JPS5923419B2 - mass spectrometer - Google Patents

mass spectrometer

Info

Publication number
JPS5923419B2
JPS5923419B2 JP53123140A JP12314078A JPS5923419B2 JP S5923419 B2 JPS5923419 B2 JP S5923419B2 JP 53123140 A JP53123140 A JP 53123140A JP 12314078 A JP12314078 A JP 12314078A JP S5923419 B2 JPS5923419 B2 JP S5923419B2
Authority
JP
Japan
Prior art keywords
spot
slit
mass
measurement chamber
connection port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53123140A
Other languages
Japanese (ja)
Other versions
JPS5550563A (en
Inventor
修 塚越
宗治 小宮
徹 佐竹
昭 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP53123140A priority Critical patent/JPS5923419B2/en
Publication of JPS5550563A publication Critical patent/JPS5550563A/en
Publication of JPS5923419B2 publication Critical patent/JPS5923419B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Electron Tubes For Measurement (AREA)

Description

【発明の詳細な説明】 本発明は、イオン、マイクロ、プローブ式の質量分析装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ion, micro, or probe type mass spectrometer.

従来この種装置として、イオン源から導出される一次イ
オンビームを、立体集束型の質量分離器で質量分離して
その前方の測定室との接続口に第1スポットを生じさせ
をこ後、次で該測定室内の縮少系で縮少してその前方の
試料の表面に最終スポットを生じさせ、これに伴い該表
面に生ずる二次イオンをその前方の質量分析計に導かせ
るようにし、かくてその分析によれば該試料中の元素濃
度分布が知られるようにした式のものは提案されたが、
この場合、該第1スポットは該イオン源から出発するイ
オンのエネルギの拡がり、或は該質量分離器の収差その
他によればだ円形に大きく拡がり勝ちであり、かくて最
終スポットを所定の小さな円形に得難く更に縮少系につ
いてはその縮少率を増大すべく相当の長手とするを要す
る等の不都合を伴う。
Conventionally, in this type of device, the primary ion beam derived from the ion source is mass-separated using a three-dimensional focusing type mass separator, and a first spot is created at the connection port with the measurement chamber in front of the primary ion beam. is reduced in a reduced system in the measurement chamber to produce a final spot on the surface of the sample in front of it, and the secondary ions generated on the surface are guided to the mass spectrometer in front of it, thus According to the analysis, a formula was proposed that allowed the element concentration distribution in the sample to be known;
In this case, the first spot tends to expand into an oval shape depending on the energy spread of the ions departing from the ion source, the aberration of the mass separator, etc., and thus the final spot is shaped into a predetermined small circular shape. Further, in the case of a reduced system, it is necessary to increase the length considerably in order to increase the reduction rate.

さらに、この場合、該第1スポットの実際の位置を検知
する手段がないので、該第1スポットを正確に該質量分
離器と該測定室との接続口に生じさせるように調整する
のが面倒である不都合を伴う。本発明はかかる不都合の
ない装置を得ることをその目的としたもので、イオン源
から導出される一次イオンビームを、立体集束式の質量
分離器で質量分離してその前方の測定室との接続口に第
1スポットを生じさせた後、次でこれを該測定室内の縮
少系で縮少してその前方の試料の表面に最終スポットを
生じさせ、これに伴い該表面に生ずる二次イオンをその
前方の質量分析計に導かせる式のものにおいて、該接続
口にスリット板を設け、これに該第1スポットの形成個
所に位置して該第1スポットに比し小径の円形のスリッ
トを備え、該スリットの外周にビームセンサを配設し、
該ビームセンサの出力により、該質量分離器に備えられ
たビーム偏向用の電磁石の励磁電流を制御するようにし
たことを特徴とする。本発明実施の1例を別紙図面に付
説明する。
Furthermore, in this case, since there is no means to detect the actual position of the first spot, it is troublesome to adjust the first spot so that it is accurately located at the connection port between the mass separator and the measurement chamber. It comes with certain inconveniences. The purpose of the present invention is to obtain an apparatus free from such inconveniences, and the primary ion beam derived from the ion source is mass-separated using a three-dimensional focusing type mass separator and then connected to a measurement chamber in front of the primary ion beam. After creating a first spot at the mouth, this is then reduced by a reduction system in the measuring chamber to create a final spot on the surface of the sample in front of it, thereby reducing the secondary ions generated on the surface. A slit plate is provided at the connection port, and a circular slit with a smaller diameter than the first spot is provided at the location where the first spot is formed. , a beam sensor is arranged around the outer periphery of the slit,
The present invention is characterized in that the excitation current of an electromagnet for beam deflection provided in the mass separator is controlled by the output of the beam sensor. An example of implementing the present invention will be explained with reference to the attached drawings.

図面で1はデユオプラズマトロンその他のイオン源を示
し、該イオン源1から導出されるアルゴンイオンその他
の一次イオンビーム2をその前方の立体集束型の質量分
離器3により質量分離してその前方の測定室4との接続
口5に第1スポツト6を生じさせた後、次でこれを該測
定室4内の縮少系7で縮少してその前方の試料8の表面
に最終スポツト9を生じさせ、これに伴い該表面に生ず
る二次イオン10をその前方の質量分析計11に導かせ
るようにした。該縮少系7は、例えば図示のように第1
縮少レンズ7aと第2縮少レンズ7bとその中間のスリ
ツト7cとで構成される。該分離器3内は例えばターボ
モレキユラ型のポンプ12により排気されると共に該測
定室4内は例えばスパツタイオン型のポンプ13により
排気されるものとする。以上は従来のものと特に異らな
いが本発明によれば前記した接続口5にスリツト板14
を固設し、これに該第1スポツト6の形成個所に位置し
て該第1スポツト6に比し小径の円形のスリツト15を
備える。
In the drawing, reference numeral 1 indicates an ion source such as a duoplasmatron, and a primary ion beam 2 such as argon ions derived from the ion source 1 is mass-separated by a three-dimensional focusing type mass separator 3 in front of the ion source. After producing a first spot 6 at the connection port 5 with the measurement chamber 4, this is then reduced by a reduction system 7 in the measurement chamber 4 to produce a final spot 9 on the surface of the sample 8 in front of it. As a result, secondary ions 10 generated on the surface are guided to a mass spectrometer 11 in front of the secondary ions 10. The reduced system 7 includes, for example, the first
It is composed of a reduction lens 7a, a second reduction lens 7b, and a slit 7c in between. The inside of the separator 3 is evacuated by, for example, a turbo molecular type pump 12, and the inside of the measurement chamber 4 is evacuated by, for example, a sputter ion type pump 13. Although the above is not particularly different from the conventional one, according to the present invention, a slit plate 14 is provided at the connection port 5 described above.
A circular slit 15 having a smaller diameter than the first spot 6 is provided at the location where the first spot 6 is formed.

該スリツト15の径は例えば300ミクロンとし、かく
て該第1スポツト6は該スリツト15によれば300ミ
クロンの径の円形のスポツトとして補正されるから、次
でこれを縮少系7で例えば1/300に縮少し、かくて
最終スポツト9は1ミクロンの径の円形のスポツトに得
れる。更にこのスリツト15は例えばアルゴンガスに対
するコンダクタンスが約5α/Secであるので、イオ
ン源1側を例えば10−5トールに保つことにより測定
室4側を例えば10−0トールに保つことが可能となり
、かくて試料8は超高真空内に保たれて炭化水素等によ
る汚染を無くし、炭素や水素等の微量分析が可能となる
。第1スポツト6は常にスリツト15上に形成さるべき
もので、これを行わせるべく、該スリツト15の外周に
例えば第゛2図及び第3図に明示するようにビームセン
サ16の4個を配設する。かくて、例えば第1スポツト
6が左右の何れかに偏位したときは、左右のセンサ16
,16に得られるイオン電流に差異を生ずるから、その
差の電流を検出して、サーボモータその他によりビーム
偏向用の電磁石17の励磁電流を制御し、かくてこれを
補正するものとし、更にそれが前後に偏位した場合につ
いても略同様とする。図面で18は該センサ16の上側
のサブレツサを示す。このように本発明によるときは質
量分離器と測定室との接続口にスリツト板を設けてこれ
に第1スポツトの形成個所に位置して該スポツトに比し
小径の円形のスリツトを備えるもので、第1スポツトが
多少とも大径のだ円形となるような場合においてもこれ
を該スリツトで補正して所定の小さな円形に得ることが
出来、かくてこれを縮少系で縮少して最終スポツトを所
定の寸法及び形状のものに簡単に得ることが可能であり
、縮少系を長手とする等の不都合を無くし得られ、更に
該スリツトはイオン源側からのアルゴンガスその他のガ
スの流入を大きく制限して測定室内を比較的高い真空度
、即ち超高真空とすることが可能であり、かくて従来不
可能とされた水素や炭素等の分析を可能にする等の効果
を有する。
The diameter of the slit 15 is, for example, 300 microns, and the first spot 6 is corrected as a circular spot with a diameter of 300 microns according to the slit 15. Next, the first spot 6 is corrected as a circular spot with a diameter of 300 microns by the reduction system 7, for example. /300, so that the final spot 9 is obtained as a circular spot with a diameter of 1 micron. Furthermore, since the slit 15 has a conductance of, for example, about 5α/Sec with respect to argon gas, by maintaining the ion source 1 side at, for example, 10 −5 Torr, it becomes possible to maintain the measurement chamber 4 side at, for example, 10 −0 Torr. In this way, the sample 8 is kept in an ultra-high vacuum to eliminate contamination with hydrocarbons and the like, making it possible to analyze trace amounts of carbon, hydrogen, and the like. The first spot 6 should always be formed on the slit 15, and in order to do this, four beam sensors 16 are arranged around the outer circumference of the slit 15, as shown in FIGS. 2 and 3, for example. Set up Thus, for example, when the first spot 6 deviates to the left or right, the left and right sensors 16
, 16, the difference in current is detected and the excitation current of the beam deflecting electromagnet 17 is controlled by a servo motor or the like to correct this. The same applies to the case where is shifted back and forth. In the drawing, reference numeral 18 indicates the upper sub-dresser of the sensor 16. As described above, according to the present invention, a slit plate is provided at the connection port between the mass separator and the measurement chamber, and this plate is provided with a circular slit located at the location where the first spot is formed and having a smaller diameter than the spot. Even if the first spot is an oval with a somewhat large diameter, it can be corrected with the slit to obtain a predetermined small circle, and this can be reduced using the reduction system to form the final spot. The slit can be easily formed into a predetermined size and shape, eliminating the inconvenience of making the reduced system long, and furthermore, the slit prevents the inflow of argon gas and other gases from the ion source side. It is possible to achieve a relatively high degree of vacuum in the measurement chamber, that is, an ultra-high vacuum, with large restrictions, and this has the effect of making it possible to analyze hydrogen, carbon, etc., which was previously impossible.

更に、本発明によるときはスリツトの外周にビームセン
サを配設し、該ビームセンサの出力により、質量分離器
に備えられたビーム偏向用の電磁石の励磁電流を制御す
るようにしたので、第1スポツトを自動的に且つ正確に
該質量分離器と測定室との接続口に生じさせることがで
き、前記従来装置のように第1スポツトの位置調整が面
倒になることはない。
Furthermore, according to the present invention, a beam sensor is disposed around the slit, and the output of the beam sensor controls the excitation current of the beam deflection electromagnet provided in the mass separator. A spot can be automatically and accurately generated at the connection port between the mass separator and the measurement chamber, and there is no trouble in adjusting the position of the first spot unlike in the conventional device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の1例の系統線図、第2図はその要
部の拡大した截断側面図、第3図はその一部を截除した
平面図である。 1・・・イオン源、2・・・一次イオンビーム、3・・
・質量分離器、4・・・測定室、5・・・接続口、6・
・・第1スポツト、7・・・縮少系、8・・・試料、9
・・・最終スポツト、10・・・二次イオンビーム、1
1・・・質量分析計、14・・・スリツト板、15・・
・スリツト、16・・・ビームセンサ、17・・・電磁
石。
FIG. 1 is a system diagram of an example of the apparatus of the present invention, FIG. 2 is an enlarged cross-sectional side view of the main part thereof, and FIG. 3 is a partially cut-away plan view thereof. 1...Ion source, 2...Primary ion beam, 3...
・Mass separator, 4...Measurement chamber, 5...Connection port, 6.
...1st spot, 7...reduced system, 8...sample, 9
...Final spot, 10...Secondary ion beam, 1
1...Mass spectrometer, 14...Slit plate, 15...
- Slit, 16...beam sensor, 17...electromagnet.

Claims (1)

【特許請求の範囲】[Claims] 1 イオン源から導出される一次イオンビームを、立体
集束式の質量分離器で質量分離してその前方の真空雰囲
気の測定室との接続口に第1スポットを生じさせた後、
次でこれを該測定室内の縮少系で縮少してその前方の試
料の表面に最終スポットを生じさせ、これに伴ない該表
面に生ずる二次イオンをその前方の質量分析計に導かせ
る式のものにおいて、該接続口にスリット板を設け、こ
れに該第1スポットの形成個所に位置して該第1スポッ
トに比し小径の円形のスリットを備え、該スリットの外
周にビームセンサを配置し、該ビームセンサの出力によ
り、該質量分離器に備えられたビーム偏向用の電磁石の
励磁電流を制御するようにしたことを特徴とする質量分
析装置。
1. After mass-separating the primary ion beam derived from the ion source using a three-dimensional focusing type mass separator and creating a first spot at the connection port with the vacuum atmosphere measurement chamber in front of it,
Next, this is reduced in a reduction system in the measurement chamber to create a final spot on the surface of the sample in front of it, and the secondary ions generated on the surface are guided to the mass spectrometer in front of it. A slit plate is provided at the connection port, a circular slit is located at the location where the first spot is formed and has a smaller diameter than the first spot, and a beam sensor is arranged around the outer periphery of the slit. A mass spectrometer characterized in that the excitation current of a beam deflection electromagnet provided in the mass separator is controlled by the output of the beam sensor.
JP53123140A 1978-10-07 1978-10-07 mass spectrometer Expired JPS5923419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53123140A JPS5923419B2 (en) 1978-10-07 1978-10-07 mass spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53123140A JPS5923419B2 (en) 1978-10-07 1978-10-07 mass spectrometer

Publications (2)

Publication Number Publication Date
JPS5550563A JPS5550563A (en) 1980-04-12
JPS5923419B2 true JPS5923419B2 (en) 1984-06-01

Family

ID=14853169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53123140A Expired JPS5923419B2 (en) 1978-10-07 1978-10-07 mass spectrometer

Country Status (1)

Country Link
JP (1) JPS5923419B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60140355U (en) * 1984-02-28 1985-09-17 日本電子株式会社 mass spectrometer
JPS60140356U (en) * 1984-02-28 1985-09-17 日本電子株式会社 mass spectrometer

Also Published As

Publication number Publication date
JPS5550563A (en) 1980-04-12

Similar Documents

Publication Publication Date Title
US6690022B2 (en) Ion beam incidence angle and beam divergence monitor
US6531697B1 (en) Method and apparatus for scanning transmission electron microscopy
US20060076489A1 (en) Charged particle beam apparatus
US5889281A (en) Method for linearization of ion currents in a quadrupole mass analyzer
JP5415083B2 (en) Ion beam angle measurement system and method using various angle slot arrays for ion implantation systems
US7550740B2 (en) Focused ION beam apparatus
US4101772A (en) Ion-beam etching method and an apparatus therefor
JPS5923419B2 (en) mass spectrometer
CA1219087A (en) Vacuum gauge
US3832561A (en) Method and apparatus for electron beam alignment with a substrate by schottky barrier contacts
JP2842083B2 (en) Sample holder, sample processing observation system using the same, sample observation method, transmission electron microscope, and ion beam device
JPH0511643Y2 (en)
JP3847458B2 (en) Small magnetic field deflection type mass spectrometer tube and manufacturing method thereof
JP2607573B2 (en) Ion micro analyzer
JPH09257445A (en) Measuring method and surface shape by using focused ion beam apparatus and focused ion beam apparatus
JP2000329716A (en) Auger electron spectral apparatus and analytical method for depth direction
JP2554129Y2 (en) Faraday cup device with beam finder
RU1685172C (en) Method of determining distribution of density of ion beam flux
JPS5933222B2 (en) gasbunsexouchi
JPS5842934B2 (en) Method for measuring the angular distribution of emitted electron flow in an electron gun
JPH06101040A (en) Ion implanter
JPS63119151A (en) Ion implanting method
JPH0518842Y2 (en)
JP2867410B2 (en) Small size measuring instrument
JP2022512113A (en) Methods and devices for controlling the distance between the sample and the aperture