JP2007115556A - Mass spectrometry - Google Patents

Mass spectrometry Download PDF

Info

Publication number
JP2007115556A
JP2007115556A JP2005306628A JP2005306628A JP2007115556A JP 2007115556 A JP2007115556 A JP 2007115556A JP 2005306628 A JP2005306628 A JP 2005306628A JP 2005306628 A JP2005306628 A JP 2005306628A JP 2007115556 A JP2007115556 A JP 2007115556A
Authority
JP
Japan
Prior art keywords
particles
mass
flight
ions
fragment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005306628A
Other languages
Japanese (ja)
Other versions
JP4997384B2 (en
Inventor
Masataka Okubo
雅隆 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005306628A priority Critical patent/JP4997384B2/en
Publication of JP2007115556A publication Critical patent/JP2007115556A/en
Application granted granted Critical
Publication of JP4997384B2 publication Critical patent/JP4997384B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mass spectromety that identifies the kinds of particles by measuring the masses of the particles, for not only measuring the masses of the ions from time-of-flight of ions or neutral particles (hereinafter, to be referred to as "particles"), but also analyzing the masses of fragment particles generated by the dissociation of precursor ions or particles. <P>SOLUTION: A detector measures both the flight time and the kinetic energy of particles. The precursor ions are dissociated by the flight time, and the fragment particles are dissociated by the kinetic energy. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本願発明は、粒子の質量を測定することによりその粒子の種類を同定する質量分析装置に関するものである。特に、飛行時間型質量分析法において、イオンあるいは中性粒子(以下において「粒子」と略する。)の飛行時間からイオンの質量を測定するだけでなく、前駆イオンあるいは粒子が解離して生じる断片粒子の質量分析を行うために使用される。疾患マーカー等の検出に有効である。   The present invention relates to a mass spectrometer that identifies the type of particle by measuring the mass of the particle. In particular, in time-of-flight mass spectrometry, not only the mass of ions is measured from the time of flight of ions or neutral particles (hereinafter abbreviated as “particles”), but also fragments generated by dissociation of precursor ions or particles. Used to perform mass analysis of particles. It is effective for detecting disease markers and the like.

質量分析装置は、イオン化部、加速部、質量分離部、粒子検出部から構成される。質量分離部に飛行時間法を用いるものは、飛行時間型質量分析装置と呼ばれ、異なる質量の粒子の同時計測、原理的に分析可能質量範囲に制限がないという特徴をもつ。イオン化部においては、被測定粒子は、真空中に取り出されイオン化された後、加速部にて、一定の加速電圧で運動エネルギーが与えられる。加速後は等速運動する。この等速運動するイオンの飛行時間は、イオンの質量をイオンの価数で割った値(m/z)の平方根に比例する。従って、価数が分かれば飛行時間から質量を知ることができる(リニアモード)。   The mass spectrometer includes an ionization unit, an acceleration unit, a mass separation unit, and a particle detection unit. A device that uses the time-of-flight method for the mass separation unit is called a time-of-flight mass spectrometer, and has the feature that there is no limit on the mass range that can be analyzed simultaneously, in principle, for particles having different masses. In the ionization unit, the particles to be measured are taken out in a vacuum and ionized, and then kinetic energy is given at a constant acceleration voltage in the acceleration unit. After acceleration, it moves at a constant speed. The time of flight of the ion moving at a constant velocity is proportional to the square root of the value (m / z) obtained by dividing the mass of the ion by the valence of the ion. Therefore, if the valence is known, the mass can be known from the flight time (linear mode).

真空中に取り出すとき、あるいは加速時、あるいは等速運動中に過剰のエネルギーがイオンに蓄積されるような場合には、飛行中にイオンが壊れて、複数の断片粒子が生じる場合がある。また、過剰のエネルギーが与えられた瞬間に断片化粒子が生じる場合がある。この断片化した粒子の質量パターンは、前駆粒子の構造情報をもっており、例えばペプチドやたんぱく質の同定や、アミノ酸配列決定に使用可能である。ペプチドの場合、N末端イオン、C末端イオンの断片化パターンからシーケンスを解析することができ、アミノ酸配列を知ることができる。この断片粒子に含まれるイオンの質量測定は、イオンを反射するリフレクトロンを用いて前駆イオンと同じく飛行時間軸上で行われる(リフレクターモード、下記「非特許文献1」参照)。
B. Spengler,Journal of Mass Spectrometry, vol. 32, 1019 (1997).
When excessive energy is accumulated in ions during extraction in a vacuum, acceleration, or constant velocity motion, ions may break during flight, resulting in a plurality of fragment particles. In addition, fragmented particles may occur at the moment when excessive energy is applied. The mass pattern of the fragmented particles has the structural information of the precursor particles, and can be used, for example, for identification of peptides and proteins and determination of amino acid sequences. In the case of a peptide, the sequence can be analyzed from the fragmentation pattern of the N-terminal ion and C-terminal ion, and the amino acid sequence can be known. The mass measurement of ions contained in the fragment particles is performed on the time-of-flight axis in the same manner as the precursor ions using a reflectron that reflects the ions (reflector mode, see “Non-Patent Document 1” below).
B. Spengler, Journal of Mass Spectrometry, vol. 32, 1019 (1997).

断片イオンは、リフレクターモードで測定すると、横軸を飛行時間とした質量スペクトル上に、前駆イオンとは異なる飛行時間のピークとして現れる。このため、例えば、複数のたんぱく質が混在した試料では、複数の前駆イオンピーク、異なる価数の前駆イオンピーク、前駆イオンから生成した断片イオンのピークが重畳することになり、ピークの帰属が困難になる場合が多い。また、断片化が起こった後に分析可能な粒子は、断片粒子の中に含まれるイオンのみであり、中性粒子は分析できない。中性粒子の検出は、リニアモードでは可能であるが、等速運動中に断片化した粒子は前駆イオンと同じ飛行時間であるので、飛行時間では、前駆イオンと断片粒子の区別ができない。   When the fragment ions are measured in the reflector mode, they appear as time-of-flight peaks different from the precursor ions on the mass spectrum having the horizontal axis as the time of flight. For this reason, for example, in a sample in which a plurality of proteins are mixed, a plurality of precursor ion peaks, precursor ion peaks with different valences, and fragment ion peaks generated from the precursor ions are superimposed, making it difficult to assign peaks. There are many cases. In addition, particles that can be analyzed after fragmentation occurs are only ions contained in the fragment particles, and neutral particles cannot be analyzed. Neutral particles can be detected in the linear mode. However, since particles fragmented during constant velocity motion have the same flight time as the precursor ions, the precursor ions cannot be distinguished from the fragment particles in the flight time.

本願発明においては、リニアモードで、粒子が検出器に到達した時刻と運動エネルギーを測定可能な粒子検出器を用いることにより解決する。前駆イオンの質量は時間軸上で、断片粒子の質量はエネルギー軸上で分離する。   In the present invention, the problem is solved by using a particle detector capable of measuring the time and kinetic energy at which particles reach the detector in the linear mode. The mass of the precursor ion is separated on the time axis, and the mass of the fragment particles is separated on the energy axis.

本願発明により、飛行時間によって前駆イオンを分析でき、運動エネルギーによって断片化したイオン、中性粒子の全ての粒子の分析が可能になる。リニアモードで測定するため、質量が異なる複数のたんぱく質が混在した試料であっても、複数のたんぱく質を同時に分析できる。また、断片粒子のイオン、中性粒子の全てを分析対象とすることができるため、断片化後に電荷が残った断片イオンのみ分析可能であった従来方法に比べて、断片粒子の検出感度を向上させることができる。   According to the present invention, precursor ions can be analyzed based on the time of flight, and analysis of all particles of ions and neutral particles fragmented by kinetic energy becomes possible. Since the measurement is performed in the linear mode, a plurality of proteins can be analyzed simultaneously even in a sample in which a plurality of proteins having different masses are mixed. In addition, since all the ions and neutral particles of the fragment particles can be analyzed, the detection sensitivity of fragment particles is improved compared to the conventional method, which can analyze only fragment ions that remain charged after fragmentation. Can be made.

本願発明においては、様々な断片化方法を用いることができる。ポストソース分解(PSD)においては、イオン源及び加速中に付与された過剰なエネルギーのために不安定になり、前駆イオンは、加速後の自由飛行中に断片化する。衝突誘起解離(CID)においては、加速された前駆イオンを、例えばアルゴンのような原子に衝突させて断片化を起こす。レーザー解離(LD)や赤外多光子吸収解離(IRMPD)では、光エネルギーを前駆イオンに吸収させ、断片化を起こす。   In the present invention, various fragmentation methods can be used. In post-source decomposition (PSD), the ion source becomes unstable due to the excess energy imparted during acceleration, and the precursor ions fragment during free flight after acceleration. In collision-induced dissociation (CID), accelerated precursor ions collide with atoms such as argon to cause fragmentation. In laser dissociation (LD) and infrared multiphoton absorption dissociation (IRMPD), light energy is absorbed by precursor ions and fragmentation occurs.

これらの断片粒子のエネルギーを測定する方法として、イオンであれば、磁場や電場を使う方法がある。本願発明は、以下に述べるように、磁場や電場を使わず、固体検出器により、イオンのみならず中性粒子のエネルギーも測定するものである。以下に本願発明の最良の形態を示す。   As a method for measuring the energy of these fragment particles, there is a method using a magnetic field or an electric field for ions. As described below, the present invention measures not only ions but also the energy of neutral particles by a solid state detector without using a magnetic field or an electric field. The best mode of the present invention will be described below.

図1は、超伝導トンネル接合を使った量子型粒子検出器による実施例である。イオン源は、紫外レーザーを使ったマトリクス支援レーザー脱離イオン化法(MALDI)で、イオン化あるいはイオン化直後に過剰なエネルギーを前駆イオンが取得し、電界により加速された後に断片化が起こる。断片化しなかった前駆イオンと断片粒子は、等速運動し、同時に検出器に入射する。検出器によって、イオンあるいは中性粒子のエネルギーが測定される。リニアモードにて測定する。質量66.4 kDaの牛血清アルブミン(bovine serum albumin: BSAと略)の測定例を図2から図5に示す。図2から4がレーザーパルス当たり、約8μJ、図5が約12μJの条件における実験結果である。イオンを加速する電圧は、17.5 kVである。   FIG. 1 shows an embodiment of a quantum particle detector using a superconducting tunnel junction. The ion source is matrix-assisted laser desorption / ionization (MALDI) using an ultraviolet laser, and the precursor ions acquire excess energy immediately after ionization or ionization, and fragmentation occurs after acceleration by an electric field. Precursor ions and fragment particles that have not been fragmented move at the same speed and simultaneously enter the detector. The energy of ions or neutral particles is measured by the detector. Measure in linear mode. Measurement examples of bovine serum albumin (abbreviated as BSA) having a mass of 66.4 kDa are shown in FIGS. 2 to 4 show the experimental results under conditions of about 8 μJ per laser pulse, and FIG. 5 shows about 12 μJ. The voltage for accelerating the ions is 17.5 kV.

図2は、一定の電圧で加速されたイオンがイオン源から検出器まで飛行する時間から算出したm/z値と、検出器により測定された運動エネルギーの座標に、衝突イベント毎に点をプロットした散布図である。横軸は、便宜上、z=1と仮定したときのmの値である。66.4kDaの位置にBSA+、33.2kDaの位置にBSA++のイベントグループが現れている。一定の電圧で加速されたBSA++の運動エネルギーは、BSA+の運動エネルギーより大きく観測されている。 Figure 2 plots points for each collision event on the m / z value calculated from the time the ion accelerated at a constant voltage flies from the ion source to the detector and the kinetic energy coordinates measured by the detector. It is a scatter diagram. The horizontal axis represents the value of m when z = 1 is assumed for convenience. A BSA + event group appears at the 66.4 kDa position, and a BSA ++ event group appears at the 33.2 kDa position. The kinetic energy of BSA ++ accelerated at a constant voltage is observed to be larger than that of BSA + .

図3は、一定の電圧で加速されたイオンがイオン源から検出器まで飛行するのに要する時間から算出したm/z値のヒストグラムであり、いわゆる質量スペクトルである。横軸は、便宜上、z=1と仮定したときのmの値である。66.4 kDaの位置にBSA+、33.2 kDaの位置にBSA++のピークが現れている。 FIG. 3 is a histogram of m / z values calculated from the time required for ions accelerated at a constant voltage to fly from the ion source to the detector, and is a so-called mass spectrum. The horizontal axis represents the value of m when z = 1 is assumed for convenience. A BSA + peak appears at 66.4 kDa, and a BSA ++ peak appears at 33.2 kDa.

図4は、図3にてBSAの1価イオンが検出器に到達する時間の衝突イベントのみ(60 kDaから80 kDaの間のイベント)で構成した、図1の運動エネルギーに対するヒストグラムである。前駆イオンのピークに加えて、僅かながら小さな運動エネルギーをもつイベントがPSD粒子と示した範囲に現れている。これは、イオンが加速部を通り過ぎた後に断片化した粒子のイベントである。この断片化はポストソース分解(PSD)と呼ばれ、加速中に粒子と衝突して過剰なエネルギーを得ると考えられている。ポストソース分解を起こした粒子の飛行速度は前駆イオンとほぼ同じであるが、質量が前駆イオンより小さくなるため、運動エネルギーが小さくなり、前駆イオンのピークより低い運動エネルギーの位置に現れている。   FIG. 4 is a histogram for the kinetic energy of FIG. 1 consisting only of collision events (events between 60 kDa and 80 kDa) during the time when the monovalent ions of BSA reach the detector in FIG. In addition to the peak of the precursor ion, an event with a small kinetic energy appears in the range indicated as PSD particles. This is an event of particles fragmented after ions pass through the acceleration. This fragmentation is called post-source decomposition (PSD) and is believed to collide with particles during acceleration and gain excess energy. The flying speed of the particles that have undergone post-source decomposition is almost the same as that of the precursor ions, but since the mass is smaller than that of the precursor ions, the kinetic energy is reduced and appears at a position of kinetic energy lower than the peak of the precursor ions.

図5は、レーザーパワーを上げた場合で(約12μJ)、前駆イオンは、ほとんどピークを形成せず、断片化したPSD粒子のイベントが大半を占めている。これらのPSD粒子の質量は、検出された運動エネルギーから求めることができる。PSD粒子の質量のパターンは、前駆イオンの構造情報を持っている。前駆イオンの同定や、アミノ酸配列の決定に利用することができる。   FIG. 5 shows the case where the laser power is increased (about 12 μJ), and the precursor ion hardly forms a peak, and the event of fragmented PSD particles accounts for the majority. The mass of these PSD particles can be determined from the detected kinetic energy. The PSD particle mass pattern has the precursor ion structure information. It can be used for identification of precursor ions and determination of amino acid sequences.

図6は、加速部の後に、衝突誘起解離(CID)により前駆イオンを断片化する場合の実施例である。イオン源は、紫外レーザーを使ったMALDIであり、電界により加速された前駆イオンは、ガスを導入したCIDセル中で原子と衝突する。この衝突により断片化が起こる。断片化しなかった前駆イオンと断片粒子は、等速運動し、同時に検出器に入射する。検出器によって、イオンあるいは中性粒子のエネルギーが測定される。
FIG. 6 shows an embodiment in which precursor ions are fragmented by collision-induced dissociation (CID) after the acceleration unit. The ion source is MALDI using an ultraviolet laser, and precursor ions accelerated by an electric field collide with atoms in a CID cell into which a gas is introduced. This collision causes fragmentation. Precursor ions and fragment particles that have not been fragmented move at the same speed and simultaneously enter the detector. The energy of ions or neutral particles is measured by the detector.

本願発明に係る実施例1の実験装置配置図。FIG. 2 is a layout of an experimental device according to the first embodiment of the present invention. 本願発明に係る実施例1のデータ1。Data 1 of Example 1 according to the present invention. 本願発明に係る実施例1のデータ2。Data 2 of Example 1 according to the present invention. 本願発明に係る実施例1のデータ3。Data 3 of Example 1 according to the present invention. 本願発明に係る実施例1のデータ4。Data 4 of Example 1 which concerns on this invention. 本願発明に係る実施例2の実験装置配置図。The experimental apparatus layout of Example 2 which concerns on this invention.

Claims (5)

被測定分子の質量を飛行時間法により特定し、飛行中の断片化により生じた断片粒子の中から、該特定された被測定分子に由来する断片粒子を抽出し、該抽出された断片粒子の質量を運動エネルギーに基づいて分離することにより、該被測定分子を同定することを特徴とする質量分析方法。 The mass of the molecule to be measured is specified by the time-of-flight method, and the fragment particles derived from the specified molecule to be measured are extracted from the fragment particles generated by the fragmentation during the flight. A mass spectrometric method comprising identifying a molecule to be measured by separating a mass based on kinetic energy. 請求項1記載の質量分析方法において、上記断片粒子の検出に際して、イオン及び中性粒子の双方のエネルギーを測定することにより、該断片粒子の質量分析を可能とすることを特徴とする質量分析方法。 2. The mass spectrometric method according to claim 1, wherein when the fragment particles are detected, the energy of both ions and neutral particles is measured to enable mass analysis of the fragment particles. . 請求項1記載の質量分析方法において、上記断片化を生じせしめる方法は、ポストソース分解(PSD)、衝突誘起解離(CID)、電子捕獲解離(ECD)、レーザー解離(LD)又は赤外多光子吸収解離(IRMPD)であることを特徴とする質量分析方法。 2. The mass spectrometric method according to claim 1, wherein the fragmentation is caused by post-source decomposition (PSD), collision-induced dissociation (CID), electron capture dissociation (ECD), laser dissociation (LD) or infrared multiphoton. A mass spectrometric method characterized by absorption dissociation (IRMPD). 請求項1記載の質量分析方法において、飛行時間及び運動エネルギーの測定を行う粒子検出器は、電子的励起によって電気信号を取り出す量子型粒子検出器であることを特徴とする質量分析方法。 2. The mass spectrometric method according to claim 1, wherein the particle detector that measures time of flight and kinetic energy is a quantum particle detector that extracts an electric signal by electronic excitation. 請求項1記載の質量分析方法において、飛行時間及び運動エネルギーの測定を行う粒子検出器は、粒子が衝突する吸収体の温度上昇を測定する熱型粒子検出器であることを特徴とする質量分析方法。
2. The mass spectrometric method according to claim 1, wherein the particle detector for measuring the time of flight and the kinetic energy is a thermal particle detector for measuring a temperature rise of an absorber with which particles collide. Method.
JP2005306628A 2005-10-21 2005-10-21 Mass spectrometry method Expired - Fee Related JP4997384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005306628A JP4997384B2 (en) 2005-10-21 2005-10-21 Mass spectrometry method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005306628A JP4997384B2 (en) 2005-10-21 2005-10-21 Mass spectrometry method

Publications (2)

Publication Number Publication Date
JP2007115556A true JP2007115556A (en) 2007-05-10
JP4997384B2 JP4997384B2 (en) 2012-08-08

Family

ID=38097551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005306628A Expired - Fee Related JP4997384B2 (en) 2005-10-21 2005-10-21 Mass spectrometry method

Country Status (1)

Country Link
JP (1) JP4997384B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108336A1 (en) * 2010-03-05 2011-09-09 独立行政法人産業技術総合研究所 High-speed particle detector for discriminating ionic valence
JP2019096480A (en) * 2017-11-22 2019-06-20 藤太郎 今坂 Flight time mass spectrometer and mass spectrometry method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090226A (en) * 1996-09-11 1998-04-10 Shimadzu Corp Method for determining amino acid sequence in peptide
JP2003068245A (en) * 2001-08-23 2003-03-07 Masashi Watanabe Time-of-flight mass spectrograph having quantitative energy correcting function
JP2003346705A (en) * 1998-02-06 2003-12-05 Perseptive Biosystems Inc Tandem time-of-flight mass spectrometer with delayed extraction, and method of using the same
JP2006518918A (en) * 2003-02-21 2006-08-17 ジヨーンズ ホプキンズ ユニバーシティ Tandem time-of-flight mass spectrometer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090226A (en) * 1996-09-11 1998-04-10 Shimadzu Corp Method for determining amino acid sequence in peptide
JP2003346705A (en) * 1998-02-06 2003-12-05 Perseptive Biosystems Inc Tandem time-of-flight mass spectrometer with delayed extraction, and method of using the same
JP2003068245A (en) * 2001-08-23 2003-03-07 Masashi Watanabe Time-of-flight mass spectrograph having quantitative energy correcting function
JP2006518918A (en) * 2003-02-21 2006-08-17 ジヨーンズ ホプキンズ ユニバーシティ Tandem time-of-flight mass spectrometer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108336A1 (en) * 2010-03-05 2011-09-09 独立行政法人産業技術総合研究所 High-speed particle detector for discriminating ionic valence
JP2011185642A (en) * 2010-03-05 2011-09-22 National Institute Of Advanced Industrial Science & Technology High-speed particle detector for discriminating ionic valence
US8872109B2 (en) 2010-03-05 2014-10-28 National Institute Of Advanced Industrial Science And Technology High-speed particle detector for discriminating charge states of ions
JP2019096480A (en) * 2017-11-22 2019-06-20 藤太郎 今坂 Flight time mass spectrometer and mass spectrometry method
JP7078382B2 (en) 2017-11-22 2022-05-31 藤太郎 今坂 Time-of-flight mass spectrometer and mass spectrometry method

Also Published As

Publication number Publication date
JP4997384B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
US7126114B2 (en) Method and system for mass analysis of samples
JP4488352B2 (en) Tandem time-of-flight mass spectrometer for molecular structure determination
JP6040174B2 (en) Pre-scan of mass-to-charge ratio range
US20110220786A1 (en) Tandem Time-of-Flight Mass Spectrometer
CN101523547A (en) Dual-polarity mass spectrometer
US8735810B1 (en) Time-of-flight mass spectrometer with ion source and ion detector electrically connected
US20160329197A1 (en) Mass spectrometer
US9881778B2 (en) Hybrid acquisition method incorporating multiple dissociation techniques
JP5126368B2 (en) Mass spectrometry method
JP2015121500A (en) Mass spectroscopy method and mass spectroscope apparatus
US8294086B2 (en) Multiplexing daughter ion spectrum acquisition from MALDI ionization
JP2010032227A (en) Mass analyzer and mass analyzing method
US7277799B2 (en) Isotope correlation filter for mass spectrometry
JP2008096353A (en) Method and device for analyzing mass
JP4997384B2 (en) Mass spectrometry method
JP5831347B2 (en) Mass spectrometer and mass spectrometry method
JP2020519855A (en) Optimized targeted analysis
JP6358172B2 (en) Protein or peptide analysis method and analysis apparatus
US9460903B2 (en) Glycopeptide analyzer
JP6107594B2 (en) Mass spectrometry method and mass spectrometer
JP2006275530A (en) Mass analyzing apparatus
JP2006092750A (en) Ion trap mass spectrometry and apparatus therefor
JP6156098B2 (en) Ion trap mass spectrometer
Ratcliffe Proteomic Strategies for Protein and Biomarker Identification by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry
Backlund Jr et al. Mass Spectrometry for Studying Protein Modifications and for Discovery of Protein Interactions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees