensions were not satisfactory.

本発明の半導体製造装置チャンバー用ガラス状炭素製筒状体を製造するあたり、熱硬化性樹脂製円筒状成形体を加熱しつつ塑性変形して断面の形状がレーストラック形状をなす熱硬化性樹脂製筒状成形体を得る工程の一態様を示す説明図であって、その(a)は塑性変形前の状態を示し、その(b)は組成変形後の状態を示すものである。In manufacturing a glassy carbon cylindrical body for a semiconductor manufacturing apparatus chamber of the present invention, a thermosetting resin in which a cross-sectional shape forms a racetrack shape by plastic deformation while heating a cylindrical molded body made of a thermosetting resin. It is explanatory drawing which shows the one aspect | mode of the process of obtaining a cylindrical molded object, Comprising: The (a) shows the state before plastic deformation, The (b) shows the state after a composition deformation | transformation. 本発明に係る断面がレーストラック状をなす熱硬化性樹脂製筒状成形体の斜視図である。1 is a perspective view of a thermosetting resin tubular molded body having a racetrack cross section according to the present invention. 本発明に係る熱硬化性樹脂製筒状成形体から半導体製造装置チャンバー用ガラス状炭素製筒状体を得る炭素化工程の一態様を示す説明図であって、その(a)は炭素化処理前の状態を示し、その(b)は炭素化処理後の状態を示すものである。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing which shows the one aspect | mode of the carbonization process which obtains the glass-like carbon cylindrical body for semiconductor manufacturing apparatus chambers from the thermosetting resin cylindrical molded body which concerns on this invention, Comprising: (a) is carbonization process. The previous state is shown, and (b) shows the state after the carbonization treatment. 比較例を説明するための、熱硬化性樹脂製筒状成形体からガラス状炭素製筒状成形体を得る炭素化工程の一態様を示す説明図であって、その(a)は炭素化処理前の状態を示し、その(b)は炭素化処理後の状態を示すものである。It is explanatory drawing which shows the one aspect | mode of the carbonization process for obtaining a glass-like carbon cylindrical molded object from the thermosetting resin cylindrical molded object for demonstrating a comparative example, Comprising: (a) is carbonization process The previous state is shown, and (b) shows the state after the carbonization treatment.

1…熱硬化性樹脂製円筒状成形体
2…丸棒治具
3…熱硬化性樹脂製筒状成形体
4…フェノール樹脂製筒状成形体
5…フェノール樹脂製板状体(中子)
6…中子が取り外される前の、半導体製造装置チャンバー用ガラス状炭素製筒状体
7…黒鉛製中子
8…ガラス状炭素製筒状成形体
DESCRIPTION OF SYMBOLS 1 ... Thermosetting resin cylindrical molded body 2 ... Round bar jig 3 ... Thermosetting resin cylindrical molded body 4 ... Phenol resin cylindrical molded body 5 ... Phenol resin plate-shaped body (core)
6 ... Glassy carbon cylindrical body for semiconductor manufacturing apparatus chamber before removal of core 7 ... Graphite core 8 ... Glassy carbon cylindrical molded body

Claims (2)

熱硬化性樹脂を成形して熱硬化性樹脂製円筒状成形体を得る工程と、前記熱硬化性樹脂製円筒状成形体を加熱しつつ塑性変形して、軸心線方向と垂直な方向の断面の形状がレーストラック形状をなす熱硬化性樹脂製筒状成形体を得る塑性変形工程と、得られた前記熱硬化性樹脂製筒状成形体を炭素化してなる半導体製造装置チャンバー用ガラス状炭素製筒状体を得る炭素化工程とを備え、前記塑性変形工程において、前記熱硬化性樹脂製円筒状成形体のガラス転移点をTg[℃]としたとき、(Tg+5)≦T≦(Tg+100)の関係を満たす温度T[℃]で前記熱硬化性樹脂製円筒状成形体の塑性変形を行い、前記炭素化工程において、前記熱硬化性樹脂製筒状成形体の中空部に、該熱硬化性樹脂製筒状成形体と実質的に同じ材質の熱硬化性樹脂からなる中子を配して炭素化を行うことを特徴とする半導体製造装置チャンバー用ガラス状炭素製筒状体の製造方法。A step of forming a thermosetting resin cylindrical molded body by molding a thermosetting resin, and plastically deforming the thermosetting resin cylindrical molded body while heating, in a direction perpendicular to the axial direction A plastic deformation step for obtaining a thermosetting resin tubular molded body having a racetrack shape in cross section, and a glass shape for a semiconductor manufacturing apparatus chamber obtained by carbonizing the obtained thermosetting resin tubular molded body A carbonization step of obtaining a carbon cylindrical body, and in the plastic deformation step, when the glass transition point of the thermosetting resin cylindrical molded body is Tg [° C.], (Tg + 5) ≦ T ≦ ( Tg + 100) is subjected to plastic deformation at a temperature T [° C.] satisfying the relationship of Tg + 100), and in the carbonization step, the hollow portion of the thermosetting resin cylindrical molded body Thermosetting of substantially the same material as the thermosetting resin tubular molded body The method of manufacturing a semiconductor manufacturing device chamber for the glass-like carbon cylindrical body and performing carbonization by arranging a core made of RESIN. 請求項1記載の製造方法により製造された半導体製造装置チャンバー用ガラス状炭素製筒状体であって、ガラス状炭素からなり、軸心線方向と垂直な方向の断面の形状がレーストラック形状をなしていることを特徴とする半導体製造装置チャンバー用ガラス状炭素製筒状体。A glassy carbon cylindrical body for a semiconductor manufacturing apparatus chamber manufactured by the manufacturing method according to claim 1, which is made of glassy carbon, and a cross-sectional shape in a direction perpendicular to the axial direction is a racetrack shape. A glass-like carbon cylindrical body for a semiconductor manufacturing apparatus chamber.
JP2006304251A 2006-11-09 2006-11-09 Manufacturing method of glassy carbon cylindrical body for semiconductor manufacturing apparatus chamber and glassy carbon cylindrical body for semiconductor manufacturing apparatus chamber obtained by the manufacturing method Expired - Fee Related JP4527705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006304251A JP4527705B2 (en) 2006-11-09 2006-11-09 Manufacturing method of glassy carbon cylindrical body for semiconductor manufacturing apparatus chamber and glassy carbon cylindrical body for semiconductor manufacturing apparatus chamber obtained by the manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006304251A JP4527705B2 (en) 2006-11-09 2006-11-09 Manufacturing method of glassy carbon cylindrical body for semiconductor manufacturing apparatus chamber and glassy carbon cylindrical body for semiconductor manufacturing apparatus chamber obtained by the manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004087196A Division JP2005272204A (en) 2004-03-24 2004-03-24 Method of manufacturing glassy carbon-made profiled pipe and glassy carbon-made profiled pipe

Publications (2)

Publication Number Publication Date
JP2007131526A JP2007131526A (en) 2007-05-31
JP4527705B2 true JP4527705B2 (en) 2010-08-18

Family

ID=38153481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006304251A Expired - Fee Related JP4527705B2 (en) 2006-11-09 2006-11-09 Manufacturing method of glassy carbon cylindrical body for semiconductor manufacturing apparatus chamber and glassy carbon cylindrical body for semiconductor manufacturing apparatus chamber obtained by the manufacturing method

Country Status (1)

Country Link
JP (1) JP4527705B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11322428A (en) * 1998-03-18 1999-11-24 Kobe Steel Ltd Glassy carbon pipe and its production
JP2000313666A (en) * 1999-04-27 2000-11-14 Hitachi Chem Co Ltd Glass-form carbon cylinder, its production, chamber inner wall-protective material and plasma generator using the inner wall-protective material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11322428A (en) * 1998-03-18 1999-11-24 Kobe Steel Ltd Glassy carbon pipe and its production
JP2000313666A (en) * 1999-04-27 2000-11-14 Hitachi Chem Co Ltd Glass-form carbon cylinder, its production, chamber inner wall-protective material and plasma generator using the inner wall-protective material

Also Published As

Publication number Publication date
JP2007131526A (en) 2007-05-31

Similar Documents

Publication Publication Date Title
KR100659446B1 (en) Glass-like carbon deformed molded article, process for producing the same, and joint structure for jointing a connecting member to a glass-like carbon hollow molded article
JP4527705B2 (en) Manufacturing method of glassy carbon cylindrical body for semiconductor manufacturing apparatus chamber and glassy carbon cylindrical body for semiconductor manufacturing apparatus chamber obtained by the manufacturing method
JP2004352545A (en) Method for manufacturing vitreous carbon made pipe and vitreous carbon made pipe manufactured by the method
JP2005272204A (en) Method of manufacturing glassy carbon-made profiled pipe and glassy carbon-made profiled pipe
JP2007161544A (en) Method for manufacturing glassy carbon
JP6692314B2 (en) Method for manufacturing composite structure of CFRP member and metal member
JP2008037674A (en) Method of manufacturing vitreous carbon-made core tube
JP2006045011A (en) Glassy carbon-made component, and its production method
JP2006069819A (en) Bent pipe made from glassy carbon and its forming method
JP3836621B2 (en) Method for producing glassy carbon pipe
JP3863308B2 (en) Method for producing glassy carbon pipe
JP4813305B2 (en) Optical element manufacturing method
JP2003226576A (en) Method of manufacturing vitreous carbon cylinder
JP2001335366A (en) Glassy carbon tube precursor and manufacturing method for the same
JP4050891B2 (en) Method for producing glassy carbon pipe and core for producing glassy carbon pipe
JP4294081B2 (en) Method for joining steel members, method for strengthening joining force in joined bodies made of steel members, method for producing steel products, and method for producing die cast products
JP2011199116A (en) Manufacturing method of bonded magnet
JPS5952291B2 (en) Manufacturing method of polyamide resin roll
JP4171220B2 (en) Method for producing glassy carbon molded product
JPH0557394A (en) Manufacture of shell core
JPH04260667A (en) Production of carbon-fiber reinforced tubular carbon composite material
JP2001151574A (en) Method of producing glassy carbon pipe and glassy carbon pipe produced by the method
JP2968274B2 (en) Quartz glass tube decompression shaping method
JP2011025499A (en) Method of manufacturing resin molded body and insert core for molding
JP2000313666A (en) Glass-form carbon cylinder, its production, chamber inner wall-protective material and plasma generator using the inner wall-protective material

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100603

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140611

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees