JPS592379B2 - semiconductor memory - Google Patents

semiconductor memory

Info

Publication number
JPS592379B2
JPS592379B2 JP52030900A JP3090077A JPS592379B2 JP S592379 B2 JPS592379 B2 JP S592379B2 JP 52030900 A JP52030900 A JP 52030900A JP 3090077 A JP3090077 A JP 3090077A JP S592379 B2 JPS592379 B2 JP S592379B2
Authority
JP
Japan
Prior art keywords
semiconductor
region
impurity density
regions
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52030900A
Other languages
Japanese (ja)
Other versions
JPS53116084A (en
Inventor
潤一 西沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP52030900A priority Critical patent/JPS592379B2/en
Publication of JPS53116084A publication Critical patent/JPS53116084A/en
Publication of JPS592379B2 publication Critical patent/JPS592379B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、半導体メモリに関し、特に集積度が高く、書
き込み読み出し速度が速い半導体メモリに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor memory, and particularly to a semiconductor memory with a high degree of integration and a high read/write speed.

半導体と異なる物質、および異なる性質の半導体同志が
接触するとき両者の間に接触電位差が生じ、正孔または
伝導電子に対して電位障壁として働くことはよく知られ
ている。
It is well known that when a semiconductor and a different substance or semiconductors with different properties come into contact with each other, a contact potential difference is generated between the two, which acts as a potential barrier against holes or conduction electrons.

電位障壁によつてほぼ取り囲まれた領域を半導体中に形
成すると、この領域は電荷を蓄積する機能をもつ。
When a region substantially surrounded by a potential barrier is formed in a semiconductor, this region has the function of storing charge.

このようなセルを2つ電位障壁を介して接触し、2つの
セル間の電位関係ないしは両者間の電位障壁の高さを制
御してやれば電荷を2つのセル間でやりとりすることが
できメモリとして働かせることができる。本願発明者は
すでに、この種のメモリにおいて電位障壁を形成すべき
領域を移動する電荷と同一導電型領域、逆導電型領域ま
たは真性領域で形成し、電位障壁の実効的高さが2つの
セル間の電位で制御できる半導体メモリを提案した(特
願昭52−18465号、特願昭52−20653号)
If two such cells are brought into contact via a potential barrier and the potential relationship between the two cells or the height of the potential barrier between the two cells is controlled, charges can be exchanged between the two cells and the cell can function as a memory. be able to. The inventor of the present application has already proposed that in this type of memory, a region to form a potential barrier is formed of a region of the same conductivity type as the moving charges, a region of the opposite conductivity type, or an intrinsic region, and the effective height of the potential barrier is two cells. proposed a semiconductor memory that could be controlled by the potential between
.

電位障壁が逆導電型領域で与えられる場合は、この逆導
電型領域が2つのセル間でパンチスルーしかかつた状態
になるように諸パラメータを選んでいる。従つていずれ
の場合も電荷は殆んど電界によるドリフトで走行する。
さらに2つのセルを表面とほぼ垂直方向に配列して、バ
ルク移動度で電荷が移動するようにして動作速度と表面
利用率とを高めている。その構造例を第1図に示す。第
1図aは平面図であり、第1図bは第1図aのA一A’
線に沿つた断面図である。p*領域14にマトリックス
状にπ領域13が設けられており、縦の点線はn”埋め
込み層12を、横方向の一点鎖線は表面に設けられるワ
ード線1を示している。これらの図において、pf領域
14にマトリックス状に設けられたn−もしくはp一領
域の一つがそれぞれ1メモリセルに相当する。第3図b
でn領域13はpfn’接合の拡散電位で殆んど完全に
空乏層になつている。ビット線n*領域」2は図中垂直
方向に設けられた埋め込み層である。ワード線に書き込
み電圧たとえば10V程度の電圧を加えるとビツト線1
2から電子が注入されて表面近傍に電子が蓄積される。
(状態1がストアされる)ストア状態ではワード線の電
位を書き込み時電圧の半分程度に設定する。データを書
き込みたくない(或いは状態0を書き込む)メモリセル
はビツト線の電位をワード線と同程度に高くすればよい
。データの読み出しは、ワード線電位を設置電位程度に
下げればよい。ストアされていた電子がビツト線に流れ
る。p+n一接合の拡散電位などから電子は拡散だけで
なく、ドリフトによつても流れるから読み出し速度は速
い。書き込み時は、ビツト線前面の電位障壁を越えると
強い電界が如わつているから、書き込み速度は非常に速
い。しかも、半導体バルクの性質を使つているので、表
面伝導を用いたこれまでのメモリセルに比べて、書き込
み読み出し速度が速くなる。p領域104の不純物密度
やビツト線12同志の間隔は、ビツト線同志の間がわず
かな中性領域を残してほぼ空乏層になつて電子のやりと
りが起こらないように選定すればよい。第1図の構造は
、前述したように高速度化が容易である。しかし、ゲー
トp+領域14によつて囲まれたn一領域13の幅Wc
はゲートp+領域14が0バイアスで拡がる空乏層の厚
みの2倍以下にすることが多いので、n一領域13の不
純物密度の平方根の逆数にほぼ比例して大きくなり、集
積密度が低下してしまう。本発明は叙上の欠点を改善し
た半導体メモリを提供するもので、従来の低容量性を大
きく損じないで、高集積度を有することを可能にするも
のである。
When the potential barrier is provided by a region of opposite conductivity type, various parameters are selected such that this region of opposite conductivity type only punches through between two cells. Therefore, in either case, the charge travels mostly due to the drift caused by the electric field.
In addition, two cells are arranged in a direction substantially perpendicular to the surface to allow charge to move by bulk mobility, increasing operating speed and surface utilization. An example of its structure is shown in FIG. Figure 1a is a plan view, and Figure 1b is A-A' in Figure 1a.
It is a sectional view along a line. π regions 13 are provided in a matrix in the p* region 14, the vertical dotted lines indicate the n'' buried layer 12, and the horizontal dashed-dotted lines indicate the word lines 1 provided on the surface. , one of the n- or p-regions provided in a matrix in the pf region 14 corresponds to one memory cell.
The n region 13 almost completely becomes a depletion layer due to the diffusion potential of the pfn' junction. The bit line n* region 2 is a buried layer provided vertically in the figure. When a write voltage of about 10V is applied to the word line, bit line 1
Electrons are injected from 2 and accumulated near the surface.
In the store state (state 1 is stored), the potential of the word line is set to about half the write voltage. For memory cells to which it is not desired to write data (or to which state 0 is to be written), the potential of the bit line may be made as high as that of the word line. Data can be read by lowering the word line potential to about the set potential. The stored electrons flow into the bit line. Since electrons flow not only by diffusion but also by drift due to the diffusion potential of the p+n junction, the readout speed is fast. During writing, a strong electric field is generated across the potential barrier in front of the bit line, so the writing speed is extremely fast. Furthermore, since it uses the properties of a semiconductor bulk, the write and read speeds are faster than previous memory cells that use surface conduction. The impurity density of the p region 104 and the spacing between the bit lines 12 may be selected so that the gap between the bit lines becomes a depletion layer, leaving a small neutral region, so that no exchange of electrons occurs. The structure shown in FIG. 1 can easily increase the speed as described above. However, the width Wc of the n-region 13 surrounded by the gate p+ region 14
Since the thickness of the gate p+ region 14 is often made to be less than twice the thickness of the depletion layer that expands at 0 bias, it increases approximately in proportion to the reciprocal of the square root of the impurity density of the n- region 13, reducing the integration density. Put it away. The present invention provides a semiconductor memory that has improved the above-mentioned drawbacks, and enables it to have a high degree of integration without significantly impairing the conventional low capacitance.

本発明の要旨は、ゲートが形成される低不純物密度領域
に階段状もしくはなだらかな不純物密度分布をもたせ、
ゲートが形成される主表面側の不純物密度を比較的高く
して、ゲート間隔を狭くすると共に、ゲートの下には不
純物密度のより低い層もしくは真性半導体層を形成して
、ゲート周辺の容量を低下するものである。以下に図面
を用いて本発明を詳述する。
The gist of the present invention is to provide a step-like or gentle impurity density distribution in a low impurity density region where a gate is formed,
The impurity density on the main surface side where the gate is formed is made relatively high to narrow the gate spacing, and a layer with lower impurity density or an intrinsic semiconductor layer is formed under the gate to reduce the capacitance around the gate. It is something that decreases. The present invention will be explained in detail below using the drawings.

第2図は、本発明の一例であり、記憶セルを二次元的に
配置した場合の断面構造例を示す。
FIG. 2 is an example of the present invention, and shows an example of a cross-sectional structure when memory cells are arranged two-dimensionally.

p型基板104に埋め込まれたn+領域12と表面でM
IS構造を有した電極1がX−Yマトリツクスを形成す
る。書き込み、蓄積、読み出しは各電極1,12、場合
によれば4(またはp型領域14)の電圧制御によつて
行なわれる。相対的に高不純物密度の低不純物密度領域
13′の存在により拡散電位を高くできるので、蓄積時
のリークを少なくできると共に、より低不純物密度(ま
たは真性半導体)領域113の存在により容量を小さく
できるので、高速の書き込み、読み出しが可能となる。
さらに、記憶装置の集積度が向上できることが最も効果
的である。ゲート領域の構造は、シヨツトキ一構造、M
IS構造を用いることができ、第2図に示した構造に限
られるものではない。又、フローテイング・ゲートを設
けて、不揮発性メモリを形成することも勿論可能である
。相対的に高い不純物密度を有する低不純物密度領域1
3′は、1017c7rL−3以下の不純物密度を有し
、厚みは目的により適宜選ばれる。
M between the n+ region 12 embedded in the p-type substrate 104 and the surface
Electrodes 1 having an IS structure form an X-Y matrix. Writing, storage, and reading are performed by voltage control of each electrode 1, 12, and possibly 4 (or p-type region 14). Since the diffusion potential can be increased due to the presence of the low impurity density region 13' having a relatively high impurity density, leakage during accumulation can be reduced, and the capacitance can be reduced due to the presence of the lower impurity density (or intrinsic semiconductor) region 113. Therefore, high-speed writing and reading becomes possible.
Furthermore, it is most effective if the degree of integration of the storage device can be improved. The structure of the gate region is a shot key structure, M
IS structures can be used and are not limited to the structure shown in FIG. Furthermore, it is of course possible to form a nonvolatile memory by providing a floating gate. Low impurity density region 1 with relatively high impurity density
3' has an impurity density of 1017c7rL-3 or less, and the thickness is appropriately selected depending on the purpose.

より低密度の低不純物密度領域113の不純物密度は1
015cTrL−3以下が望ましい、チヤンネル幅WC
lゲートp+領域14の厚み及びn一領域13′、n−
(またはi)領域113の不純物密度、厚みは目的に応
じ適宜選ばれるが、例えばゲート4に電圧のかからない
状態(0バイアスまたはオープン)をオフ状態として用
いるノーマリ・オフ型では、ゲート接合の拡散電位でチ
ヤンネルに電位障壁が形成される如く、いいかえれば空
乏層がチヤンネル領域を綴じている如く、n一層13′
の不純物密度とチヤンネル幅Wcを選ぶことが望ましく
、またn′(または1)層113もすべて空乏化してい
ることが少数キヤリア蓄積効果を少なくする上でさらに
望ましい。ノーマリ・オン型では逆に、チヤンネルに電
荷中性近似領域が形成されていることが望ましく、各領
域の不純物密度・寸法が選ばれる。本発明によれば、n
一層13′の存在により、チヤンネル幅Wcを狭くでき
、集積回路化したときに集積密度を向上することができ
る。以上いくつかの具体例を説明したが、各領域の導電
型を逆にすることも可能である。
The impurity density of the lower impurity density region 113 is 1
Channel width WC, preferably 015cTrL-3 or less
Thickness of l-gate p+ region 14 and n-region 13', n-
(or i) The impurity density and thickness of the region 113 are selected appropriately depending on the purpose, but for example, in a normally-off type in which the state where no voltage is applied to the gate 4 (0 bias or open) is used as the off state, the diffusion potential of the gate junction As a potential barrier is formed in the channel, in other words, as if a depletion layer binds the channel region, the n layer 13'
It is desirable to select the impurity density and channel width Wc of , and it is even more desirable that the n' (or 1) layer 113 is also completely depleted in order to reduce the minority carrier accumulation effect. In the normally-on type, on the contrary, it is desirable that charge-neutral approximation regions are formed in the channel, and the impurity density and dimensions of each region are selected. According to the invention, n
Due to the presence of the layer 13', the channel width Wc can be narrowed, and the integration density can be improved when integrated circuits are formed. Although several specific examples have been described above, it is also possible to reverse the conductivity type of each region.

更に、半導体材料としてSiを例にとつたが、Ge,G
a,As等−族間化合物及びその混晶などが用いること
ができ、動作電圧が低いので、必ずしも単結晶である必
要はなく、多結晶、アモルフアス半導体が一部もしくは
全体を形成してもよい。製造方法も周知の結晶成長技術
、不純物拡散、合金、イオン注入等の不純物添加技術、
選択丁ンチ技術等を用いることができる。本発明による
半導体記憶装置は、低消費電力で、高速の書き込み、読
み出しができ、しかも高集積化が可能なので、RAM,
RWM,ROMl不揮発性メモリ等応用例は数知れない
ものがあり、工業的価値は極めて高いものである〇
Furthermore, although Si was taken as an example of a semiconductor material, Ge, G
A, As, etc., intergroup compounds and their mixed crystals can be used, and since the operating voltage is low, it does not necessarily have to be a single crystal, and a polycrystalline or amorphous semiconductor may form a part or the whole. . Manufacturing methods include well-known crystal growth technology, impurity diffusion, alloying, impurity addition technology such as ion implantation,
A selective punching technique or the like can be used. The semiconductor memory device according to the present invention has low power consumption, can perform high-speed writing and reading, and can be highly integrated.
There are countless applications such as RWM, ROM, nonvolatile memory, etc., and the industrial value is extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a及びbは本願発明者が提案した従来の半導体メ
モリでaは平面図、bはAOA−A′に沿つた断面図、
第2図は本発明の応用例である。
1A and 1B are a conventional semiconductor memory proposed by the inventor of the present application, in which a is a plan view, b is a cross-sectional view along AOA-A',
FIG. 2 shows an example of application of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体チップを用い、複数のワード線と複数のビッ
ト線とから成るメモリマトリックスの交点の少なくとも
一部にメモリセルを含み、前記メモリセルが、前記半導
体チップ中に形成された第1の導電型の高不純物密度を
有する半導体ビット領域と、前記半導体チップ表面部に
形成された半導体蓄積領域と、前記半導体ビット領域と
前記半導体蓄積領域との間に形成された不純物密度の異
なる少なく共2つ以上の高抵抗半導体領域、前記半導体
蓄積領域に近接して前記半導体チップ上に形成された、
前記半導体蓄積領域の電位を制御するための絶縁電極構
造と、前記2つ以上の高抵抗半導体領域に隣接して設け
られたゲート領域とを有し、ゲート領域の間隔が最も狭
い高抵抗半導体領域の不純物密度を他の高抵抗半導体領
域の不純物密度より高くなる如くしたことを特徴とする
半導体メモリ。
1 A semiconductor chip is used, and a memory matrix including a plurality of word lines and a plurality of bit lines includes memory cells at at least some of the intersections thereof, and the memory cells are of a first conductivity type formed in the semiconductor chip. a semiconductor bit region having a high impurity density, a semiconductor accumulation region formed on the surface portion of the semiconductor chip, and at least two or more semiconductor bit regions having different impurity densities formed between the semiconductor bit region and the semiconductor accumulation region. a high-resistance semiconductor region formed on the semiconductor chip in proximity to the semiconductor accumulation region;
A high-resistance semiconductor region having an insulated electrode structure for controlling the potential of the semiconductor storage region and a gate region provided adjacent to the two or more high-resistance semiconductor regions, the gate regions having the narrowest interval. 1. A semiconductor memory characterized in that the impurity density of the semiconductor region is higher than the impurity density of other high-resistance semiconductor regions.
JP52030900A 1977-03-19 1977-03-19 semiconductor memory Expired JPS592379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52030900A JPS592379B2 (en) 1977-03-19 1977-03-19 semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52030900A JPS592379B2 (en) 1977-03-19 1977-03-19 semiconductor memory

Related Child Applications (4)

Application Number Title Priority Date Filing Date
JP4092383A Division JPS58169974A (en) 1983-03-12 1983-03-12 Semiconductor device
JP58040922A Division JPS58169962A (en) 1983-03-12 1983-03-12 Semiconductor integrated circuit
JP58040920A Division JPH0638470B2 (en) 1983-03-12 1983-03-12 Semiconductor integrated circuit device and manufacturing method thereof
JP58040921A Division JPH0612802B2 (en) 1983-03-12 1983-03-12 Semiconductor integrated circuit device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS53116084A JPS53116084A (en) 1978-10-11
JPS592379B2 true JPS592379B2 (en) 1984-01-18

Family

ID=12316596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52030900A Expired JPS592379B2 (en) 1977-03-19 1977-03-19 semiconductor memory

Country Status (1)

Country Link
JP (1) JPS592379B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638470B2 (en) * 1983-03-12 1994-05-18 財団法人半導体研究振興会 Semiconductor integrated circuit device and manufacturing method thereof
JPS58169962A (en) * 1983-03-12 1983-10-06 Semiconductor Res Found Semiconductor integrated circuit

Also Published As

Publication number Publication date
JPS53116084A (en) 1978-10-11

Similar Documents

Publication Publication Date Title
US11910589B2 (en) Memory device comprising electrically floating body transistor
US5355330A (en) Capacitive memory having a PN junction writing and tunneling through an insulator of a charge holding electrode
EP0014388B1 (en) Semiconductor memory device
JP5851595B2 (en) Techniques for providing semiconductor memory devices
KR100887866B1 (en) Silicon on insulator read-write non-volatile memory comprising lateral thyristor and trapping layer
US4882707A (en) Non-volatile semi-conductor memory device with double gate structure
JP2009532905A (en) Nano Fin Tunneling Transistor
US5049956A (en) Memory cell structure of semiconductor memory device
CN101416288A (en) Grown nanofin transistors
US20060114722A1 (en) Nonvolatile memory device, and its manufacturing method
KR980006435A (en) Nonvolatile Semiconductor Memory
KR970018630A (en) Semiconductor Memory and Driving Method
US4156289A (en) Semiconductor memory
US20220068922A1 (en) Memory structure
JPS592379B2 (en) semiconductor memory
JPS5852348B2 (en) semiconductor memory
JPH0559585B2 (en)
JPS60194573A (en) Semiconductor memory device
JPS6227551B2 (en)
JP5218351B2 (en) Semiconductor memory device
JPS6286866A (en) Nonvolatile semiconductor memory
JPH0160951B2 (en)
JPS6158984B2 (en)
JPS59130474A (en) Non-volatile memory
JPH0642544B2 (en) Static induction nonvolatile semiconductor memory