JP2867410B2 - Small size measuring instrument - Google Patents

Small size measuring instrument

Info

Publication number
JP2867410B2
JP2867410B2 JP4964789A JP4964789A JP2867410B2 JP 2867410 B2 JP2867410 B2 JP 2867410B2 JP 4964789 A JP4964789 A JP 4964789A JP 4964789 A JP4964789 A JP 4964789A JP 2867410 B2 JP2867410 B2 JP 2867410B2
Authority
JP
Japan
Prior art keywords
sample
measuring device
signal
detector
size measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4964789A
Other languages
Japanese (ja)
Other versions
JPH02228514A (en
Inventor
護 中筋
弘泰 清水
正平 鈴木
憲司 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP4964789A priority Critical patent/JP2867410B2/en
Publication of JPH02228514A publication Critical patent/JPH02228514A/en
Application granted granted Critical
Publication of JP2867410B2 publication Critical patent/JP2867410B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、荷電粒子線で試料上を走査した時に得ら
れる試料からの荷電粒子による信号から試料の微小寸法
を測定する微小寸法測定器に関するものである。
Description: TECHNICAL FIELD The present invention relates to a micro-size measuring device for measuring a micro-size of a sample from a signal due to charged particles from the sample obtained by scanning the sample with a charged particle beam. Things.

(従来の技術) 従来の電子線を用いた微小寸法測定器では、試料が帯
電するのを防止するため、低加速電圧の一次電子線が用
いられていた。
(Prior Art) In a conventional micro dimensional measuring device using an electron beam, a primary electron beam with a low accelerating voltage was used in order to prevent the sample from being charged.

(発明が解決しようとする課題) 上記の如き従来の技術においては、高加速電圧を用い
ることが出来なかったので、大きな検出信号を得ること
ができず、S/Nが悪いという問題点があった。
(Problems to be Solved by the Invention) In the conventional technology as described above, since a high accelerating voltage cannot be used, a large detection signal cannot be obtained, and the S / N is poor. Was.

そして、S/Nを上げるために試料の帯電防止策を施す
ことも試みられているが、装置が複雑化してしまうとい
う問題点があった。
Attempts have been made to prevent the sample from being charged in order to increase the S / N, but there is a problem that the apparatus becomes complicated.

(課題を解決するための手段) そこで本発明は、荷電粒子線を試料に入射させ、その
時試料から放出される信号から試料上のパターン寸法を
測定する微小寸法測定器において、試料室に低圧の水蒸
気、酸素等の酸素原子を含む気体を導入することを特徴
とする微小寸法測定器であり、また、試料を走査する荷
電粒子線は、対物レンズよりその焦点距離だけ上部に設
けられた圧力制限アパーチャの近傍を偏向中心として偏
向されることを特徴とする微小寸法測定器であり、さら
に低圧気体と試料からの荷電粒子との相互作用で作られ
る正と負の荷電粒子を別々に収拾する検出器を持ち、そ
れぞれの検出器からの差信号あるいは、単独の信号を信
号処理することを特徴とする微小寸法測定器である。
(Means for Solving the Problems) In view of the above, the present invention relates to a micro-size measuring instrument for measuring a pattern size on a sample from a signal emitted from the sample by injecting a charged particle beam into the sample. A micro-size measuring device characterized by introducing a gas containing oxygen atoms such as water vapor and oxygen, and a charged particle beam for scanning a sample is provided with a pressure limit provided only by its focal length above the objective lens. A micrometer that is deflected around the aperture as the center of deflection, and detects separately positive and negative charged particles created by the interaction between low-pressure gas and charged particles from the sample. This is a micro dimensional measuring device characterized by having a detector and performing signal processing of a difference signal from each detector or a single signal.

(作用) 試料室に水蒸気、酸素等の低圧の気体(例えば、20To
rr程度)を導入することにより、これら気体が試料から
の荷電粒子で電離され、導電性を持つようになるため、
試料の帯電は防止でき、試料の放射線損傷も大幅に軽減
できる。
(Operation) A low-pressure gas such as water vapor or oxygen (for example, 20
rr), these gases are ionized by charged particles from the sample and become conductive,
The charging of the sample can be prevented, and the radiation damage of the sample can be greatly reduced.

また、水蒸気が分解した酸素と炭素とが反応して一酸
化炭素、二酸化炭素となって気化するため、炭素が試料
上に堆積されない。
In addition, since oxygen and carbon, in which water vapor is decomposed, react with carbon to evaporate into carbon monoxide and carbon dioxide, carbon is not deposited on the sample.

従って、従来のものに比し高加速電圧(例えば2Kev以
上)を用いることができるため、試料からの荷電粒子が
低圧気体を電離することともあいまってS/Nを高めるこ
とができ、また、高加速電圧のため色収差が小さく、回
折も小さいので、荷電粒子線を小さく絞れ、寸法測定精
度が向上する。
Therefore, since a higher accelerating voltage (for example, 2 Kev or more) can be used as compared with the conventional one, the S / N can be increased in combination with ionization of the low-pressure gas by the charged particles from the sample, and Since the chromatic aberration is small and the diffraction is small due to the acceleration voltage, the charged particle beam can be narrowed down, and the dimension measurement accuracy is improved.

また微小アパーチャの近傍を偏向中心として荷電粒子
線が偏向されるので、広い領域を走査できる。
Further, since the charged particle beam is deflected around the minute aperture as the center of deflection, a wide area can be scanned.

さらに、検出器が正と負の荷電粒子を収拾するので、
検出感度をよくできる。検出器に大きい信号電流が流れ
れば、増幅器の増幅率を小さくでき、周波数特性がよく
なる。
In addition, the detector collects positive and negative charged particles,
The detection sensitivity can be improved. If a large signal current flows through the detector, the amplification factor of the amplifier can be reduced, and the frequency characteristics are improved.

〔実施例〕〔Example〕

第1図は本発明の微小寸法測定器の電子光学鏡筒を示
した説明図である。電子銃室2内の電子銃1から出た一
次電子線は電子銃室2の圧力制限アパーチャ28「以下、
微小穴という」から出て試料室21に入り、ターゲット27
に当たる。一次電子線は、この過程において、コンデン
サレンズ4と対物レンズ26でターゲット27上に集束され
るように制御され、また、偏向コイル6、7で試料上を
2次元的に走査される。この際、非点収差があれば非点
補正コイル5で補正される。試料室21にはバルブ22を通
じて水蒸気、酸素などの気体23が導入される。一次電子
線で走査されたターゲット27からは2次電子が放出さ
れ、バルブ22から導入された気体と相互作用することに
よってガスを電離し、電子とイオンのペアを多数個作
る。これらの荷電粒子は第2図に示した如く、軸中心に
配設された複数の電極を交互に接続してなる正群の電極
15Aと負群の電極15Bとからなる検出器15に入射し、それ
ぞれリード線11A、11Bハーメチックシール10A、10Bを通
じ真空外に取り出され、それぞれ増幅器11、12で増幅さ
れ、片側の信号は符号を反転され、信号処理回路14で寸
法測定に必要な量に処理される。信号処理回路14では、
増幅器11からの信号と増幅器12からの信号とを独立に処
理することも、両者の和信号(信号がほぼ2倍になる)
を作り出すこともできる。どの信号を使うかは測定する
試料によって最適のS/Nと必要な応答速度から決められ
る。電子銃室2はバルブ3を介して排気され高真空に保
たれる。
FIG. 1 is an explanatory view showing an electron optical lens barrel of a micro-size measuring instrument according to the present invention. The primary electron beam emitted from the electron gun 1 in the electron gun chamber 2 is applied to a pressure limiting aperture 28 of the electron gun chamber 2 "hereinafter,
Exits the sample chamber 21 and exits the target 27
Hit. In this process, the primary electron beam is controlled so as to be focused on the target 27 by the condenser lens 4 and the objective lens 26, and is scanned two-dimensionally on the sample by the deflection coils 6, 7. At this time, any astigmatism is corrected by the astigmatism correction coil 5. Gas 23 such as water vapor or oxygen is introduced into the sample chamber 21 through a valve 22. Secondary electrons are emitted from the target 27 scanned by the primary electron beam, and ionize the gas by interacting with the gas introduced from the valve 22 to form a large number of pairs of electrons and ions. As shown in FIG. 2, these charged particles are a positive group of electrodes formed by alternately connecting a plurality of electrodes arranged at the center of the axis.
The light enters the detector 15 composed of 15A and the negative electrode group 15B, is taken out of the vacuum through the lead wires 11A, 11B and hermetic seals 10A, 10B, respectively, is amplified by the amplifiers 11, 12, respectively, and the signal on one side has a sign. The signal is inverted and processed by the signal processing circuit 14 into an amount necessary for dimension measurement. In the signal processing circuit 14,
The signal from the amplifier 11 and the signal from the amplifier 12 can be processed independently, or the sum signal of the two (the signal is almost doubled)
Can also be produced. Which signal to use depends on the optimal S / N and required response speed depending on the sample to be measured. The electron gun chamber 2 is evacuated through a valve 3 and kept at a high vacuum.

試料室21の気体はバルブ9A、9Bを通じて排気され、微
小穴28を通じて電子銃室2側へ出てきた気体はバルブ
3′によって排気され、これらの差動排気によって電子
銃室2は高真空に保たれる。偏向器6、7で偏向される
電子線の軌道を横方向に拡大した軌道8で示されるよう
に、走査は微小穴28を中心に偏向されるので、微小穴28
の穴径が小さいにもかかわらず大きい領域を走査でき
る。微小穴28は、対物レンズ26の焦点距離だけレンズ主
面から離れた位置にあるので、軌道8は対物レンズ26を
出た後は試料にほぼ垂直に入射する。
The gas in the sample chamber 21 is exhausted through the valves 9A and 9B, and the gas that has come out to the electron gun chamber 2 through the minute holes 28 is exhausted by the valve 3 '. Will be kept. As shown by a trajectory 8 in which the trajectory of the electron beam deflected by the deflectors 6 and 7 is expanded in the lateral direction, the scanning is deflected around the microhole 28,
A large area can be scanned despite the small hole diameter. Since the minute hole 28 is located at a position apart from the lens main surface by the focal length of the objective lens 26, the orbit 8 enters the sample almost perpendicularly after exiting the objective lens 26.

検出部の詳細を第2図に示す。検出器15は、軸中心に
配設された複数の電極を交互に接続してなる正群の電極
15Aと負群の電極15Bとを有する。電極15Aと電極15Bとは
反対符号のバイアスが印加されている。すなわち、電極
15Aには負バイアスが、電極15Bには正バイアスが印加さ
れている。気体は2次電子との相互作用で作られた電子
やイオンはすみやかにどちらかの電極に収拾されるため
(電子、負イオンは電極15Bに、正イオンは電極15Aに収
拾される)電子やイオンが空間に長く溜ることがなく検
出部の応答速度は速くなる。負イオンあるいは電子が電
極15Bに入射すると、負極をアースされた電源30の正極
と電極15Bとに接続された高抵抗31の両端に発生する信
号が増幅器32で増幅され、信号処理回路14へ入力され
る。ここで抵抗33は増幅率を調整するポテンショメータ
である。他方、正イオンが電極15Aに入射すると、正極
をアースされた電源34の負極と電極15Aとに接続された
高抵抗35の両端に発生する信号が増幅器36で増幅され、
その後、反転回路13で反転され、信号処理回路14へ入力
される。
FIG. 2 shows the details of the detection unit. Detector 15 is a positive group of electrodes formed by alternately connecting a plurality of electrodes arranged at the axis center.
15A and a negative electrode group 15B. A bias of the opposite sign is applied to the electrodes 15A and 15B. That is, the electrode
A negative bias is applied to 15A and a positive bias is applied to the electrode 15B. Since gas and electrons and ions created by the interaction with secondary electrons are immediately collected by one of the electrodes (electrons and negative ions are collected by the electrode 15B and positive ions are collected by the electrode 15A). The ions do not accumulate in space for a long time, and the response speed of the detection unit is increased. When negative ions or electrons enter the electrode 15B, the signal generated at both ends of the high resistance 31 connected to the positive electrode of the power supply 30 and the electrode 15B whose negative electrode is grounded is amplified by the amplifier 32 and input to the signal processing circuit 14. Is done. Here, the resistor 33 is a potentiometer for adjusting the amplification factor. On the other hand, when positive ions are incident on the electrode 15A, a signal generated at both ends of the high resistance 35 connected to the negative electrode of the power supply 34 whose positive electrode is grounded and the electrode 15A is amplified by the amplifier 36,
Thereafter, the signal is inverted by the inverting circuit 13 and input to the signal processing circuit 14.

従って、信号検出回路14は、試料からの2次電子のみ
でなく、電離された正イオン、負イオンをも信号として
得るので、大きな信号を得ることができる。
Accordingly, the signal detection circuit 14 obtains not only the secondary electrons from the sample but also the ionized positive ions and negative ions as signals, so that a large signal can be obtained.

なお、第1図では、簡単のために電極15を電極15A、1
5Bに分離して示していないが、第1図の電極15は、第2
図の電極15と図面表現こそ異なるものの、実質的に同じ
ものである。また、電極17も軸対称に2種類の電極17
A、17B(不図示)が配設された構造であり、電極15A、1
5Bにそれぞれ接続されているもので、排気路中にあるた
めに、気体の通過孔が設けられており、そのことを破線
で表現している。
In FIG. 1, the electrode 15 is connected to the electrodes 15A and 15A for simplicity.
Although not shown separately in FIG. 5B, the electrode 15 in FIG.
Although the drawing is different from the electrode 15 in the figure, it is substantially the same. The electrode 17 is also axially symmetric with two types of electrodes 17.
A, 17B (not shown) is provided, and the electrodes 15A, 1B
5B, each of which is connected to 5B and is in the exhaust path, so that a gas passage hole is provided, which is represented by a broken line.

また、電極15A、15Bの少くとも表面はBe、C等の低原
子量金属でコーティングされているので、粒子が入射し
た時のここからの各種粒子の再放出を小さく押さえ、こ
れらによる雑音の増加を防ぐことができる。
In addition, since at least the surface of the electrodes 15A and 15B is coated with a low atomic weight metal such as Be , C, etc., when particles are incident, re-emission of various particles from here is suppressed to a small extent, thereby increasing noise. Can be prevented.

また、対物レンズ26は図示の如く、上極18を磁束密度
が飽和しないように十分厚くし、下極19を逆に飽和する
ように薄くすることによって、磁界分布を試料27側へ移
動させ、インレンズ方式のレンズと同様の収差特性を持
たせている。そして、対物レンズ26の下極19を試料27に
近づけることにより、上述のインレンズ方式に近づける
と共に、試料27から対物レンズ穴を見込む立体角を十分
大きくすることにより、試料から光軸と大きい角度を持
つ方向に放出された2次電子も有効に検出器の方向へ向
かわすことができる(対物レンズでけられることがな
い)。
Further, as shown in the figure, the objective lens 26 moves the magnetic field distribution toward the sample 27 by making the upper pole 18 sufficiently thick so that the magnetic flux density does not saturate, and making the lower pole 19 thin so as to saturate the reverse pole. Aberration characteristics similar to those of an in-lens type lens are provided. Then, by bringing the lower pole 19 of the objective lens 26 closer to the sample 27, the above-described in-lens system is approached, and by increasing the solid angle at which the objective lens hole is viewed from the sample 27 sufficiently large, a large angle from the sample to the optical axis is obtained. The secondary electrons emitted in the direction having the above can also be effectively directed toward the detector (they are not shaken by the objective lens).

また、対物レンズ26の上側(電子銃室2側)に検出器
15を設けたので、2次電子が検出器15に達するまでの移
動距離が長くなり、ガスと2次電子との十分な相互作用
が可能となり、検出器から大きい信号電流を得ることが
できる。
A detector is provided above the objective lens 26 (on the side of the electron gun chamber 2).
Since the 15 is provided, the moving distance until the secondary electrons reach the detector 15 becomes longer, sufficient interaction between the gas and the secondary electrons becomes possible, and a large signal current can be obtained from the detector.

なお、第1図の符号20、24、25は真空シールである。 Reference numerals 20, 24 and 25 in FIG. 1 denote vacuum seals.

(発明の効果) 以上述べたように本発明によれば、大きな検出信号を
得ることができる結果、S/Nの良い信号波形が得られる
ので、高精度の微小寸法測定器が得られる。
(Effects of the Invention) As described above, according to the present invention, a large detection signal can be obtained, and as a result, a signal waveform with a good S / N can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の微小寸法測定器の電子光学鏡筒の一実
施例を示した説明図、第2図は検出部の具体的な構成を
示す説明図である。 (主要部分の符号の説明) 15(15A、15B)…電極、22…バルブ、23…気体、28…圧
力制限アパーチャ
FIG. 1 is an explanatory view showing an embodiment of the electron optical column of the micro-size measuring instrument according to the present invention, and FIG. 2 is an explanatory view showing a specific configuration of a detecting section. (Explanation of reference numerals of main parts) 15 (15A, 15B) ... electrode, 22 ... valve, 23 ... gas, 28 ... pressure limiting aperture

───────────────────────────────────────────────────── フロントページの続き (72)発明者 守田 憲司 東京都品川区西大井1丁目6番3号 株 式会社ニコン大井製作所内 (56)参考文献 特開 昭63−12146(JP,A) 実開 昭61−162936(JP,U) (58)調査した分野(Int.Cl.6,DB名) G01B 15/00 - 15/08──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kenji Morita 1-6-3 Nishioi, Shinagawa-ku, Tokyo Nikon Oi Works Co., Ltd. (56) References JP-A-63-12146 (JP, A) 61-162936 (JP, U) (58) Fields investigated (Int. Cl. 6 , DB name) G01B 15/00-15/08

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】荷電粒子線を試料に入射させ、その時試料
から放出される信号から試料上のパターン寸法を測定す
る微少寸法測定器において、試料室に低圧の水蒸気、酸
素等の酸素原子を含む気体を導入することを特徴とする
微少寸法測定器。
A micrometer for measuring a pattern dimension on a sample from a signal emitted from the sample by injecting a charged particle beam into the sample, wherein the sample chamber contains low-pressure oxygen atoms such as water vapor and oxygen. A micro-size measuring device characterized by introducing gas.
【請求項2】請求項(1)記載の微少寸法測定器におい
て、試料を走査する荷電粒子線は、対物レンズよりその
焦点距離だけ上部に設けられた圧力制限アパーチャの近
傍を偏向中心として偏向されることを特徴とする微少寸
法測定器。
2. The microscopic measuring device according to claim 1, wherein the charged particle beam for scanning the sample is deflected around a pressure limiting aperture provided above the objective lens by a focal length thereof as a deflection center. A small size measuring device characterized by the following.
【請求項3】請求項(1)記載の微少寸法測定器におい
て、低圧気体と試料からの荷電粒子との相互作用で作ら
れる正と負の荷電粒子を別々に収拾する検出器を持ち、
それぞれの検出器からの差信号あるいは、単独の信号処
理することによって試料上のパターンの寸法を測定する
ことを特徴とする微少寸法測定器。
3. The micrometer according to claim 1, further comprising a detector for separately collecting positive and negative charged particles produced by the interaction between the low-pressure gas and the charged particles from the sample,
A minute dimension measuring device characterized by measuring a dimension of a pattern on a sample by processing a difference signal from each detector or a single signal processing.
JP4964789A 1989-03-01 1989-03-01 Small size measuring instrument Expired - Lifetime JP2867410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4964789A JP2867410B2 (en) 1989-03-01 1989-03-01 Small size measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4964789A JP2867410B2 (en) 1989-03-01 1989-03-01 Small size measuring instrument

Publications (2)

Publication Number Publication Date
JPH02228514A JPH02228514A (en) 1990-09-11
JP2867410B2 true JP2867410B2 (en) 1999-03-08

Family

ID=12836994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4964789A Expired - Lifetime JP2867410B2 (en) 1989-03-01 1989-03-01 Small size measuring instrument

Country Status (1)

Country Link
JP (1) JP2867410B2 (en)

Also Published As

Publication number Publication date
JPH02228514A (en) 1990-09-11

Similar Documents

Publication Publication Date Title
US6069356A (en) Scanning electron microscope
EP2365514B1 (en) Twin beam charged particle column and method of operating thereof
AU748781B2 (en) Environmental SEM with a magnetic field for improved secondary electron detection
JP3570393B2 (en) Quadrupole mass spectrometer
JP2000173520A (en) Particle beam device
JPH071686B2 (en) Ion micro analyzer
US5155368A (en) Ion beam blanking apparatus and method
AU748840B2 (en) Environmental SEM with multipole fields for improved secondary electron detection
US5032724A (en) Multichannel charged-particle analyzer
AU2017220662B2 (en) Extraction system for charged secondary particles for use in a mass spectrometer or other charged particle device
JP2867410B2 (en) Small size measuring instrument
JP2000232052A (en) Charged particle beam transfer aligner
US5689112A (en) Apparatus for detection of surface contaminations on silicon wafers
JPH06325719A (en) Charged particle beam device
JP3844253B2 (en) Particle beam chromatic aberration compensation column
AU2017220663B2 (en) Extraction system for charged secondary particles for use in a mass spectrometer or other charged particle device
US3783278A (en) Single magnet tandem mass spectrometer
JP2759791B2 (en) Ion beam equipment
Ioanoviciu et al. Compact double focusing mass spectrometer design for partial pressure measurements
JPS6313250A (en) Ion beam device
JPS5838909B2 (en) ion source
JPH0349177B2 (en)
JPH06267468A (en) Electron gun for electrificatyion neutralization
JPS6273541A (en) Scanning electron microscope and similar apparatus
JPH0624114B2 (en) Mass spectrometer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071225

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20091225

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091225

Year of fee payment: 11