JPH0559585B2 - - Google Patents

Info

Publication number
JPH0559585B2
JPH0559585B2 JP58040922A JP4092283A JPH0559585B2 JP H0559585 B2 JPH0559585 B2 JP H0559585B2 JP 58040922 A JP58040922 A JP 58040922A JP 4092283 A JP4092283 A JP 4092283A JP H0559585 B2 JPH0559585 B2 JP H0559585B2
Authority
JP
Japan
Prior art keywords
region
impurity density
conductivity type
base
channel region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58040922A
Other languages
Japanese (ja)
Other versions
JPS58169962A (en
Inventor
Junichi Nishizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP58040922A priority Critical patent/JPS58169962A/en
Publication of JPS58169962A publication Critical patent/JPS58169962A/en
Publication of JPH0559585B2 publication Critical patent/JPH0559585B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Memories (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体メモリに関し、特に集積度が
高く、書き込み読み出し速度が速いベースがパン
チスルーしかかつたバイポーラ・トランジスタメ
モリに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor memory, and more particularly to a bipolar transistor memory with a punch-through base that has a high degree of integration and a fast read/write speed.

〔技術の背景〕[Technology background]

電位障壁によつてほぼ取り囲まれた領域を半導
体中に形成すると、この領域は電荷を蓄積する機
能をもつ。このようなセルを2つの電位障壁を介
して接触し、2つのセル間の電位関係ないしは両
者間の電位障壁の高さを制御してやれば電荷を2
つのセル間でやりとりすることができメモリとし
て働かせることができる。
When a region substantially surrounded by a potential barrier is formed in a semiconductor, this region has the function of storing charge. If such cells are brought into contact via two potential barriers and the potential relationship between the two cells or the height of the potential barrier between them is controlled, the charge can be reduced by 2.
It can communicate between two cells and can function as memory.

本願発明者はすでに、この種のメモリにおいて
電位障壁を形成すべき領域を移動する電荷と同一
導電型領域、逆導電型領域または真性領域で形成
し、電位障壁の実効的高さが2つのセル間の電位
で制御できる半導体メモリを提案した(特公昭61
−58982号(特願昭52−18465号)、特公昭58−
52348号(特願昭52−20653号))。電位障壁が逆導
電型領域で与えられる場合は、この逆導電型領域
が2つのセル間でパンチスルーしかかつた状態に
なるように諸パラメータを選んでいる。従つてい
ずれの場合も電荷は殆ど電界によるドリフトで走
行する。さらに2つのセルを表面とほぼ垂直方向
に配列して、バルク移動度で電荷が移動するよう
にして動作速度と表面利用率とを高めている。そ
の構造例を第1図に示す。第1図aは平面図であ
り、第1図bは第1図aのA−A′線に沿つた断
面図である。p+領域14にマトリツクス状にn-
領域13が設けられており、縦の点線はn+埋め
込み層12を、横方向の一点鎖線は表面に設けら
れるワード線1を示している。これらの図におい
て、p+領域14にマトリツクス上に設けられた
n-もしくはp-領域の一つがそれぞれ1メモリセ
ルに相当する。第1図bでn領域13はp+n-
合の拡散電位で殆ど完全に空乏層になつている。
ビツト線n+領域12は図中垂直方向に設けられ
た埋め込み層である。ワード線に書き込み電圧た
とえば10V程度の電圧を加えるとビツト線12か
ら電子が注入されて表面近傍に電子が蓄積され
る。(状態1がストアされる)ストア状態ではワ
ード線の電位を書き込み時電圧の半分程度に設定
する。データを書き込みたくない(あるいは状態
0を書き込む)メモリセルはビツト線の電位をワ
ード線と同程度に高くすればよい。データの読み
出しは、ワード線電位を接地電位程度に下げれば
よい。ストアされていた電子がビツト線に流れ
る。p+n-接合の拡散電位などから電子は拡散だ
けでなく、ドリフトによつても流れるから読み出
し速度は速い。書き込み時は、ビツト線前面の電
位障壁を越えると強い電界が加わつているから、
書き込み速度は非常に速い。しかも、半導体バル
クの性質を使つているので、表面伝導を用いたこ
れまでのメモリセルに比べて、書き込み読み出し
速度が速くなる。p領域104の不純物密度やビ
ツト線12同志の間隔は、ビツト線12同志の間
がわずかな中性領域を残してほぼ空乏層になつて
電子のやりとりが起らないように選定すればよ
い。
The inventor of the present application has already proposed that in this type of memory, a region to form a potential barrier is formed of a region of the same conductivity type as the moving charges, a region of the opposite conductivity type, or an intrinsic region, and the effective height of the potential barrier is two cells. proposed a semiconductor memory that could be controlled by the potential between
−58982 (Special Application No. 18465), Special Publication No. 1846-
No. 52348 (Patent Application No. 52-20653)). When the potential barrier is provided by a region of opposite conductivity type, various parameters are selected such that this region of opposite conductivity type only punches through between two cells. Therefore, in either case, the charge travels mostly due to the drift caused by the electric field. In addition, two cells are arranged in a direction substantially perpendicular to the surface to allow charge to move by bulk mobility, increasing operating speed and surface utilization. An example of its structure is shown in FIG. FIG. 1a is a plan view, and FIG. 1b is a sectional view taken along line A-A' in FIG. 1a. n - in matrix form in p + area 14
A region 13 is provided, in which the vertical dotted line indicates the n + buried layer 12 and the horizontal dashed-dotted line indicates the word line 1 provided on the surface. In these figures, the p + region 14 has a
One of the n - or p - regions each corresponds to one memory cell. In FIG. 1b, the n-region 13 is almost completely depleted at the diffusion potential of the p + n - junction.
The bit line n + region 12 is a buried layer provided vertically in the figure. When a write voltage of, for example, about 10 V is applied to the word line, electrons are injected from the bit line 12 and accumulated near the surface. In the store state (state 1 is stored), the potential of the word line is set to about half the write voltage. For memory cells to which it is not desired to write data (or to which state 0 is to be written), the potential of the bit line may be made as high as that of the word line. Data can be read by lowering the word line potential to about the ground potential. The stored electrons flow into the bit line. The readout speed is fast because electrons flow not only by diffusion but also by drift due to the diffusion potential of the p + n -junction . During writing, a strong electric field is applied beyond the potential barrier in front of the bit line, so
Writing speed is very fast. Furthermore, since it uses the properties of a semiconductor bulk, the write and read speeds are faster than previous memory cells that use surface conduction. The impurity density of the p region 104 and the spacing between the bit lines 12 may be selected so that the space between the bit lines 12 becomes almost a depletion layer, leaving a small neutral region, so that no exchange of electrons occurs.

〔従来技術の問題点〕[Problems with conventional technology]

第1図の構造は、前述したように高速度化が容
易である。しかし、ゲートp+領域14によつて
囲まれたn-領域13の幅Wcはゲートp+領域14
から0バイアスで拡がる空乏層の厚みの2倍以下
にすることが多いので、n-領域13の不純物密
度の平方根の逆数にほぼ比例して大きくなり、集
積密度が低下してしまう。
The structure shown in FIG. 1 can easily increase the speed as described above. However, the width W c of the n - region 13 surrounded by the gate p + region 14 is
Since the thickness is often set to less than twice the thickness of the depletion layer that expands at 0 bias from 0 to 0, the thickness increases approximately in proportion to the reciprocal of the square root of the impurity density of the n - region 13, and the integration density decreases.

〔発明の目的〕[Purpose of the invention]

本発明は叙上の欠点を改善した半導体メモリを
提供するもので、従来の低容量性を大きく損じな
いで、高集積度を有することを可能にするもので
ある。
The present invention provides a semiconductor memory that has improved the above-mentioned drawbacks, and enables it to have a high degree of integration without significantly impairing the conventional low capacitance.

〔発明の概要〕[Summary of the invention]

本発明はもとの出願(特許第1225198号(特開
昭53−116084号公報、特公昭59−2379号公報))
の分割出願である。もとの出願では、ビツト線領
域とチヤンネル領域とが同導電型であるSIT型構
造についての権利を主張したが、本発明ではビツ
ト線領域とは反対導電型のベース領域がチヤンネ
ル領域中に存在するバイポーラトランジスタ構造
について提案する。
The present invention is based on the original application (Patent No. 1225198 (Japanese Unexamined Patent Publication No. 53-116084, Japanese Patent Publication No. 59-2379))
This is a divisional application. In the original application, the right was claimed for the SIT structure in which the bit line region and the channel region are of the same conductivity type, but in the present invention, the base region of the opposite conductivity type to the bit line region exists in the channel region. We propose a bipolar transistor structure.

本発明の要旨は、ベース電極取り出し領域(ゲ
ート領域)が形成される低不純物密度領域に階段
状もしくはなだらかな不純物密度分布をもたせ、
ベース電極取り出し領域(ゲート領域)が形成さ
れる主表面側の不純物密度を比較的高くして、ベ
ース電極取り出し領域(ゲート領域)間隔を狭く
すると共に、ベース電極取り出し領域(ゲート領
域)の下には不純物密度のより低い層もしくは真
性半導体層を形成して、ベース電極取り出し領域
(ゲート領域)周辺の容量を低下するものである。
p基板と、p基板の上部にn+埋め込み層によつ
て形成された複数のビツト線と、ビツト線の上部
のn-の第1のチヤンネル領域と、その上部のn-
の互いに独立した複数個の第2のチヤンネル領域
と、第2チヤンネル領域のそれぞれを挾むように
形成されたp+ベース電極取り出し領域と、p+
ース電極に接続されたパンチスルーしかかつたp
ベース領域と、第2のチヤンネル領域の上部の絶
縁物を介して電荷蓄積のための容量を構成すべく
形成された複数のワード線とを具備し、複数のビ
ツト線と複数のワード線とから成るメモリマトリ
ツクスの交点の少なく共一部がベースがパンチス
ルーしかかつたバイポーラトランジスタのメモリ
セルとなるものである。
The gist of the present invention is to provide a step-like or gentle impurity density distribution in a low impurity density region where a base electrode extraction region (gate region) is formed;
The impurity density on the main surface side where the base electrode extraction region (gate region) is formed is made relatively high, and the interval between the base electrode extraction regions (gate region) is narrowed. In this method, a layer with a lower impurity density or an intrinsic semiconductor layer is formed to reduce the capacitance around the base electrode extraction region (gate region).
A p-substrate, a plurality of bit lines formed by an n + buried layer on top of the p-substrate, an n- first channel region above the bit lines, and an n- first channel region above the bit lines .
a plurality of mutually independent second channel regions, a p + base electrode extraction region formed to sandwich each of the second channel regions, and a p + base electrode connected to the p + base electrode with only punch-through.
The channel includes a base region and a plurality of word lines formed to form a capacitor for charge storage through an insulator on the upper part of the second channel region, and includes a plurality of bit lines and a plurality of word lines. A memory cell of a bipolar transistor whose base is punch-through is formed in a few common parts of the memory matrix formed by the memory matrix.

〔発明の実施例〕[Embodiments of the invention]

以下に図面を用いて本発明を詳述する。 The present invention will be explained in detail below using the drawings.

第2図は、本発明の一例であり、記憶セルを二
次元的に配置した場合の断面構造例を示す。p型
基板104に埋め込まれたn+領域(ビツト線)
12と表面でMIS構造を有した電極(ワード線)
1がX−Yマトリツクスを形成する。ベースp領
域114は主動作領域でパンチスルーしかかつて
いる如く不純物密度、厚みが選ばれている。ユニ
ツトセルを構成しているバイポーラトランジスタ
のエミツタ及びコレクタ領域は低不純物密度領域
133の上部及びn+領域12であり交換可能で
ある。第2図aではチヤンネルの形成されるn型
低不純物密度領域は、pベース領域114をはさ
んで相対的に高不純物密度の第2のチヤンネル領
域133と低不純物密度(または真性半導体)の
第1のチヤンネル領域113からなつている。第
2図bでは、pベース領域114はn型で高不純
物密度の第2のチヤンネル領域133の内部に形
成され、その下にn型で低不純物密度の第1のチ
ヤンネル領域113が形成されている。この
BPTはベースがパンチスルーしかかつているの
でベースの電位障壁は静電誘導によつて制御さ
れ、SITと同様な利点をもつているが、ノーマ
リ・オフ型動作をする。SITとほぼ同様な動作機
構をもつが、SITとは異なり、n-層133の不純
物密度とは無関係に、pベース領域114の不純
物密度を選ぶことによりベース電極取り出し用
p+領域141の間隔Wcを狭くすることができる
ので、高集積密度化が可能である。第2図aは、
ベース電極取り出し用p+領域141が表面に形
成された場合で、第2図bはベース電極取り出し
用p+領域141がステツプ型に切り込まれた凹
部側壁に形成され、ベース電極4が凹部底面に形
成された絶縁物20の上に形成されている。第2
図bでは第2のチヤンネル領域133の内部にパ
ンチスルーしかかつたベースp領域114が形成
され、第2図aでは第1のチヤンネル領域113
と第2のチヤンネル領域133の境界部にパンチ
スルーしかかつたベースp領域114が形成され
ている。第2図aと第2図bとは互いに直交する
方向の断面図であり、第2図bでビツト線12が
1本しか示されていないが、断面に垂直方向の断
面図によればビツト線12は複数本となることは
明らかである。書き込み、蓄積、読み出しは各電
極1,12、場合によれば4(またはp型領域1
41)の電圧制御によつて行われる。相対的に高
不純物密度の低不純物密度領域133の存在によ
り拡散電位を高くできるので、蓄積時のリークを
少なくできると共に、より低不純物密度(または
真性半導体)領域113の存在により容量を小さ
くできるので、高速の書き込み、読み出しが可能
となる。さらに、記憶装置の集積度が向上できる
ことが最も効果的である。
FIG. 2 is an example of the present invention, and shows an example of a cross-sectional structure when memory cells are arranged two-dimensionally. N + region (bit line) embedded in p-type substrate 104
12 and an electrode with MIS structure on the surface (word line)
1 form an XY matrix. The impurity density and thickness of base p region 114 are selected so that there is only punch-through in the main operating region. The emitter and collector regions of the bipolar transistor constituting the unit cell are the upper part of the low impurity density region 133 and the n + region 12, and are interchangeable. In FIG. 2a, an n-type low impurity density region in which a channel is formed is sandwiched between a p base region 114 and a second channel region 133 having a relatively high impurity density and a second channel region 133 having a relatively high impurity density (or an intrinsic semiconductor). It consists of one channel area 113. In FIG. 2b, the p base region 114 is formed inside the second channel region 133 of n type and high impurity density, and the first channel region 113 of n type and low impurity density is formed thereunder. There is. this
Since BPT only has a punch-through base, the potential barrier at the base is controlled by electrostatic induction, and has similar advantages to SIT, but operates in a normally-off type. It has almost the same operating mechanism as SIT, but unlike SIT, the impurity density of the p base region 114 is selected regardless of the impurity density of the n - layer 133, so that the base electrode can be taken out.
Since the interval W c between the p + regions 141 can be narrowed, high integration density is possible. Figure 2 a is
FIG. 2b shows a case where the base electrode extraction p + area 141 is formed on the surface, and FIG. It is formed on the insulator 20 formed in the above. Second
In FIG. 2B, a punch-through base p region 114 is formed inside the second channel region 133, and in FIG.
A punch-through base p region 114 is formed at the boundary between the second channel region 133 and the second channel region 133 . 2a and 2b are cross-sectional views taken in directions orthogonal to each other, and although only one bit line 12 is shown in FIG. It is clear that there will be a plurality of lines 12. Writing, storage, and reading are carried out on each electrode 1, 12, possibly 4 (or p-type region 1).
41) by voltage control. Since the diffusion potential can be increased due to the presence of the low impurity density region 133 with a relatively high impurity density, leakage during accumulation can be reduced, and the capacitance can be reduced due to the presence of the low impurity density (or intrinsic semiconductor) region 113. , high-speed writing and reading become possible. Furthermore, it is most effective if the degree of integration of the storage device can be improved.

相対的に高い不純物密度を有する低不純物密度
領域133は、1017cm-3以下の不純物密度を有
し、厚みは目的により適宜選ばれる。より低密度
の低不純物密度領域113の不純物密度は1015cm
−3以下が望ましい。チヤンネル幅Wc,ベースp+
領域141の厚み及びn-領域133、n-(または
i)領域113の不純物密度、厚み及びベースp
領域114の不純物密度、厚みは目的に応じ適宜
選ばれるが、空乏層が第2のチヤンネル領域を閉
じている如く、n-層133の不純物密度及びp
領域114の不純物密度とチヤンネル幅Wcを選
ぶことが望ましく、またn-(またはi)層113
もすべて空乏化していることが少数キヤリア蓄積
効果を少なくする上でさらに望ましい。
The low impurity density region 133 having a relatively high impurity density has an impurity density of 10 17 cm -3 or less, and the thickness is appropriately selected depending on the purpose. The impurity density of the lower impurity density region 113 is 10 15 cm
-3 or less is desirable. Channel width W c , base p +
The thickness of the region 141 and the impurity density of the n - region 133, the n - (or i) region 113, and the base p
The impurity density and thickness of the region 114 are appropriately selected depending on the purpose, but the impurity density and p
It is desirable to select the impurity density and channel width W c of the region 114, and also to
It is further desirable that all of the carriers be depleted in order to reduce the minority carrier accumulation effect.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、pベース領域114の存在に
より、チヤンネル幅Wcを狭くでき、集積回路化
したときに集積密度を向上することができる。
According to the present invention, due to the presence of the p base region 114, the channel width W c can be narrowed, and the integration density can be improved when integrated circuits are formed.

本発明によれば、n-層113を低不純物密度
として、n-層133を高不純物密度とすること
ができるので、ベース及びベース電極取り出し領
域の接合容量は小さくできるので、高速の書き込
み、読み出しができる。本発明によればn-層1
33の不純物密度を高くでき、pベース層114
との拡散電位を高くできるので、蓄積時のリーク
を少なくでき、メモリーの保持時間が長くなる。
According to the present invention, since the n - layer 113 can be made to have a low impurity density and the n - layer 133 can be made to have a high impurity density, the junction capacitance of the base and the base electrode extraction region can be made small, so that high-speed writing and reading can be achieved. I can do it. According to the invention n -layer 1
The impurity density of 33 can be increased, and the p base layer 114
Since the diffusion potential can be increased, leakage during storage can be reduced, and memory retention time can be extended.

以上いくつかの具体例を説明したが、各領域の
導電型を逆にすることも可能である。更に、半導
体材料としてSiを例にとつたが、Ge,GaAsなど
−族間化合物及びその混晶などが用いること
ができ、動作電圧が低いので、必ずしも単結晶で
ある必要はなく、多結晶、アモルフアス半導体が
一部もしくは全体を形成してもよい。製造方法も
周知の結晶成長技術、不純物拡散、合金、イオン
注入等の不純物添加技術、選択エツチ技術等を用
いることができる。
Although several specific examples have been described above, it is also possible to reverse the conductivity type of each region. Furthermore, although Si is taken as an example as a semiconductor material, intergroup compounds such as Ge and GaAs and their mixed crystals can also be used, and their operating voltages are low, so they do not necessarily have to be single crystals, but polycrystals, polycrystals, etc. Part or all of the amorphous semiconductor may be formed. As for the manufacturing method, well-known crystal growth techniques, impurity diffusion, alloying, impurity addition techniques such as ion implantation, selective etching techniques, etc. can be used.

本発明による半導体記憶装置は、低消費電力
で、高速の書き込み、読み出しができ、しかも高
集積化が可能なので、RAM,RWM,POM、不
揮発性メモリ等応用例は数知れないものがあり、
工業的価値は極めて高いものである。
The semiconductor memory device according to the present invention has low power consumption, high-speed writing and reading, and can be highly integrated, so it has countless applications such as RAM, RWM, POM, and non-volatile memory.
Its industrial value is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a及びbは本願発明者が提案した従来の
半導体メモリでaは平面図、bはA−A′に沿つ
た断面図、第2図は本発明の応用例である。 1……ワード線、4……ベース電極、12……
ビツト線、20,21……絶縁物、113……第
1のチヤンネル領域、114……ベース領域、1
31……第2のチヤンネル領域、141……ベー
ス電極取り出し領域、104……基板。
1A and 1B are a conventional semiconductor memory proposed by the inventor of the present invention, in which a is a plan view, b is a sectional view taken along line A-A', and FIG. 2 is an application example of the present invention. 1... Word line, 4... Base electrode, 12...
Bit line, 20, 21... Insulator, 113... First channel region, 114... Base region, 1
31...Second channel region, 141...Base electrode extraction region, 104...Substrate.

Claims (1)

【特許請求の範囲】[Claims] 1 第1導電型の半導体基板104と、該半導体
基板の上部に形成された該第1導電型とは反対導
電型である第2導電型高不純物密度の複数のビツ
ト線12と、該ビツト線の上部に形成された第2
導電型低不純物密度の第1のチヤンネル領域11
3と、該第1のチヤンネル領域の上部に形成され
た第2導電型で、該第1のチヤンネル領域よりも
高不純物密度で互いに独立した複数個の第2のチ
ヤンネル領域133と、該互いに独立した複数個
の第2のチヤンネル領域のそれぞれを挾むように
形成された第1導電型高不純物密度のベース電極
取り出し領域141と、該ベース電極取り出し領
域および該第2のチヤンネル領域に隣接して形成
された第1導電型のベース領域114と、前記第
2のチヤンネル領域の上部に形成された絶縁物2
1と、該絶縁物の上部に形成された複数のワード
線1とから構成される半導体メモリにおいて、前
記ベース領域が、前記ベース領域の上に存在する
前記第1のチヤンネル領域および前記ベース領域
の下に存在する前記第1のチヤンネル領域もしく
は前記第2のチヤンネル領域との拡散電位でパン
チスルーしかけていることを特徴とする半導体集
積回路。
1 A semiconductor substrate 104 of a first conductivity type, a plurality of bit lines 12 of a second conductivity type with high impurity density and of a conductivity type opposite to the first conductivity type formed on the upper part of the semiconductor substrate, and the bit lines 104 of a first conductivity type. the second formed on the top of
Conductive type low impurity density first channel region 11
3, a plurality of mutually independent second channel regions 133 of a second conductivity type formed above the first channel region and having a higher impurity density than the first channel region; A first conductivity type high impurity density base electrode extraction region 141 is formed to sandwich each of the plurality of second channel regions, and a base electrode extraction region 141 is formed adjacent to the base electrode extraction region and the second channel region. a base region 114 of the first conductivity type, and an insulator 2 formed on the top of the second channel region.
1 and a plurality of word lines 1 formed on top of the insulator, the base region includes the first channel region existing on the base region and a plurality of word lines 1 formed on the insulator. A semiconductor integrated circuit, characterized in that the semiconductor integrated circuit is about to punch through due to a diffusion potential with the first channel region or the second channel region existing below.
JP58040922A 1983-03-12 1983-03-12 Semiconductor integrated circuit Granted JPS58169962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58040922A JPS58169962A (en) 1983-03-12 1983-03-12 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58040922A JPS58169962A (en) 1983-03-12 1983-03-12 Semiconductor integrated circuit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP52030900A Division JPS592379B2 (en) 1977-03-19 1977-03-19 semiconductor memory

Publications (2)

Publication Number Publication Date
JPS58169962A JPS58169962A (en) 1983-10-06
JPH0559585B2 true JPH0559585B2 (en) 1993-08-31

Family

ID=12593986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58040922A Granted JPS58169962A (en) 1983-03-12 1983-03-12 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS58169962A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53116084A (en) * 1977-03-19 1978-10-11 Handotai Kenkyu Shinkokai Semiconductor ic and method of producing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53116084A (en) * 1977-03-19 1978-10-11 Handotai Kenkyu Shinkokai Semiconductor ic and method of producing same

Also Published As

Publication number Publication date
JPS58169962A (en) 1983-10-06

Similar Documents

Publication Publication Date Title
US10461083B2 (en) Memory device comprising electrically floating body transistor
US4298962A (en) Memory
KR100887866B1 (en) Silicon on insulator read-write non-volatile memory comprising lateral thyristor and trapping layer
US7355246B2 (en) Memory cell without halo implant
US5355330A (en) Capacitive memory having a PN junction writing and tunneling through an insulator of a charge holding electrode
US4994999A (en) High-speed and high-density semiconductor memory
US4284997A (en) Static induction transistor and its applied devices
US4163243A (en) One-transistor memory cell with enhanced capacitance
US5808328A (en) High-speed and high-density semiconductor memory
US5008723A (en) MOS thin film transistor
JP2009532905A (en) Nano Fin Tunneling Transistor
US3893146A (en) Semiconductor capacitor structure and memory cell, and method of making
US4977436A (en) High density DRAM
US4135289A (en) Method for producing a buried junction memory device
US4156289A (en) Semiconductor memory
CN107958907B (en) Semi-floating gate memory device with U-shaped groove and manufacturing method thereof
US5010379A (en) Semiconductor memory device with two storage nodes
JPS5833867A (en) Dynamic memory cell
US4471368A (en) Dynamic RAM memory and vertical charge coupled dynamic storage cell therefor
US5347153A (en) Short channel transistors
JPH0559585B2 (en)
EP0266572A1 (en) Semiconductor memory device having a plurality of memory cells of single transistor type
JPS61229352A (en) Ic type dynamic memory and manufacture thereof
US4152779A (en) MOS ram cell having improved refresh time
JPS592379B2 (en) semiconductor memory