JP2003068245A - Time-of-flight mass spectrograph having quantitative energy correcting function - Google Patents

Time-of-flight mass spectrograph having quantitative energy correcting function

Info

Publication number
JP2003068245A
JP2003068245A JP2001252431A JP2001252431A JP2003068245A JP 2003068245 A JP2003068245 A JP 2003068245A JP 2001252431 A JP2001252431 A JP 2001252431A JP 2001252431 A JP2001252431 A JP 2001252431A JP 2003068245 A JP2003068245 A JP 2003068245A
Authority
JP
Japan
Prior art keywords
ion
time
kinetic energy
orbit
flight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001252431A
Other languages
Japanese (ja)
Inventor
Masashi Watanabe
将史 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001252431A priority Critical patent/JP2003068245A/en
Publication of JP2003068245A publication Critical patent/JP2003068245A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a time-of-flight mass spectrograph to measure both kinetic energy and mass of an ion concurrently and to perform quantitative energy correction, by deflecting the orbit of the ion with a static electric field and measuring the orbit of the ion after the deflection with a position-sensing type ion detector. SOLUTION: Two plate electrodes are set in parallel with each other inclined 45 degrees toward the orbit of an ion beam, and the orbit of the ion beam is deflected 90 degrees away by the static electric field generated between the two plate electrodes. Since the deflected orbit of the ion depends on the kinetic energy of the ion, the kinetic energy of the ion is determined by measuring the detected position of the ion with the position-sensing type ion detector. Furthermore, when the mass of the ion is calculated from the flight time of the ion, the drift of the flight time is corrected on the basis of the kinetic energy, and the quantitative energy correction is performed.

Description

【発明の詳細な説明】 【0001】 【発明が属する技術分野】本発明は、エネルギー補正機
能を持つ飛行時間型質量分析器に関するものである。 【0002】 【従来の技術】飛行時間型質量分析器は単イオンを逐一
同定する用途で使用されるが、イオンが放出されてから
検出されるまでの飛行時間から質量を算出するため、す
べてのイオンの持つ運動エネルギーが一定でないと飛行
時間にばらつきを生じ、正確に質量を測定することが出
来ない。しかし、実際の測定ではすべてのイオンの運動
エネルギーを完全に一定にすることは困難であるため、
静電反射型や静電偏向型等のエネルギー補正機能を持つ
飛行時間型質量分析器が使用されている。 【0003】これらの従来のエネルギー補正機能を持つ
飛行時間型質量分析器は、イオンを反射または偏向する
ことで、速度の速いイオンの飛行距離を長くし、速度の
遅いイオンの飛行距離を短くして、イオンの飛行時間を
収束させるというものである。しかし、このような補正
は定性的なものであり、運動エネルギーのばらつきが小
さい場合には十分なエネルギー補正機能を持つが、運動
エネルギーのばらつきが大きくなると原理的に補正しき
れないという欠点があり、また運動エネルギーのずれの
大きさを知る事ができない。 【0004】 【発明が解決しようとする課題】本発明は、このような
運動エネルギーのばらつきの大きなイオンに対しても、
正確な補正を行うことを目的としている。 【0005】 【課題を解決するための手段】本発明は、パルス状イオ
ンビームの軌道に対して45度の角度で設置された2枚
の平板電極間に発生した静電場によりイオンビームの軌
道を90度偏向し、偏向されたイオンを位置感知型イオ
ン検出器で検出することで、イオンの運動エネルギーと
飛行時間を両方同時に測定し、測定した運動エネルギー
と飛行時間からイオンの質量を算出することを最も主要
な特徴とする。 【0006】 【実施例】図1は、本発明装置の1実施例の説明図であ
る。 【0007】真空容器内に2枚の平板電極1および2を
平行に置き、一方の平板電極1には図2に示すように大
小2つの穴3および4を開ける。大きい穴4には入射位
置を測定する機能を持つ単イオン検出器5を取り付け
る。このとき、図3の断面図に示すように位置感知型イ
オン検出器5の検出面が平板電極1と同じ平面になるよ
うにする。 【0008】図1に示すように平板電極1を接地し、平
板電極2に電圧を加えて電極間に均一な静電場を発生さ
せる。このとき、陽イオンビームには正の電圧、陰イオ
ンビームには負の電圧というように、イオンと同じ極性
の電圧を平板電極2に印加する。また、平板電極1と2
の間には均一な電場を発生させる必要があるため、図4
に示すように中心に穴の開いた平板電極9を平板電極1
と2に平行に複数枚に並べ、それらを抵抗器10で接続
することで均一な電場を発生させる。これは従来の反射
型質量分析器等と同様の手法である。 【0009】平板電極1に開けた小さい穴3に向けて、
平板電極1に対して45度の角度でイオンビームを照射
する。ここで、イオン源6はピーク幅の狭いのパルス状
イオンビームを放出するものであればどのようなもので
もよい。小さい穴3を通り抜けたイオンは電極間に発生
した電場によって90度偏向され、図1の7に示す軌道
を通り、位置感知型イオン検出器5に入射する。イオン
の検出位置は小さい穴3に入射する前のイオンの運動エ
ネルギーによって決まるため、数式1により入射位置か
らイオンビームの運動エネルギーを測定することができ
る。 【0010】 【数1】 【0011】さらに、イオン源6から放出された後、位
置感知型イオン検出器5で検出されるまでの飛行時間を
測定することで、数式2からエネルギーのばらつきを定
量的に補正したイオンの質量Mと電荷qの比を算出する
ことができる。 【0012】 【数2】 【0013】上記の数式1および数式2の記号は、図5
に示すように、Fはイオンの運動エネルギー、Mはイオ
ンの質量、qはイオンの電荷、Lはイオン源1から平板
電極2の小さい穴2を通過するまでのイオンの飛行距
離、dは平板電極1と5の間隔、Xは小さい穴2からイ
オンの検出位置の距離、tはイオン源6から位置感知型
イオン検出器までのイオンの飛行時間、Vはイオンを偏
向させるために平板電極5に印加する電圧である。ま
た、数式1のeは電気素量である。 【0014】図6の実施例は、飛行中にクラスターの分
解等により中性となった粒子を検出するために本発明の
分析器に直線型質量分析器を組み合わせたものである。
この実施例では、平板電極2上の偏向前のビームの直線
軌道上11の位置に穴12を開けその後ろに単イオン検
出器13を取り付ける。このようにすることで、偏向さ
れない中性粒子も取りこぼしなく検出することができる
ようになる。直線型の単イオン検出器13で検出された
粒子のエネルギー補正は基本的にできないが、クラスタ
ーイオンが分解したような場合には位置感知型検出器5
で検出されたイオンの運動エネルギーから中性粒子の運
動エネルギーを推測することによって同定が可能であ
る。 【0015】 【発明の効果】上述のように本発明の定量的なエネルギ
ー補正機能を持つ飛行時間型質量分析器は、静電場によ
って偏向したイオンの検出位置と飛行時間の両方を測定
することで、イオンの運動エネルギーと質量の両方を同
時に測定することができ、同時に運動エネルギーの値か
ら質量の定量的な補正を可能とした。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a time-of-flight mass spectrometer having an energy correcting function. 2. Description of the Related Art Time-of-flight mass spectrometers are used for identifying single ions one by one. However, since the mass is calculated from the time of flight from the emission of ions to the detection of the ions, all types of mass spectrometers are used. If the kinetic energy of the ions is not constant, the flight time varies, and the mass cannot be measured accurately. However, it is difficult to make the kinetic energy of all ions completely constant in actual measurement,
A time-of-flight mass analyzer having an energy correction function such as an electrostatic reflection type or an electrostatic deflection type is used. [0003] These conventional time-of-flight mass spectrometers having an energy correcting function reduce the flight distance of fast ions by reflecting or deflecting ions, thereby increasing the flight distance of fast ions. Thus, the flight time of ions is converged. However, such a correction is qualitative and has a sufficient energy correction function when the variation in kinetic energy is small, but there is a drawback that correction cannot be performed in principle when the variation in kinetic energy is large. Also, the magnitude of the kinetic energy shift cannot be known. [0004] The present invention is directed to an ion having a large variation in kinetic energy.
The purpose is to make accurate corrections. According to the present invention, the trajectory of an ion beam is changed by an electrostatic field generated between two plate electrodes provided at an angle of 45 degrees with respect to the trajectory of a pulsed ion beam. By deflecting 90 degrees and detecting the deflected ions with a position-sensitive ion detector, the kinetic energy and flight time of both ions are simultaneously measured, and the mass of the ion is calculated from the measured kinetic energy and flight time. Is the most important feature. FIG. 1 is an explanatory view of an embodiment of the apparatus according to the present invention. Two plate electrodes 1 and 2 are placed in parallel in a vacuum vessel, and two large and small holes 3 and 4 are formed in one plate electrode 1 as shown in FIG. A single ion detector 5 having a function of measuring the incident position is attached to the large hole 4. At this time, as shown in the cross-sectional view of FIG. 3, the detection surface of the position-sensitive ion detector 5 is made to be the same plane as the plate electrode 1. As shown in FIG. 1, the plate electrode 1 is grounded, and a voltage is applied to the plate electrode 2 to generate a uniform electrostatic field between the electrodes. At this time, a voltage having the same polarity as the ions, such as a positive voltage for the positive ion beam and a negative voltage for the negative ion beam, is applied to the plate electrode 2. In addition, the plate electrodes 1 and 2
It is necessary to generate a uniform electric field between
The flat plate electrode 9 having a hole at the center as shown in FIG.
And 2 are arranged in parallel with each other and connected by a resistor 10 to generate a uniform electric field. This is a method similar to that of a conventional reflection-type mass analyzer or the like. [0009] To a small hole 3 opened in the plate electrode 1,
The plate electrode 1 is irradiated with an ion beam at an angle of 45 degrees. Here, the ion source 6 may be any one that emits a pulsed ion beam having a narrow peak width. Ions passing through the small holes 3 are deflected by 90 degrees by the electric field generated between the electrodes, and enter the position-sensitive ion detector 5 through the orbit shown in FIG. Since the detection position of the ions is determined by the kinetic energy of the ions before entering the small hole 3, the kinetic energy of the ion beam can be measured from the incident position by using Equation 1. [0010] Further, by measuring the time of flight from the time of emission from the ion source 6 to the time of detection by the position-sensitive ion detector 5, the mass of the ions whose energy variation is quantitatively corrected from the equation (2) is calculated. The ratio between M and charge q can be calculated. ## EQU2 ## The symbols in the above equations 1 and 2 are shown in FIG.
As shown in F, F is the kinetic energy of the ion, M is the mass of the ion, q is the charge of the ion, L is the flight distance of the ion from the ion source 1 through the small hole 2 of the plate electrode 2, and d is the plate. The distance between the electrodes 1 and 5, X is the distance from the small hole 2 to the ion detection position, t is the flight time of the ions from the ion source 6 to the position-sensitive ion detector, and V is the plate electrode 5 for deflecting the ions. Is the voltage to be applied. Further, e in Equation 1 is the elementary charge. The embodiment of FIG. 6 combines the analyzer of the present invention with a linear mass analyzer in order to detect particles that have become neutral due to the decomposition of clusters during flight.
In this embodiment, a hole 12 is formed at a position 11 on the linear trajectory of the beam before deflection on the plate electrode 2, and a single ion detector 13 is mounted behind the hole. By doing so, neutral particles that are not deflected can be detected without being missed. Although the energy correction of the particles detected by the linear single ion detector 13 cannot basically be performed, when the cluster ions are decomposed, the position-sensitive detector 5 is used.
Identification is possible by estimating the kinetic energy of neutral particles from the kinetic energy of the ions detected in step (1). As described above, the time-of-flight mass analyzer having a quantitative energy correction function of the present invention measures both the detection position of ions deflected by an electrostatic field and the time of flight. In addition, both the kinetic energy and the mass of the ion can be measured simultaneously, and at the same time, the quantitative correction of the mass from the value of the kinetic energy was enabled.

【図面の簡単な説明】 【図1】エネルギー補正機能を持つ飛行時間型質量分析
器の実施方法を示した説明図である。(実施例1) 【図2】平板電極1の形状を示した説明図である。 【図3】位置感知型イオン検出器5の取り付け位置を示
した説明図である。 【図4】平板電極1と2の間に均一な静電場を発生させ
るための電極9の取り付け方を示した説明図である。 【図5】数式1および数式2における記号を示した説明
図である。 【図6】直線型質量分析器13を組み合わせた実施方法
を示した説明図である。(実施例2) 【符号の説明】 1 穴の開いた平板電極 2 平板電極 3 イオン取り込み用の小さい穴 4 位置感知型イオン検出器取り付け用の大きい穴 5 位置感知型イオン検出器 6 イオン源 7 イオンビームの軌道 8 定電圧源 9 均一な静電場を発生するための中心に穴の開いた
平板電極 10 抵抗器 11 中性粒子の軌道 12 中性粒子が通り抜ける穴 13 単イオン検出器
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram showing a method of implementing a time-of-flight mass spectrometer having an energy correction function. (Example 1) FIG. 2 is an explanatory view showing the shape of a plate electrode 1. FIG. FIG. 3 is an explanatory view showing a mounting position of a position-sensitive ion detector 5; FIG. 4 is an explanatory diagram showing how to attach an electrode 9 for generating a uniform electrostatic field between the plate electrodes 1 and 2; FIG. 5 is an explanatory diagram showing symbols in Expressions 1 and 2. FIG. 6 is an explanatory diagram showing an implementation method in which a linear mass analyzer 13 is combined. (Explanation 2) [Description of symbols] 1 Plate electrode with a hole 2 Plate electrode 3 Small hole 4 for capturing ions 4 Large hole 5 for mounting position-sensitive ion detector 5 Position-sensitive ion detector 6 Ion source 7 Orbit of ion beam 8 Constant voltage source 9 Plate electrode with a hole at the center for generating uniform electrostatic field 10 Resistor 11 Orbit of neutral particles 12 Hole 13 through which neutral particles pass 13 Single ion detector

Claims (1)

【特許請求の範囲】 【請求項1】 イオンビームの軌道に対して45度傾け
て2枚の平板電極を平行に設置し、それらの電極間に発
生させた静電場でイオンビームの軌道を90度偏向させ
る。偏向されたイオンの軌道はイオンの運動エネルギー
によって異なるため、位置感知型イオン検出器によって
検出位置を測定することでイオンの運動エネルギーを求
め、さらに飛行時間からイオンの質量を算出する際に運
動エネルギーの値から飛行時間のずれを補正し、定量的
なエネルギー補正を行うことを特徴とする飛行時間型質
量分析器。
Claims: 1. An orbit of an ion beam is set to 90 degrees by an electrostatic field generated between two electrodes, wherein two plate electrodes are installed in parallel at an angle of 45 degrees with respect to the orbit of the ion beam. Deflection degrees. Since the trajectory of the deflected ion varies depending on the kinetic energy of the ion, the kinetic energy of the ion is determined by measuring the detected position with a position-sensitive ion detector, and then calculating the mass of the ion from the time of flight. A time-of-flight mass spectrometer characterized in that a time-of-flight deviation is corrected from the value of, and a quantitative energy correction is performed.
JP2001252431A 2001-08-23 2001-08-23 Time-of-flight mass spectrograph having quantitative energy correcting function Pending JP2003068245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001252431A JP2003068245A (en) 2001-08-23 2001-08-23 Time-of-flight mass spectrograph having quantitative energy correcting function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001252431A JP2003068245A (en) 2001-08-23 2001-08-23 Time-of-flight mass spectrograph having quantitative energy correcting function

Publications (1)

Publication Number Publication Date
JP2003068245A true JP2003068245A (en) 2003-03-07

Family

ID=19080908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001252431A Pending JP2003068245A (en) 2001-08-23 2001-08-23 Time-of-flight mass spectrograph having quantitative energy correcting function

Country Status (1)

Country Link
JP (1) JP2003068245A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115556A (en) * 2005-10-21 2007-05-10 National Institute Of Advanced Industrial & Technology Mass spectrometry
DE102010046731B4 (en) * 2010-09-28 2015-07-02 Bruker Daltonik Gmbh Calibration function for time-of-flight mass spectrometers of highest mass accuracy
GB2537224A (en) * 2015-03-27 2016-10-12 Agilent Technologies Inc Energy resolved time-of-flight mass spectrometry

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115556A (en) * 2005-10-21 2007-05-10 National Institute Of Advanced Industrial & Technology Mass spectrometry
DE102010046731B4 (en) * 2010-09-28 2015-07-02 Bruker Daltonik Gmbh Calibration function for time-of-flight mass spectrometers of highest mass accuracy
GB2537224A (en) * 2015-03-27 2016-10-12 Agilent Technologies Inc Energy resolved time-of-flight mass spectrometry
US9627190B2 (en) 2015-03-27 2017-04-18 Agilent Technologies, Inc. Energy resolved time-of-flight mass spectrometry
GB2537224B (en) * 2015-03-27 2020-07-15 Agilent Technologies Inc Energy resolved time-of-flight mass spectrometry

Similar Documents

Publication Publication Date Title
EP1618587B1 (en) Beam uniformity and angular distribution measurement system
US9543138B2 (en) Ion optical system for MALDI-TOF mass spectrometer
JP7335389B2 (en) Systems and methods for semiconductor measurement and surface analysis using secondary ion mass spectrometry
USRE38138E1 (en) Method for linearization of ion currents in a quadrupole mass analyzer
JP2013239430A (en) Flight time type mass spectrometry apparatus
EP1964149B1 (en) Ion beam angle measurement systems and methods employing varied angle slot arrays for ion implantation systems
JP2003068245A (en) Time-of-flight mass spectrograph having quantitative energy correcting function
JP6897870B2 (en) Time-of-flight mass spectrometer
US8436295B2 (en) Device for measuring mean free path, vacuum gauge, and method for measuring mean free path
US5182453A (en) Ion scattering spectrometer
JP2008282571A (en) Time-of-flight mass spectrometer
JP2015072775A (en) Time-of-flight mass spectrometer
US4762993A (en) Directional sensor for neutral particle beams
JP4130904B2 (en) Parallel magnetic field type Rutherford backscattering analyzer
Heller et al. Backscattering spectrometry in the helium ion microscope: Imaging elemental compositions on the nm scale
JP4368698B2 (en) Sample analyzer and method thereof
JP4268812B2 (en) Sensitivity correction method for ion energy analyzer
Serpa et al. Virtual-slit focusing in a cycloidal mass spectrometer–A proof of concept
JPH11250854A (en) Analyzing method and device for incident ion on substrate in etching plasma
JP3140557B2 (en) Laser ionization neutral particle mass spectrometer and analysis method using the same
JPH063296A (en) Auger electron spectral device
JPH03160391A (en) Method and device for measuring incident angle of energy beam, and those for measuring characteristic of charged particle lens
Kirschner et al. Reflection-time-of-flight spectrometer for two-electron (e, 2e) coincidence spectroscopy on surfaces
KR100485389B1 (en) Secondary ion mass spectroscopy and method of measuring secondary ion yield using the same
Wright Jr et al. The Deflection Plate Analyzer: A Technique for Space Plasma Measurements Under Highly Disturbed Conditions