JP3847458B2 - Small magnetic field deflection type mass spectrometer tube and manufacturing method thereof - Google Patents

Small magnetic field deflection type mass spectrometer tube and manufacturing method thereof Download PDF

Info

Publication number
JP3847458B2
JP3847458B2 JP17177198A JP17177198A JP3847458B2 JP 3847458 B2 JP3847458 B2 JP 3847458B2 JP 17177198 A JP17177198 A JP 17177198A JP 17177198 A JP17177198 A JP 17177198A JP 3847458 B2 JP3847458 B2 JP 3847458B2
Authority
JP
Japan
Prior art keywords
magnetic field
ion
casing
field deflection
detection chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17177198A
Other languages
Japanese (ja)
Other versions
JP2000011946A (en
JP2000011946A5 (en
Inventor
直樹 高橋
俊雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP17177198A priority Critical patent/JP3847458B2/en
Publication of JP2000011946A publication Critical patent/JP2000011946A/en
Publication of JP2000011946A5 publication Critical patent/JP2000011946A5/ja
Application granted granted Critical
Publication of JP3847458B2 publication Critical patent/JP3847458B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、漏洩検知装置等に使用される小型の磁場偏向型質量分析管及びその製作方法に関する。
【0002】
【従来の技術】
従来、中空の漏洩検知対象物の内部を真空に排気し、該対象物の周面にヘリウムガスなどのプローブガスを吹き付け、該対象物に漏れが存在した場合、ヘリウムガス等の漏洩ガスが中空内部へ侵入するのでこれを該対象物の中空部に接続した漏洩検知装置において検出し、漏洩の存在を検知することが行われている。
【0003】
この漏洩検知装置は、該対象物からの漏洩ガスを分析するために、図1及び図2に示すような構成の小型の磁場偏向型質量分析管aを備えており、その構成を説明すると次の通りである。該質量分析管aの小型のケーシングb内には、該対象物の内部から導入されるプローブガス等のガス原子やガス分子をイオン化するためのグリッド(エレクトロンコレクター)cと熱電子放出フィラメントdからなるイオン化手段と、そのイオンを引き出す引き出し電極eとを備えたイオン化室f、及び、引き出されたイオン中からケーシング外部の永久磁石からなる磁場偏向型分析器gにより選別された特定のイオンの量を検出するイオンコレクターhとを備えたイオン検出室iが設けられ、該対象物の内部に漏れたガスがイオン化室fに侵入すると、熱電子放出フィラメントdからの熱電子の衝撃によりガス分子等がイオン化されてイオン検出室iへ引き出し電極eにより引き出される。そして、磁場偏向型分析器gがr=(1.44×10-4√Mu×V)/Bの式(r:回転半径、Mu:質量数、B:磁束密度)に基づき特定のイオンを選別し、選別されたイオンがコレクタースリットjを介してイオンコレクターhに入射する。該イオンコレクターhに入射したイオン量は、イオン電流測定器kにより測定される。該グリッドcと該フィラメントdとの間の電圧は電圧調整器lにより調整され、該グリッドcの加速電圧はイオン加速電源mにより調整され、この電圧調整によりイオンコレクターhに到達するイオンの種類を変化させることができ、漏洩ガスの組成を分析することもできる。nはフィラメント電源である。
【0004】
該ケーシングbは、図2に示すように、イオン源取付フランジoとこれを取り付けたイオン源パイプp、中間のイオン偏向扁平パイプq、イオンコレクターパイプr、及びイオンコレクター取付フランジsの5個の部材を溶接して形成され、頻繁な保守点検を可能にするためイオン化手段(イオン源)を取り付けたプレートt及びイオンコレクターuを取り付けたプレートvが各フランジo、sに密着されネジ止めされる。また、該イオン偏向扁平パイプqの外周にU字状断面の永久磁石からなる磁場偏向型分析器gが装着固定される。wはイオン源パイプpの側部に設けたフランジを備えた排気ポートで、該排気ポートwは該漏洩検知対象物の中空内部へと連なる。
【0005】
【発明が解決しようとする課題】
該ケーシングbを構成する各部材はSUS製で、フランジo、sが直径50mm程度、中心軸線の長さが180mm程度の寸法のもので、各部材はその整形後に溶接して一体に接合される。該イオン偏向扁平パイプqは、円形のイオン源パイプpやイオンコレクターパイプrとは異なる扁平パイプであるから別途に製作しなければならない面倒がある。しかし、このような製作方法では、溶接箇所が多く、溶接による熱歪みや溶接部が冷える前に動かしたり持ち上げたりすることによる変形、さらには部材の製作ミスと溶接工程の歪みとの重奏などにより、角度精度や長さ精度の低下が甚だしい。また、該ケーシングbの加工精度が安定しないため、特に、小さな回転半径の磁場偏向型質量分析管では個々の分析管の感度、分解能大幅に異なる不都合があった。
【0006】
本発明は、一様な感度、分解能が得られ加工精度が高く量産に適した小型の磁場偏向型質量分析管を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明では、ケーシング内に、イオン化室とイオン検出室とを設け、該イオン化室にはこれに導入されるプローブガス等のガス原子やガス分子を電子衝撃によりイオン化するイオン化手段及びイオンをイオン検出室へ引き出す引き出し手段を備え、該イオン検出室には該引き出されたイオン中から該検出室の外部の永久磁石からなる磁場偏向型分析器により選別された特定のイオンの量を検出するイオンコレクターを備え、該イオン化室とイオン検出室の中心軸線を該磁場偏向型分析器によるイオン回転半径に従って屈曲させた磁場偏向型質量分析管に於いて、該ケーシングの材料のブロックに、上記磁場偏向型分析器のイオン回転半径に従った中心軸線を有する2つの円形孔を切削により形成し、該中心軸線の交差部の内部に両円形孔に連通する扁平な透孔を切削形成することによって、該ケーシングを該ケーシングの材料のブロックから削り出し加工で作製することにより、上記目的を達成するようにした。これによれば製作上有利でもある。該ブロックの該交差部の外周面を扁平に切削して該磁場偏向型分析器の取付部とし、必要な場合は該ケーシングの材料のブロックを2個とするようにしてもよい。その製作方法としては、ブロックに切削加工により該イオン回転半径に従った交差角度の軸線を有する2本の円形孔を形成したのち両円形孔に連通する扁平な透孔を切削形成する方法が好ましい。
【0008】
【発明の実施の形態】
本発明の実施の形態を図面に基づき説明すると、図3に於いて符号1は小型のケーシング、2はイオン化室、3はイオン検出室、4は該イオン化室2内に設けられたイオン化手段、5は該イオン化手段により生成したイオンをイオン検出室3へと引き出す引き出し電極を示す。該イオン化手段4の構成は従来のものと同様で、グリッド6と熱電子放出フィラメント7を有し、該イオン化室2の側壁に形成した漏洩検知対象物の中空内部に連なる排気口8から侵入するプローブガス等のガス原子やガス分子を該フィラメント7から放出される熱電子により電子衝撃を与えてイオン化し、生成したイオンを引き出し電極5によりイオン検出室3へと引き出す。イオン検出室3の外側には扇形の永久磁石からなる磁場偏向型分析器9が取り付けられ、引き出されたイオンに偏向磁場を与え、選別された特定のイオンのみがコレクタースリット10を介してイオンコレクター11に入射する。該イオンコレクター11には従来のものと同様にイオン電流検出器が接続される。
【0009】
該ケーシング1の寸法は、屈曲した中心軸線の長さで約160mm程度、イオン化室2及びイオン検出室3の内径が40mm程度であり、従来は該ケーシングを前述のようにSUSのパイプやフランジを整形し溶接して製作していたが、本発明ではケーシング材料のブロックを削り出し加工により製作し、これにより一様な感度、分解能を有し加工精度が高く量産性のある小型の磁場偏向型質量分析管を得るようにした。該ケーシング材料のブロックには、アルミニウムまたはこれに準ずるような比較的柔らかく切削性の良い材料を使用することが好ましい。
【0010】
90°偏向型用のケーシングの製作例は図4の如くであり、イオン回転半径に従い角形のブロック12の屈曲範囲内の余剰部13を例えば長さ0.1mm以下、角度0.1度以下の精度を持つNC自動旋盤などで切除してL字型の屈曲材14を作製し、その屈曲コーナー部15をカット15aする。そして該コーナー部15の表裏を切除して磁場偏向型分析器9の扁平な取付部を削りだし、該屈曲材14の各端面16、17からエンドミル等の切削工具18によりイオン回転半径に従った中心軸線21、22を有する円形孔19、20を切削形成する。これらの円形孔19、20は扁平な該コーナー部15に達しない程度の深さに切削され、両中心軸線21、22の交差部が存する各円形孔の奥部すなわち該コーナー部15の内部に、これら円形孔を連通させる扁平な透孔23が切削形成される。該ケーシング1の肉厚は、図3に示したように、イオン化手段4や引き出し電極5を取り付けたプレート24、コレクタースリット10やイオンコレクター11を取り付けたプレート25、及び磁場偏向型分析器9をネジ止めできるような厚さで切削時に残される。図5に該ケーシング1の外形を示した。
【0011】
該ケーシング1の削り出し加工が完了すると、そのまま各プレート24、25や磁場偏向型分析器9を取り付けて磁場偏向型質量分析管に組立ることができ、高精度の工作機械で高加工精度で切削することにより溶接の歪みや変形がなく、感度、分解能の均一な磁場偏向型質量分析管を量産できる。
【0012】
該ケーシング材料のブロックには2個を使用しても良く、この場合には図6に示すように1個のブロック12aの一端部の外周を磁場偏向型分析管9の取付のために扁平に削るとともに他の1個のブロック12bを接続するためのフランジ部26を切削形成し、該フランジ部26を持つ面27に扁平な透孔23を切削形成し、該面27と交差する端面28に該透孔23に連通する円形孔20を形成し、他の1個のブロック12bにこれを貫通する円形孔19を形成してその円形孔の開口端を該フランジ部26にネジ止め接合した。この場合は図7のように両ブロック12a、12bがフランジによる機械的接合されるので、長さ精度及び角度精度が溶接よりも精確で組立も容易になる。この場合もブロック材にはアルミニウム等の切削性のよい材料が使用され、各円形孔19、20の端部に図6のようにイオン化手段等を設けたプレート24、25を着脱可能に取り付け、磁場偏向型分析器9がコーナー部15に取り付けされる。図8に該ケーシング1の外形を示した。
【0013】
図3及び図4に示した本発明の削りだしのケーシングを有する90°偏向型の磁場偏向型質量分析管で得られた質量スペクトルは図9に示す如くであり、その質量数17及び18のピークの分離の様子は、図10の従来の溶接で製作されたケーシングを有する90°偏向型の質量分析管の質量スペクトルよりも鋭く、削りだし本発明のケーシングを用いた質量分析管の方が分解能が良好であった。尚、この従来の質量分析管はその製作時に偏向角が2度小さくなったもので、その修正は困難であった。また、該本発明の削りだしのケーシングを有する質量分析管と該従来の溶接のケーシングを有する質量分析管とによりヘリウムスペクトルのみを測定したところ、図11及び図12の結果が得られた。図11は本発明のケーシングを用いた質量分析管のヘリウムスペクトルで、そのピークは図12の従来のものに比べ約10eV低エネルギー側に現れている。前記の式から計算されるヘリウムピークのエネルギーは、磁場強度の実測値0.210Tと回転半径2cmから約213Vで、この値は従来のものではなく本発明の質量分析管で得られたヘリウムピークのイオンエネルギーに一致する。その理由は、従来のものが偏向角度の製作精度が悪く、偏向角が図13に示すように約2度小さく製作されたためにイオンコレクターの位置ずれを生じ、そのためピークが現れる位置や分解能が悪くなったためであり、本発明のものではその偏向角度がほぼ正確に90°になっているため、ヘリウムイオンピークの現れるエネルギー位置がほぼ計算通りになっているためである。
【0014】
尚、以上の例では該分析器9がイオンに90°の偏向を与え、イオン化室2の軸線とイオン検出室2の軸線が90°で交差する構成のものについて説明したが、60°や180°偏向のものにも本発明は適用可能である。
【0015】
【発明の効果】
以上のように本発明によるときは、磁場偏向型質量分析管のケーシングをケーシング材料のブロックから削りだし加工で作製したので、従来のものよりも加工精度が高く一様な感度、分解能が得られて均質性が向上し、量産性の良い小型の磁場偏向型質量分析管が得られる等の効果がある。
【図面の簡単な説明】
【図1】従来の小型磁場偏向型質量分析管の説明図
【図2】図1の具体的構成の平面図
【図3】本発明の実施の形態を示す切断平面図
【図4】図3のケーシングの製作状態の説明図
【図5】図4のケーシングの外観斜視図
【図6】本発明の他の実施の形態の説明図
【図7】図6のケーシングを使用した小型磁場偏向型質量分析管の切断平面図
【図8】図6のケーシングの外観斜視図
【図9】図3の小型磁場偏向型質量分析管の質量スペクトルの線図
【図10】従来の小型磁場偏向型質量分析管の質量スペクトルの線図
【図11】図3の小型磁場偏向型質量分析管のヘリウムスペクトルの線図
【図12】従来の小型磁場偏向型質量分析管のヘリウムスペクトルの線図
【図13】従来の小型磁場偏向型質量分析管の偏向角の説明図
【符号の説明】
1 ケーシング、2 イオン化室、3 イオン検出室、4 イオン化手段、5 引き出し電極、9 磁場偏向型分析器、11 イオンコレクター、12・12a・12b ブロック、19・20 円形孔、21・22 中心軸線、23 扁平な透孔、26 フランジ部、
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a small-sized magnetic field deflection type mass spectrometer tube used for a leak detection apparatus and the like, and a manufacturing method thereof.
[0002]
[Prior art]
Conventionally, the inside of a hollow leak detection target is evacuated to a vacuum, and a probe gas such as helium gas is sprayed on the peripheral surface of the target, and when there is a leak in the target, the leak gas such as helium gas is hollow. Since it penetrates into the interior, it is detected by a leak detection device connected to the hollow portion of the object to detect the presence of the leak.
[0003]
In order to analyze the leaked gas from the object, the leak detection device includes a small magnetic field deflection type mass spectrometer tube a having a configuration as shown in FIGS. 1 and 2. It is as follows. In a small casing b of the mass spectrometer tube a, a grid (electron collector) c for ionizing gas atoms and gas molecules such as probe gas introduced from the inside of the object and a thermoelectron emission filament d are provided. The amount of specific ions selected by an ionization chamber f including an ionization means and an extraction electrode e for extracting the ions, and a magnetic field deflection analyzer g including a permanent magnet outside the casing from the extracted ions When an ion detection chamber i provided with an ion collector h for detecting a gas leaks into the ionization chamber f and enters the ionization chamber f, gas molecules and the like are generated by the impact of thermoelectrons from the thermoelectron emission filament d. Is ionized and extracted to the ion detection chamber i by the extraction electrode e. Then, the magnetic field deflection analyzer g applies specific ions based on the equation of r = (1.44 × 10 −4 √Mu × V) / B (r: turning radius, Mu: mass number, B: magnetic flux density). The selected ions are incident on the ion collector h through the collector slit j. The amount of ions incident on the ion collector h is measured by an ion current measuring device k. The voltage between the grid c and the filament d is adjusted by a voltage regulator l, the acceleration voltage of the grid c is adjusted by an ion acceleration power source m, and the kind of ions reaching the ion collector h is adjusted by this voltage adjustment. The composition of the leaked gas can also be analyzed. n is a filament power supply.
[0004]
As shown in FIG. 2, the casing b includes five ion source mounting flanges o, an ion source pipe p to which the ion source mounting flange o is mounted, an intermediate ion deflection flat pipe q, an ion collector pipe r, and an ion collector mounting flange s. A plate t with an ionization means (ion source) attached and a plate v with an ion collector u attached to each flange o, s are screwed together and formed by welding the members and enabling frequent maintenance inspection. . A magnetic field deflection analyzer g made of a permanent magnet having a U-shaped cross section is mounted and fixed on the outer periphery of the ion deflection flat pipe q. w is an exhaust port provided with a flange provided on the side of the ion source pipe p, and the exhaust port w is connected to the hollow interior of the leakage detection object.
[0005]
[Problems to be solved by the invention]
Each member constituting the casing b is made of SUS, and has flanges o and s having a diameter of about 50 mm and a center axis having a length of about 180 mm. The members are welded and integrally joined after shaping. . Since the ion deflection flat pipe q is a flat pipe different from the circular ion source pipe p and the ion collector pipe r, it is troublesome to manufacture separately. However, in such a manufacturing method, there are many welding points, due to thermal distortion due to welding, deformation due to moving or lifting before the weld cools, and due to the combination of manufacturing errors and distortion in the welding process, etc. , Angle accuracy and length accuracy are severely degraded. In addition, since the processing accuracy of the casing b is not stable, the sensitivity and resolution of the individual analysis tubes are greatly different particularly in a magnetic field deflection type mass analysis tube having a small turning radius.
[0006]
An object of the present invention is to provide a small magnetic field deflection type mass spectrometer tube which has uniform sensitivity and resolution, has high processing accuracy and is suitable for mass production.
[0007]
[Means for Solving the Problems]
In the present invention, within the casing, it provided an ionization chamber and an ion detection chamber, the ionization means and ion ion detection of ions by electron impact gas atoms and gas molecules of the probe gas, etc. introduced into this to the ionization chamber An ion collector for extracting a specific ion amount selected from the extracted ions by a magnetic field deflection type analyzer comprising a permanent magnet outside the detection chamber. A magnetic field deflection type mass spectrometer having a central axis of the ionization chamber and the ion detection chamber bent according to an ion rotation radius by the magnetic field deflection type analyzer, wherein the magnetic field deflection type is provided in the material block of the casing. Two circular holes having a central axis according to the ion turning radius of the analyzer are formed by cutting, and are connected to both circular holes inside the intersection of the central axes. By cutting forming a flat hole which, by making the casing in machining machined from a block of material of the casing, and so as to achieve the above object. This is also advantageous in production. The outer peripheral surface of the intersecting portion of the block may be cut flat to form a mounting portion for the magnetic field deflection analyzer, and if necessary, the casing may be made of two blocks of material. As a manufacturing method thereof, a method in which two circular holes having intersecting angle axes according to the ion rotation radius are formed in a block by cutting and then a flat through hole communicating with both circular holes is formed by cutting. .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to the drawings. In FIG. 3, reference numeral 1 is a small casing, 2 is an ionization chamber, 3 is an ion detection chamber, 4 is an ionization means provided in the ionization chamber 2, Reference numeral 5 denotes an extraction electrode for drawing out ions generated by the ionization means to the ion detection chamber 3. The structure of the ionization means 4 is the same as that of the prior art. The ionization means 4 has a grid 6 and a thermoelectron emission filament 7 and enters from an exhaust port 8 connected to the hollow interior of a leakage detection object formed on the side wall of the ionization chamber 2. Gas atoms such as a probe gas and gas molecules are ionized by applying an electron bombardment with thermoelectrons emitted from the filament 7, and the generated ions are extracted to the ion detection chamber 3 by the extraction electrode 5. A magnetic field deflection type analyzer 9 made of a fan-shaped permanent magnet is attached to the outside of the ion detection chamber 3 to apply a deflection magnetic field to the extracted ions, and only selected specific ions are collected through the collector slit 10 as an ion collector. 11 is incident. An ion current detector is connected to the ion collector 11 as in the prior art.
[0009]
The dimension of the casing 1 is about 160 mm in the length of the bent central axis, and the inner diameter of the ionization chamber 2 and the ion detection chamber 3 is about 40 mm. Conventionally, the casing is made of SUS pipe or flange as described above. It was manufactured by shaping and welding, but in the present invention, a block of casing material is manufactured by machining, so that a small magnetic field deflection type with uniform sensitivity, resolution, high processing accuracy and mass productivity. A mass spectrometer tube was obtained. The casing material block is preferably made of aluminum or a material that is relatively soft and has good machinability, such as aluminum.
[0010]
A manufacturing example of the casing for the 90 ° deflection type is as shown in FIG. 4, and the surplus portion 13 in the bending range of the square block 12 according to the ion rotation radius is, for example, 0.1 mm or less in length and 0.1 degrees or less in angle. An L-shaped bending material 14 is produced by cutting with an accurate NC automatic lathe or the like, and the bending corner portion 15 is cut 15a. Then, the front and back of the corner portion 15 are cut out to cut out the flat mounting portion of the magnetic field deflection analyzer 9, and the ion turning radius is followed by the cutting tool 18 such as an end mill from each end face 16, 17 of the bending material 14. Circular holes 19 and 20 having central axes 21 and 22 are formed by cutting. These circular holes 19, 20 are cut to a depth that does not reach the flat corner portion 15, and are deep in each circular hole where the intersections of both central axes 21, 22 exist, that is, inside the corner portion 15. A flat through hole 23 that communicates these circular holes is formed by cutting. As shown in FIG. 3, the thickness of the casing 1 is such that the plate 24 to which the ionization means 4 and the extraction electrode 5 are attached, the plate 25 to which the collector slit 10 and the ion collector 11 are attached, and the magnetic field deflection analyzer 9. Thick enough to be screwed and left when cutting. FIG. 5 shows the outer shape of the casing 1.
[0011]
When the machining of the casing 1 is completed, the plates 24 and 25 and the magnetic field deflection analyzer 9 can be attached as they are and assembled into the magnetic field deflection type mass analysis tube. By cutting, it is possible to mass-produce magnetic deflection type mass spectrometers with uniform sensitivity and resolution without welding distortion or deformation.
[0012]
Two blocks of the casing material may be used. In this case, as shown in FIG. 6, the outer periphery of one end of one block 12a is flattened for mounting the magnetic field deflection type analysis tube 9. A flange portion 26 for cutting and connecting another block 12b is formed by cutting, a flat through hole 23 is formed by cutting on a surface 27 having the flange portion 26, and an end surface 28 intersecting the surface 27 is formed. A circular hole 20 communicating with the through hole 23 was formed, and a circular hole 19 penetrating through the other block 12b was formed, and the open end of the circular hole was screwed and joined to the flange portion 26. In this case, as shown in FIG. 7, both the blocks 12a and 12b are mechanically joined by the flanges. Therefore, the length accuracy and the angle accuracy are more accurate than the welding, and the assembly is facilitated. Also in this case, a material having good cutting properties such as aluminum is used for the block material, and plates 24 and 25 provided with ionization means and the like are attached to the end portions of the circular holes 19 and 20 as shown in FIG. A magnetic field deflection type analyzer 9 is attached to the corner portion 15. FIG. 8 shows the outer shape of the casing 1.
[0013]
The mass spectrum obtained by the 90 ° deflection type magnetic field deflection type mass spectrometer having the shaving casing of the present invention shown in FIGS. 3 and 4 is as shown in FIG. The state of peak separation is sharper than the mass spectrum of the 90 ° deflection type mass analysis tube having a casing manufactured by conventional welding shown in FIG. 10, and the mass analysis tube using the casing of the present invention is cut out. The resolution was good. The conventional mass spectrometer tube had a deflection angle reduced by 2 degrees at the time of manufacture, and its correction was difficult. Further, when only the helium spectrum was measured using the mass spectrometer tube having the machined casing of the present invention and the mass spectrometer tube having the conventional welding casing, the results shown in FIGS. 11 and 12 were obtained. FIG. 11 shows a helium spectrum of a mass spectrometer tube using the casing of the present invention, and its peak appears on the low energy side of about 10 eV compared to the conventional one of FIG. The energy of the helium peak calculated from the above formula is an actual measurement value of 0.210 T of the magnetic field strength and a rotation radius of 2 cm to about 213 V, and this value is not a conventional one, but the helium peak obtained with the mass spectrometer of the present invention. It corresponds to the ion energy of. The reason is that the manufacturing accuracy of the deflection angle is low with the conventional one, and the deflection angle is manufactured to be about 2 degrees smaller as shown in FIG. This is because the deflection angle of the present invention is almost exactly 90 °, and the energy position at which the helium ion peak appears is almost as calculated.
[0014]
In the above example, the analyzer 9 gives a 90 ° deflection to the ions and the axis of the ionization chamber 2 and the axis of the ion detection chamber 2 intersect at 90 °. The present invention can also be applied to those having a deflection.
[0015]
【The invention's effect】
As described above, according to the present invention, the casing of the magnetic deflection type mass spectrometer tube is manufactured by cutting out the casing material block, so that processing accuracy is higher than that of the conventional one, and uniform sensitivity and resolution can be obtained. As a result, the homogeneity is improved, and a small magnetic field deflection type mass analysis tube having good mass productivity can be obtained.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a conventional small magnetic field deflection type mass spectrometer tube. FIG. 2 is a plan view of a specific configuration of FIG. 1. FIG. 3 is a cut plan view showing an embodiment of the present invention. FIG. 5 is an external perspective view of the casing of FIG. 4. FIG. 6 is an explanatory view of another embodiment of the present invention. FIG. 7 is a small magnetic field deflection type using the casing of FIG. FIG. 8 is a perspective view of the outer appearance of the casing of FIG. 6. FIG. 9 is a diagram of the mass spectrum of the small magnetic field deflection type mass analysis tube of FIG. 3. FIG. Diagram of mass spectrum of analysis tube [FIG. 11] Diagram of helium spectrum of small magnetic deflection type mass spectrometer tube of FIG. 3 [FIG. 12] Diagram of helium spectrum of conventional small magnetic field deflection type mass spectrometer tube [FIG. [Explanation of the deflection angle of a conventional small magnetic field deflection type mass spectrometer]
DESCRIPTION OF SYMBOLS 1 Casing, 2 Ionization chamber, 3 Ion detection chamber, 4 Ionization means, 5 Extraction electrode, 9 Magnetic field deflection type analyzer, 11 Ion collector, 12 * 12a * 12b block, 19 * 20 Circular hole, 21 * 22 Central axis, 23 flat through hole, 26 flange,

Claims (4)

ケーシング内に、イオン化室とイオン検出室とを設け、該イオン化室にはこれに導入されるプローブガス等のガス原子やガス分子を電子衝撃によりイオン化するイオン化手段及びイオンをイオン検出室へ引き出す引き出し手段を備え、該イオン検出室には該引き出されたイオン中から該検出室の外部の永久磁石からなる磁場偏向型分析器により選別された特定のイオンの量を検出するイオンコレクターを備え、該イオン化室とイオン検出室の中心軸線を該磁場偏向型分析器によるイオン回転半径に従って屈曲させた磁場偏向型質量分析管に於いて、該ケーシングの材料のブロックに、上記磁場偏向型分析器のイオン回転半径に従った中心軸線を有する2つの円形孔を切削により形成し、該中心軸線の交差部の内部に両円形孔に連通する扁平な透孔を切削形成することによって、該ケーシングを該ケーシングの材料のブロックから削り出し加工で作製したことを特徴とする磁場偏向型質量分析管 An ionization chamber and an ion detection chamber are provided in the casing. In the ionization chamber, ionization means for ionizing gas atoms and gas molecules such as probe gas introduced into the ionization chamber by electron bombardment and drawing out the ions to the ion detection chamber The ion detection chamber is provided with an ion collector for detecting the amount of specific ions selected from the extracted ions by a magnetic field deflection analyzer consisting of a permanent magnet outside the detection chamber, In a magnetic field deflection type mass spectrometer in which the central axes of the ionization chamber and the ion detection chamber are bent in accordance with the ion rotation radius of the magnetic field deflection type analyzer, the ion of the magnetic field deflection type analyzer is placed on the casing material block. Two circular holes having a central axis according to the turning radius are formed by cutting, and are flattened to communicate with both circular holes inside the intersection of the central axes. By cutting a hole, magnetic deflection mass spectrometer tube, characterized in that the casing produced by the machining machined from a block of material of the casing. 上記ブロックの上記交差部の外周面を扁平に切削して上記磁場偏向型分析器の取付部としたことを特徴とする請求項1に記載の磁場偏向型質量分析管2. The magnetic field deflection type mass spectrometer tube according to claim 1, wherein an outer peripheral surface of the intersecting part of the block is cut flat to form an attachment part of the magnetic field deflection type analyzer . ケーシング内に、イオン化室とイオン検出室とを設け、該イオン化室にはこれに導入されるプローブガス等のガス原子やガス分子を電子衝撃によりイオン化するイオン化手段及びイオンをイオン検出室へ引き出す引き出し手段を備え、該イオン検出室には該引き出されたイオン中から該検出室の外部の永久磁石からなる磁場偏向型分析器により選別された特定のイオンの量を検出するイオンコレクターを備え、該イオン化室とイオン検出室の中心軸線を該磁場偏向型分析器によるイオン回転半径に従って屈曲させた磁場偏向型質量分析管に於いて、上記ケーシングの材料のブロックを2個用意し、その1個のブロックの一端部の外周を扁平に削るとともに他の1個を接続するためのフランジ部を形成し、該フランジ部を持つ面に扁平な透孔を切削形成し、該面と交差する端面に該扁平な透孔に連通する円形孔を形成し、他の1個のブロックに貫通した円形孔を形成してその円形孔の開口端を該フランジ部にネジ止め接合することによって、該ケーシングを該ケーシングの材料の2個のブロックから作製したことを特徴とする磁場偏向型質量分析管 An ionization chamber and an ion detection chamber are provided in the casing. In the ionization chamber, ionization means for ionizing gas atoms and gas molecules such as probe gas introduced into the ionization chamber by electron bombardment and drawing out the ions to the ion detection chamber The ion detection chamber is provided with an ion collector for detecting the amount of specific ions selected from the extracted ions by a magnetic field deflection analyzer consisting of a permanent magnet outside the detection chamber, In a magnetic field deflection type mass spectrometer in which the central axes of the ionization chamber and the ion detection chamber are bent in accordance with the ion rotation radius of the magnetic field deflection type analyzer, two blocks of the casing material are prepared. The outer periphery of one end of the block is cut flat and a flange for connecting the other one is formed, and a flat through hole is formed on the surface having the flange. A circular hole communicating with the flat through hole is formed on the end surface intersecting with the surface, and a circular hole penetrating the other one block is formed, and the open end of the circular hole is defined as the flange portion. A magnetic field deflection type mass spectrometer tube characterized in that the casing is made from two blocks of material of the casing by screwing and joining to the casing. ケーシング内に、イオン化室とイオン検出室とを設け、該イオン化室にはこれに導入されるプローブガス等のガス原子やガス分子を電子衝撃によりイオン化するイオン化手段及びイオンをイオン検出室へ引き出す引き出し手段を備え、該イオン検出室には該引き出されたイオン中から該検出室の外部の永久磁石からなる磁場偏向型分析器により選別された特定のイオンの量を検出するイオンコレクターを備え、該イオン化室とイオン検出室の中心軸線を該磁場偏向型分析器によるイオン回転半径に従って屈曲させた磁場偏向型質量分析管に於いて、該ケーシングの材料のブロックを用意し、これに切削加工により該イオン回転半径に従った交差角度の軸線を有する2本の円形孔を形成したのち両円形孔に連通する扁平な透孔を切削形成して該ケーシングを作製したことを特徴とする磁場偏向型質量分析管の製造方法。 An ionization chamber and an ion detection chamber are provided in the casing. In the ionization chamber, ionization means for ionizing gas atoms and gas molecules such as probe gas introduced into the ionization chamber by electron bombardment and drawing out the ions to the ion detection chamber The ion detection chamber is provided with an ion collector for detecting the amount of specific ions selected from the extracted ions by a magnetic field deflection analyzer consisting of a permanent magnet outside the detection chamber, In a magnetic field deflection mass spectrometer tube in which the central axes of the ionization chamber and ion detection chamber are bent in accordance with the ion rotation radius of the magnetic field deflection analyzer, a block of the casing material is prepared, and the block is made by cutting. After forming two circular holes having an axis of crossing angle according to the ion rotation radius, a flat through hole communicating with both circular holes is formed by cutting. Method for producing a magnetic deflection mass spectrometer tube, characterized in that to produce a pacing.
JP17177198A 1998-06-18 1998-06-18 Small magnetic field deflection type mass spectrometer tube and manufacturing method thereof Expired - Lifetime JP3847458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17177198A JP3847458B2 (en) 1998-06-18 1998-06-18 Small magnetic field deflection type mass spectrometer tube and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17177198A JP3847458B2 (en) 1998-06-18 1998-06-18 Small magnetic field deflection type mass spectrometer tube and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2000011946A JP2000011946A (en) 2000-01-14
JP2000011946A5 JP2000011946A5 (en) 2005-09-29
JP3847458B2 true JP3847458B2 (en) 2006-11-22

Family

ID=15929384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17177198A Expired - Lifetime JP3847458B2 (en) 1998-06-18 1998-06-18 Small magnetic field deflection type mass spectrometer tube and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3847458B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5039876B2 (en) * 2007-04-09 2012-10-03 セイコーインスツル株式会社 Ion beam inspection apparatus, ion beam inspection method, and semiconductor manufacturing apparatus

Also Published As

Publication number Publication date
JP2000011946A (en) 2000-01-14

Similar Documents

Publication Publication Date Title
Schey et al. A tandem time-of-flight mass spectrometer for surface-induced dissociation
Orient et al. Production of negative ions by dissociative electron attachment to SO2
US5889281A (en) Method for linearization of ion currents in a quadrupole mass analyzer
EP0575409B1 (en) Isotopic-ratio plasma source mass spectrometer
Mangan et al. Absolute partial cross sections for electron-impact ionization of CO from threshold to 1000 eV
US20230280277A1 (en) Gas analyzer
Orient et al. Mass spectrometric determination of partial and total electron impact ionization cross sections of SO2 from threshold up to 200 eV
JP5297038B2 (en) Ion trap with longitudinal permanent magnet and mass spectrometer using such a magnet
CN100454477C (en) Single-particle aerosol online ionization source and realization method thereof
CN1816383B (en) Mass spectrometer and related ionizer and methods
JP3847458B2 (en) Small magnetic field deflection type mass spectrometer tube and manufacturing method thereof
US6614019B2 (en) Mass spectrometry detector
CN112146754A (en) Device for on-line nondestructive detection of extreme ultraviolet laser pulse energy and light beam spatial position
US5210413A (en) Partial pressure gauge using a cold-cathode ion source for leak detection in vacuum systems
De Ferrariis et al. UHV compatible cylindrical mirror analyzer designed for angular measurements
CN212871466U (en) Device for nondestructive testing of extreme ultraviolet laser pulse energy and light beam spatial position
CN109632939A (en) A kind of method and its system using ion probe measurement inert gas
Singh et al. Development of a new experimental setup for studying collisions of keV-electrons with thick and thin targets
Saha et al. Position information by signal analysis in real time from resistive anode microchannel plate detector
JP2003068245A (en) Time-of-flight mass spectrograph having quantitative energy correcting function
Grouard et al. Detached electron energy spectra in/rare gas collisions measured by electron time of flight
JP2653056B2 (en) Surface analysis device
Rasekhi et al. A tandem ion analyzer of large radius
Michaut et al. Measurement of negative ion beam emittance
SU1517574A1 (en) Method of determining sensitivity vocuum ionization camber

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050511

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term