JPS5923404B2 - Corrosion-resistant transparent conductive film formation method - Google Patents

Corrosion-resistant transparent conductive film formation method

Info

Publication number
JPS5923404B2
JPS5923404B2 JP12431678A JP12431678A JPS5923404B2 JP S5923404 B2 JPS5923404 B2 JP S5923404B2 JP 12431678 A JP12431678 A JP 12431678A JP 12431678 A JP12431678 A JP 12431678A JP S5923404 B2 JPS5923404 B2 JP S5923404B2
Authority
JP
Japan
Prior art keywords
conductive film
corrosion
transparent conductive
resistant transparent
film formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12431678A
Other languages
Japanese (ja)
Other versions
JPS5550221A (en
Inventor
昇 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuda Seisakusho Co Ltd
Original Assignee
Tokuda Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuda Seisakusho Co Ltd filed Critical Tokuda Seisakusho Co Ltd
Priority to JP12431678A priority Critical patent/JPS5923404B2/en
Publication of JPS5550221A publication Critical patent/JPS5550221A/en
Publication of JPS5923404B2 publication Critical patent/JPS5923404B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Liquid Crystal (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Surface Treatment Of Glass (AREA)
  • Physical Vapour Deposition (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Description

【発明の詳細な説明】 本発明は、耐蝕性の透明導電膜を形成する方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of forming a corrosion-resistant transparent conductive film.

例えば液晶表示装置に用いる透明なガラスまたはプラス
チックプレートの表面に透明で耐蝕性のある導電膜を形
成する必要がある場合、従来は、酸化インジウム、酸化
錫等の金属をスパッタリングにより透明なプレート上に
付着させていた。
For example, when it is necessary to form a transparent, corrosion-resistant conductive film on the surface of a transparent glass or plastic plate used in a liquid crystal display device, conventionally, a metal such as indium oxide or tin oxide is sputtered onto the transparent plate. It was attached.

ところで、上記酸化インジウムや酸化錫よりも二酸化チ
タンTi02を使用する方が、耐蝕性も高く望ましいと
考えられてきたが、二酸化チタンは1000λの膜で約
50〜100にΩ/d以上の高い抵抗値をもつことと、
再元性が悪く、さらに抵抗値のばらつきも大きいなどの
点から、実用化は困難とされてきた。本発明は、この問
題を解決し、二酸化チタンを使用しながら抵抗値が低く
、かつそのばらつきも少い耐蝕性透明導電膜を得る方法
を提供することを目的とする。
Incidentally, it has been thought that it is more desirable to use titanium dioxide Ti02 than the above-mentioned indium oxide or tin oxide because of its high corrosion resistance, but titanium dioxide has a high resistance of about 50 to 100Ω/d or more in a 1000λ film. having a value and
Practical implementation has been considered difficult due to poor reproducibility and large variations in resistance values. An object of the present invention is to solve this problem and provide a method for obtaining a corrosion-resistant transparent conductive film that uses titanium dioxide and has a low resistance value and small variations in resistance value.

この目的は、本発明によれば、二酸化チタンTiO2、
に、1〜10重量パーセントの五酸化タンタルTa05
を加えた材料をターゲットとしてスパッタリングするこ
とにより達成される。
This purpose is achieved according to the invention by titanium dioxide TiO2,
1 to 10 weight percent of tantalum pentoxide Ta05
This is achieved by sputtering using a target material with added .

二酸化チタンTiO2に種々の重量パーセントの五酸化
タンタルTaO5を加えた材料をターゲットとして厚さ
1000λの導電膜を形成した場合における導電膜の電
気抵抗値を測定し、これをプロットして曲線で結んだグ
ラフを第1図に示す。
The electrical resistance value of the conductive film was measured when a conductive film with a thickness of 1000λ was formed using a material containing titanium dioxide TiO2 and various weight percentages of tantalum pentoxide TaO5 as a target, and the values were plotted and connected by a curve. The graph is shown in Figure 1.

このグラフにおいて、五酸化タンタルの重量パーセント
が1%未満では実測抵抗値はグラフに示した曲線に対し
てかなりのばらつきを示した。一方、五酸化タンタルの
重量パーセントが10%を超えると、抵抗値は同様に曲
線に対してかなりのばらつきを示した。しかしながら、
同重量パーセントが1ないし10%の範囲Sでは、プロ
ット値はほとんど同曲線上に位置しており、ばらつきは
見られなかつた。この事実は、与えられた電気抵抗値を
もつ薄膜を、五酸化タンタルの重量パーセントを予め選
択することによつて得ることができることを意味する。
そして、範囲s内では、他の数値範囲におけるよりも薄
膜の抵抗値はかなり低く、ほぼ6重量パーセント付近で
最低値をとる。周知のように、スパッタリングはアルゴ
ンガス等の不活性ガスの低圧雰囲気中に試料および陰極
としてのターゲットを位置させて行なう。実験によれば
、雰囲気ガスとしてアルゴンArを用い、これに対し酸
素ガス02を適当量加えた場合に好ましい結果が得られ
ることが判明した。その結果を、横軸に酸素分圧のパー
セントを縦軸に薄膜の電気抵抗をとつた第2図のグラフ
に示す。
In this graph, when the weight percent of tantalum pentoxide was less than 1%, the measured resistance values showed considerable variation with respect to the curve shown in the graph. On the other hand, when the weight percent of tantalum pentoxide exceeded 10%, the resistance values similarly showed considerable variation over the curves. however,
In the range S where the weight percent was 1 to 10%, the plotted values were almost on the same curve, and no variation was observed. This fact means that a thin film with a given electrical resistance value can be obtained by preselecting the weight percentage of tantalum pentoxide.
Within the range s, the resistance value of the thin film is considerably lower than in other numerical ranges, reaching a minimum value around 6 weight percent. As is well known, sputtering is performed by positioning a sample and a target serving as a cathode in a low-pressure atmosphere of an inert gas such as argon gas. According to experiments, it has been found that favorable results can be obtained when argon is used as the atmospheric gas and an appropriate amount of oxygen gas 02 is added thereto. The results are shown in the graph of FIG. 2, with the percentage of oxygen partial pressure on the horizontal axis and the electrical resistance of the thin film on the vertical axis.

このグラフから明らかなように、アルゴンと酸素の混合
気の全圧に対して酸素の分圧が0.1ないし10%であ
る範囲T内では低い抵抗値が得られ、特に4(fl)の
近傍では最も低い値が得られる。よつて、第1図および
第2図における最低抵抗値附近の重量パーセントおよび
分圧パーセントを採用することによつて最も低い抵抗値
の導電膜が得られることになる。なお、酸素分圧につい
ては、スパツタリングに際しての成膜速度によつて多少
変化が生じ、特に成膜速度が小さい場合には酸素の添加
に代えて装置内に存在するH2Oが酸素を添加したと同
じ結果をまねいて同様な効果をもたらす。
As is clear from this graph, a low resistance value is obtained within the range T where the partial pressure of oxygen is 0.1 to 10% of the total pressure of the argon-oxygen mixture, and especially at 4 (fl). The lowest value is obtained in the neighborhood. Therefore, by adopting the weight percentage and partial pressure percentage near the lowest resistance value in FIGS. 1 and 2, a conductive film with the lowest resistance value can be obtained. Note that the oxygen partial pressure will vary somewhat depending on the film formation rate during sputtering, and in particular when the film formation rate is low, the oxygen partial pressure will be replaced by H2O present in the apparatus instead of adding oxygen, which is the same as adding oxygen. Copying results and producing similar effects.

したがつて、本発明の方法によれば、従来、実用化が困
難と考えられていた二酸化チタンによる耐蝕性透明導電
膜を希望の抵抗値をもつように形成でき、製品は抵抗値
が低く、良好な耐蝕性透明導電膜を具えるなどの優れた
効果が得られる。
Therefore, according to the method of the present invention, a corrosion-resistant transparent conductive film made of titanium dioxide, which has been thought to be difficult to put into practical use, can be formed to have a desired resistance value, and the product has a low resistance value. Excellent effects such as a transparent conductive film with good corrosion resistance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、ターゲツト材料への五酸化タンタルの添加量
と導電膜の抵抗値との関係を示す特性線図、第2図は、
雰囲気ガスへの酸素の添加量と導電膜抵抗値の関係を示
す特性線図であり、いずれも膜厚1000λにおける実
測値のプロツトによつて得られた曲線を示す。
Figure 1 is a characteristic diagram showing the relationship between the amount of tantalum pentoxide added to the target material and the resistance value of the conductive film.
FIG. 2 is a characteristic diagram showing the relationship between the amount of oxygen added to the atmospheric gas and the resistance value of the conductive film, both of which are curves obtained by plotting actual measured values at a film thickness of 1000λ.

Claims (1)

【特許請求の範囲】 1 二酸化チタン(TiO_2)に1ないし10重量パ
ーセントの五酸化タンタル(Ta_2O_5)を添加し
た材料をターゲットとしてスパツタリングにより成膜す
ることよりなる耐蝕性透明導電膜形成方法。 2 アルゴンガス中に0.1ないし10%の分圧をもつ
ように酸素ガスを添加した雰囲気中でスパツタリングを
行なうことよりなる特許請求の範囲第1項記載の耐蝕性
透明導電膜形成方法。
[Claims] 1. A method for forming a corrosion-resistant transparent conductive film, which comprises forming a film by sputtering using a material in which 1 to 10 weight percent of tantalum pentoxide (Ta_2O_5) is added to titanium dioxide (TiO_2) as a target. 2. The method for forming a corrosion-resistant transparent conductive film according to claim 1, which comprises performing sputtering in an atmosphere in which oxygen gas is added to argon gas to have a partial pressure of 0.1 to 10%.
JP12431678A 1978-10-09 1978-10-09 Corrosion-resistant transparent conductive film formation method Expired JPS5923404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12431678A JPS5923404B2 (en) 1978-10-09 1978-10-09 Corrosion-resistant transparent conductive film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12431678A JPS5923404B2 (en) 1978-10-09 1978-10-09 Corrosion-resistant transparent conductive film formation method

Publications (2)

Publication Number Publication Date
JPS5550221A JPS5550221A (en) 1980-04-11
JPS5923404B2 true JPS5923404B2 (en) 1984-06-01

Family

ID=14882304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12431678A Expired JPS5923404B2 (en) 1978-10-09 1978-10-09 Corrosion-resistant transparent conductive film formation method

Country Status (1)

Country Link
JP (1) JPS5923404B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797928B2 (en) * 1988-06-03 1995-10-25 井関農機株式会社 Rolling equipment for mobile farm work machines
JPH07114585B2 (en) * 1988-06-17 1995-12-13 井関農機株式会社 Horizontal control device for paddy farm machinery

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145645U (en) * 1984-08-30 1986-03-26 臼井国際産業株式会社 Torsional vibration damper
JPH0160054U (en) * 1987-10-12 1989-04-17
JPH0519700U (en) * 1991-08-28 1993-03-12 株式会社フコク damper
US7214295B2 (en) 2001-04-09 2007-05-08 Vishay Dale Electronics, Inc. Method for tantalum pentoxide moisture barrier in film resistors
JP5173512B2 (en) * 2008-03-25 2013-04-03 財団法人神奈川科学技術アカデミー Conductor and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797928B2 (en) * 1988-06-03 1995-10-25 井関農機株式会社 Rolling equipment for mobile farm work machines
JPH07114585B2 (en) * 1988-06-17 1995-12-13 井関農機株式会社 Horizontal control device for paddy farm machinery

Also Published As

Publication number Publication date
JPS5550221A (en) 1980-04-11

Similar Documents

Publication Publication Date Title
JP3980643B2 (en) Method for coating substrate with titanium dioxide
US4548691A (en) Thermally insulating glazing
US4399015A (en) Method for fabricating an indium tin oxide film for a transparent electrode
JP2651203B2 (en) Transparent body and method for producing the same
US5045235A (en) Transparent conductive film
GB1336559A (en) Metal oxide coatings
DE3906453A1 (en) METHOD FOR COATING SUBSTRATES MADE OF TRANSPARENT MATERIAL, FOR EXAMPLE FROM FLOATGLASS
JPS5923404B2 (en) Corrosion-resistant transparent conductive film formation method
JP4067141B2 (en) Transparent conductive film, method for producing the same, and sputtering target
CN102636931A (en) Electro-chromic layer, coated element and preparation method of coated element
CN106574361B (en) Ag alloy sputtering targets, the manufacture method of Ag alloy sputtering targets, the manufacture method of Ag alloy films and Ag alloy films
JPH06136159A (en) Transparent conductive film and its production
CN102951854A (en) Neutral color double silver composite structure low radiation coated glass and manufacturing process thereof
JPS59204625A (en) Manufacture of transparent electrically conductive film
JPH04206403A (en) Transparent conductive coating, transparent conductive film and analogue touch panel
JPH04277408A (en) Transparent electrode
JPS6215961B2 (en)
JP3079724B2 (en) Method for producing high-density ITO sintered body
US2932569A (en) Silver alloy for silver iodide batteries
JPS6139321A (en) Method of producing tin oxide conductive film
JPH04308612A (en) Transparent conductive membrane and manufacture thereof, transparent conductive film, and analog touch-panel
SU465672A1 (en) Method of manufacturing gas discharge display panel
JPH0370328B2 (en)
JPH10183333A (en) Formation of transparent conductive film
JPH01272006A (en) Transparent conductive film