JPS5923403A - Synthetic silica and electronic part sealing resin composition containing same - Google Patents

Synthetic silica and electronic part sealing resin composition containing same

Info

Publication number
JPS5923403A
JPS5923403A JP13324982A JP13324982A JPS5923403A JP S5923403 A JPS5923403 A JP S5923403A JP 13324982 A JP13324982 A JP 13324982A JP 13324982 A JP13324982 A JP 13324982A JP S5923403 A JPS5923403 A JP S5923403A
Authority
JP
Japan
Prior art keywords
silica
synthetic silica
parts
resin composition
synthetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13324982A
Other languages
Japanese (ja)
Other versions
JPS6310846B2 (en
Inventor
清 横川
和雄 神屋
哲夫 吉田
巳喜男 塩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP13324982A priority Critical patent/JPS5923403A/en
Publication of JPS5923403A publication Critical patent/JPS5923403A/en
Publication of JPS6310846B2 publication Critical patent/JPS6310846B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は合成シリカ、特には電子部品封止用樹脂組成物
の充填剤として好適とさ扛る合成りリカおよびこrL’
e含有する電子部品封止用樹脂組成物に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to synthetic silica, particularly synthetic silica and resin composition suitable as fillers for resin compositions for encapsulating electronic components.
The present invention relates to a resin composition for encapsulating electronic components containing e.

電子部品は一般にこれをその外部環境から保護するため
にセラミックパッケージまたは樹脂などで封止さしてい
るが、この封止材料については価格および生産性から合
成樹脂組成物が汎用さnている。この脅威樹脂組成物は
有機樹脂とシリカを主体とする無機質充填剤とから構成
さ扛、この無機質充填剤としては、シリカ系充填剤が最
も好ましいものとさ扛、はとんどの樹脂封止材料にシリ
カ系充填剤が利用さ扛ている。このシリカ系充填剤は結
晶タイプおよび非結晶タイプに大別さ扛、そnらは各々
一長一短を有し、目的、用途々どに応じて使いわけらn
ている。
Electronic components are generally sealed with a ceramic package or resin to protect them from the external environment, but synthetic resin compositions are commonly used as sealing materials due to cost and productivity. This dangerous resin composition is composed of an organic resin and an inorganic filler mainly composed of silica. As this inorganic filler, a silica-based filler is most preferable. Silica-based fillers are used in this process. These silica-based fillers are broadly classified into crystalline and non-crystalline types, each of which has advantages and disadvantages, and can be used depending on the purpose and application.
ing.

従来、シリカ系充填剤については、天然の鉱石を精製す
ることなく粉末化したものあるいは天然の鉱石全水洗し
ぶつ酸処理してから温度1000〜1800℃で焼結ま
たは溶融したのち、粉砕して得ら扛る石英粉が使用さし
ている。
Conventionally, silica-based fillers are made by powdering natural ores without refining them, or by washing the natural ores with water and treating them with acid, then sintering or melting them at a temperature of 1,000 to 1,800 degrees Celsius, and then pulverizing them. Quartz powder is used.

ところが、この種の樹脂組成物で封止さnた記憶素子に
ついては、この樹脂組成物を構成するシリカ系充填剤中
に微量含ま扛ているウラン、トリウムなどの放射性元累
から放出さするa線によって、この記憶素子が誤動作を
起すという問題が生じているため、この解決が望まれて
いる。そのためこの記憶素子封止用樹脂組成物に使用す
るシリカ系充填剤を現在市販さしている各種の合成シリ
カ、例えば四塩化けい累を火炎加水分解して得ら扛る乾
式シリカ、水和けい酸ナトリウムを塩酸で中和すること
Kよシ合成さ扛る湿式シリカなどを使用することも検討
さrたが、とtらはいず牡もその平均粒子径がmμ以下
のオーダーの微粒子で比比表面積(BET法)も50t
r?/f以上あシ、このようなものは有機樹脂に大量に
充填することができず、したがって電子部品封止用樹脂
組成物に利用することができないということが知nてい
る。
However, with regard to memory elements sealed with this type of resin composition, a. There is a problem in that the memory element malfunctions due to the wires, so a solution to this problem is desired. Therefore, the silica-based filler used in this memory element sealing resin composition is made of various synthetic silicas currently on the market, such as dry silica obtained by flame hydrolysis of silica tetrachloride, and hydrated sodium silicate. The use of synthesized wet silica by neutralizing it with hydrochloric acid has also been considered; BET method) is also 50t
r? It is known that such substances cannot be filled into organic resins in large quantities and therefore cannot be used in resin compositions for encapsulating electronic components.

また、上記湿式シリカは、と扛に残存するアルカリイオ
ンを牛導体などの電子部品封止用樹脂のだめの充填剤と
して要求さ扛るまでに除去することが不可能に近く純度
的にも不適当である。
In addition, the above-mentioned wet silica is unsuitable in terms of purity, as it is nearly impossible to remove the alkali ions remaining in the process before the process is completed, which is required as a filler for resin pots for sealing electronic components such as conductors. It is.

さらに合成シリカとして合成石英を粉砕してなるものを
あげることができるが、このものは前述した乾式シリカ
と比較した場合□、溶融ガラス化工程が余儀なくさnる
ため、熱エネルギーとして多量の水素および酸素が必要
であシコスト高となる#丘か、合成石英インゴットはガ
ラス化していることから非常に硬く微粉砕化が困難であ
シ、また微粉砕化時においては異物の混入や汚染等を避
けることができないという不利がある。
In addition, synthetic silica can be made by crushing synthetic quartz, but compared to the dry silica described above, this requires a melting and vitrification process, so it requires a large amount of hydrogen and heat energy. Since synthetic quartz ingots are vitrified, they are very hard and difficult to pulverize, and when pulverizing them, avoid contamination and contamination with foreign substances. There is a disadvantage of not being able to do so.

即ち、電子部品封止用に好適とさnる高充填可能な高純
度シリカは現在のところ存在せず入手が不可能とさnて
いる。
That is, high-purity silica suitable for encapsulating electronic components and capable of being highly filled does not currently exist and is difficult to obtain.

本発明はと牡らの不利を解決することのできる電子部品
封止用樹脂組成物として使用することのできる合成シリ
カとこn’i含有してなる電子部品封止用樹脂組成物に
関するものでア)、とnは蒸留精製した加水分解し得る
基を有するけい素化合物から合成さ扛る微粉末シリカを
、団粒状または塊状に成形したのち、温度1000〜1
800℃で焼成してなる合成シリカに関する第1発明と
、熱硬化性樹脂または熱可塑性樹脂100重量部にこの
第1発明の合成シリカを50〜800重量部添加してな
る電子部品封止用樹脂組成物に関する第2発明とよシな
るものである。
The present invention relates to a resin composition for encapsulating electronic components containing synthetic silica, which can be used as a resin composition for encapsulating electronic components, which can overcome the disadvantages of the above. ), and n are finely powdered silica synthesized from a distilled and purified silicon compound having a hydrolyzable group, formed into aggregates or lumps, and then heated at a temperature of 1000 to 1
A first invention relating to synthetic silica fired at 800°C, and a resin for encapsulating electronic components, which is obtained by adding 50 to 800 parts by weight of the synthetic silica of the first invention to 100 parts by weight of a thermosetting resin or thermoplastic resin. This invention is different from the second invention regarding the composition.

とnを説明すると、本発明者らは、平均粒子径が1mμ
〜100mμの非常に細かい微粉末シリカを電子部品封
止用樹脂組成物の充填剤として利用できるように鋭意検
討を重ねた結果、微粉末シリカを1μm〜数−の大きさ
の団粒状に造粒するかあるいは水などの液体を添加し混
練することによって塊状の可塑物としたのち、とlrL
!−1000〜1800℃の温度で焼成することによっ
て、平均粒子径が1μm〜100μmのシリカ粉末もで
きることを見出して本発明を完成させたものである。
and n, the inventors found that the average particle diameter is 1 mμ
As a result of extensive research into the use of extremely fine powdered silica of ~100 mμ as a filler in resin compositions for encapsulating electronic components, we have found that the fine powdered silica has been granulated into aggregates with a size of 1 μm to several micrometers. After making a lumpy plastic material by adding liquid such as water or kneading it, and lrL
! The present invention was completed by discovering that silica powder having an average particle size of 1 μm to 100 μm can be produced by firing at a temperature of −1000 to 1800° C.

本発明の第1発明の脅威シリカを作るための始発材料と
さ牡るけい素化合物としては、例えば式RtSi、¥4
−4(ここにRは水素原子または−価炭化水素基、Xは
加水分解性を有する原子もしくは基、tばO〜3)で示
さnるシラン化合物あるいは該シラン化合物の1種もし
くけ2種以上を加水分解して得らnるシロキサン化合物
を挙げることができ、具体的にはテトラクロロシラン(
St C1、)、トリクロロシラン(H8t CIB 
) 、メチルトリクロロシラン(CHB S ic l
B ) 、ジメチルジクロロシラ7C(CHa)I S
jC!f )、テトラメトキシシラン[S i (OC
Hs )番〕メチルトリメトキシシラン〔CB、Sイ(
OCHs)3〕、オフこnはその一種または二種以上の
混合物として使用することができる。
As the silicon compound used as the starting material for making the silica of the first invention, for example, the formula RtSi, ¥4
-4 (wherein R is a hydrogen atom or a -valent hydrocarbon group, X is an atom or group having hydrolyzability, and t is O~3), or one or two of the silane compounds Examples of siloxane compounds obtained by hydrolyzing the above compounds include tetrachlorosilane (
St C1, ), trichlorosilane (H8t CIB
), methyltrichlorosilane (CHB Sic I
B), dimethyldichlorosilane 7C(CHa)IS
jC! f ), tetramethoxysilane [S i (OC
Hs ) number] Methyltrimethoxysilane [CB, S (
OCHs)3], off-con can be used alone or as a mixture of two or more thereof.

上記したようなけい累化会物全用いて微粉末シリカを合
成するにあたっては種々の方法を採用することができこ
nには例えば精製したけい素化合物を常法によシ加水分
解したのち(湿式法)、温度1000℃未満で加熱(仮
焼)する方法あるいは精製したけい素化合物を酸水素炎
などによシ分解する方法(乾式法)などをあげることが
でき、と扛らの方法は湿式法で除去することができない
ような有機基含有けい素化合物に特に好適である。
Various methods can be used to synthesize fine powdered silica using all the silicon complexes mentioned above. For example, after hydrolyzing a purified silicon compound by a conventional method ( The method described by Tan et al. It is particularly suitable for organic group-containing silicon compounds that cannot be removed by wet methods.

なお、とnらの方法によシ得らnる微粉末シリカはいず
牡もその平均粒子径が1μm以下のきわめて微細でかさ
密度の小さなものであることからバッチ焼成する場合に
も飛散しやすい上に静電気を帯びやすいため取扱いが困
難でしかもかさ比重が小さいため大容量の焼成炉が必要
であシ、また熱伝導性が小さいことから効率が悪いとい
う欠点がある。
In addition, the fine powdered silica obtained by the method of et al. is extremely fine with an average particle size of 1 μm or less and has a small bulk density, so it is easy to scatter even when batch firing. It is difficult to handle because it is easily charged with static electricity, and requires a large-capacity kiln because its bulk specific gravity is small, and it also has the disadvantage of poor efficiency due to its low thermal conductivity.

こnを解決するためには微粉末クリカ金団粒状または塊
状に成形(造粒)I!jたのち焼成することが有効であ
る。
In order to solve this problem, it is necessary to mold (granulate) fine powder into granules or lumps. It is effective to fire it later.

この成形(造粒)方法としては従来から知ら扛ている方
法、例えば転勤型造粒法、流動層型造粒法、押し出し型
造粒法、圧縮型造粒法、解砕型造粒法あるいは噴射型造
粒法などを採用することができる。最も簡便には微粉末
シリカに適当量の水分を添加し混練して得ら牡る可塑物
を平面を呈する板状体などに均一に広げたのち、厚い板
状に固化させついでとlrLを適当な大きさに粉砕する
方法があげらnる。
This molding (granulation) method includes conventionally known methods such as transfer type granulation method, fluidized bed type granulation method, extrusion type granulation method, compression type granulation method, crushing type granulation method, A jet granulation method or the like can be adopted. The simplest method is to add an appropriate amount of water to finely powdered silica, knead it, spread the resulting plastic material uniformly on a flat plate, solidify it into a thick plate, and then apply lrL as appropriate. There are several methods for pulverizing the material to a suitable size.

この際の添加水分量は、微粉末−クリ力の粒子径によっ
て異なるが、一般的にはシリカ100重量部に対し、1
0〜600重量部とすることが好ましい。水分が少ない
場合には充分な粘結度を得ることができないが、過剰の
場合にはスラリー状となシバットなどの容器に流し込む
こともできる。
The amount of water added at this time varies depending on the particle size of the fine powder/crisp, but generally it is 1 part by weight per 100 parts by weight of silica.
The amount is preferably 0 to 600 parts by weight. If the water content is low, it will not be possible to obtain a sufficient degree of caking, but if the water content is excessive, it can be poured into a container such as a slurry.

しかし必要以上の水分は乾燥を遅らせるだけで無意味で
ある。
However, using more water than necessary is pointless as it only delays drying.

このように、微粉末シリカは水を加えることによって容
易に凝集し、そのかさも縮小させることができる。例え
ば、ヒユームドシリカは通常、がさ密度がα05f/c
m”程度であるが、3倍量程度の水と混練することによ
って晃〜%に収縮する。
In this way, fine powdered silica can be easily aggregated by adding water, and its bulk can also be reduced. For example, humid silica usually has a bulk density of α05f/c
m'', but by kneading it with about 3 times the amount of water, it shrinks to ~%.

またこの混線物を風乾することによってさら[+4に収
縮させることができる。このようにしてヒユームドシリ
カのかさ密度の10倍はどの粒状あるいは塊状とするこ
とができ、この結果として焼成工程での処理能力を10
倍以上に改善することができるようKなる。
Further, by air drying this mixed wire, it can be further shrunk to [+4]. In this way, 10 times the bulk density of fumed silica can be made into any granular or lumpy form, resulting in a throughput of 10 times the bulk density of the silica during the firing process.
It will be K so that the improvement can be more than doubled.

前記のようKして得た粒おるいは塊を風乾あるいは10
0℃以下の温度で乾燥するか、またはそのままの状態で
温度1000〜1800℃、好ましくは1200〜16
00℃で焼成する。これは1000℃未満では充分な粒
子間の凝固が得ら扛ず、逆に1800℃以上では全体が
一体化するまで溶融し次工程が困難となるt′!!か完
結し必要以上の高温は熱コストの面から不利となるから
である。
The grains or lumps obtained by K as described above are air-dried or
Dry at a temperature of 0°C or lower, or leave as is at a temperature of 1000 to 1800°C, preferably 1200 to 16°C.
Fire at 00°C. If the temperature is lower than 1000°C, sufficient coagulation between the particles will not be achieved, and if the temperature is higher than 1800°C, the whole will melt until it becomes one piece, making the next process difficult! ! This is because a higher temperature than necessary is disadvantageous in terms of heat costs.

このような条件で焼成すると原料の調整1〜1゜μm程
度の微粉状物から数α以上の塊状物が得らnるが、粒径
の大きなものは粉砕、分級すること如よシミ子部品封止
用樹脂組成物に好適とされる合成シリカとして取得する
ととができる。
When firing under these conditions, it is possible to obtain particles ranging from fine powders of about 1 to 1 μm to lumps of several α or more, but larger particles must be crushed and classified. It can be obtained as a synthetic silica suitable for use in sealing resin compositions.

なお、結晶化温度領域を短時間で通包させれば非晶質シ
リカを、また長時間かかつて通包させtばクリストバ2
イトヲ主成分とする結晶質合成シリカを得ることができ
熱伝導性の大きなシリカをも得ることができる。
Note that if the crystallization temperature range is passed for a short time, amorphous silica will be produced, and if the crystallization temperature range is passed for a long time, then the crystallized silica will be produced.
It is possible to obtain crystalline synthetic silica having Itowo as its main component, and it is also possible to obtain silica with high thermal conductivity.

また、合成シリカとしてハロゲン含有量の少ないものを
得ようとする場合には始発原料としてテトラエトキクン
ランなどのハロゲン原子を含まないものを使用すnばよ
い。
Furthermore, when it is desired to obtain synthetic silica with a low halogen content, it is sufficient to use a halogen atom-free material such as tetraethyccumulane as a starting material.

本発明における第2発明としての電子部品封止用樹脂組
成物は、との合成りす力を熱硬化性樹脂または熱可塑性
樹脂に配付することによって得ら扛るが、この樹脂とし
ては従来電子部品封止用として使用さ扛ているものでよ
く、こnには例えばエポキシ樹脂、シリコーン樹脂、エ
ポギシーシリコーン樹脂、ポリイミド樹脂などの熱硬化
性樹脂、ポリフェニレンサルファイド樹脂外どの熱可塑
性樹脂があげらnる。
The resin composition for encapsulating electronic components as the second aspect of the present invention is obtained by distributing the synthetic sliding force of 2 to a thermosetting resin or a thermoplastic resin. Materials used for sealing may be used, such as thermosetting resins such as epoxy resins, silicone resins, epoxy silicone resins, and polyimide resins, and thermoplastic resins such as polyphenylene sulfide resins. nru.

本発明の電子部品封止用樹脂組成物は上記した有機樹脂
と前記した合成シリカを配合することによって得らnる
。この合成シリカの配合量はこの組成物の膨張係数を低
くシ、こしに良好な熱放散性を付与するという見地から
できるだけ多量とすることがよいが、800重量部以上
の充填はこの組成物の成形性をわるくするはか、その機
械的特性を劣化させるおそnがあり、その100重量部
以下の配合ではその効果が十分に達成さnないので、こ
tは有機樹脂1oo重量部に対し合成石英粉末50〜8
00重量部、特には100〜500重量部の範囲とする
ことがよい。
The resin composition for encapsulating electronic components of the present invention is obtained by blending the above-described organic resin and the above-described synthetic silica. The amount of synthetic silica to be added is preferably as large as possible from the viewpoint of keeping the expansion coefficient of the composition low and providing good heat dissipation properties. There is a risk of worsening the moldability or deteriorating the mechanical properties, and if the amount is less than 100 parts by weight, the effect will not be fully achieved. Quartz powder 50-8
00 parts by weight, particularly in the range of 100 to 500 parts by weight.

なお、この組成物には必要に応じ各種の添加剤、例えば
着色剤、難燃剤:、;1.m型・剤を添、加してもよい
This composition may contain various additives, such as colorants and flame retardants, as required.1. An m-type agent may be added.

上記した本発明の樹脂組成物は、配合後適宜の形状に成
形さnるが、こnによる電子部品の封止は従来公知の注
形成形、射出成形、圧縮成形、トランスファー成形のい
ず牡でも行うことができ、と牡によnばa線の放出姉よ
るソフトエラーの発生が全くない樹脂封止さtた電子部
品を容易に得ることができるという効果が与えら扛る。
The above-mentioned resin composition of the present invention is molded into an appropriate shape after being blended, and electronic components can be sealed using any of conventionally known injection molding, injection molding, compression molding, and transfer molding. However, it is possible to easily obtain a resin-sealed electronic component that is completely free from soft errors due to the emission of NA radiation.

つぎに本発明の実施例をあげるが、例中における部はい
ずnも重量部を示したものである。
Next, examples of the present invention will be given, and all parts in the examples indicate parts by weight.

実施例 1 三重管構造のバーナにH8およびO2をそtぞ1”L4
t/分、2t/分で供給して酸水素炎を形成させ、この
中心部に5iC1,fガス状で供給し、(供給量500
d/分)火炎加水分解を行ない微粉末7リカを生成させ
た。この微粉末7リカは耐熱性基板上に堆積させて補集
した。この場合、微粉末シリカは平均粒子径が約02μ
mであった。
Example 1 H8 and O2 are placed in a burner with a triple tube structure, 1"L4
t/min, 2t/min to form an oxyhydrogen flame, and 5iC1,f gaseous state is supplied to the center of this flame, (supply amount 500
d/min) flame hydrolysis was carried out to produce a fine powder of 7 liters. This fine powder was collected by depositing it on a heat-resistant substrate. In this case, the fine powder silica has an average particle size of about 0.2 μm.
It was m.

この微粉末クリカニ000部に対して水520部を添加
し泥状物とし、四角なバットに流し込み3日間風乾し、
厚さ約1mの板状同形物を得た。
520 parts of water was added to 000 parts of this finely powdered Kurikani to form a slurry, which was poured into a square vat and air-dried for 3 days.
A plate-like product with a thickness of about 1 m was obtained.

こnを粉砕し1辺が2〜acrn々いしはこnよシも小
さい立方体状塊状物としたのち、マツフル炉に入社て1
400℃で1hτ焼成を行なったところ、緻密なガラス
状の焼結体が得られた。こlt′Lをメノウ乳鉢で粉砕
したところ、平均粒子径が20μmの合成シリカ粉末が
得ら牡た。
After pulverizing this into a cube-shaped lump with a side of 2 to 2 cm and as small as this, he joined Matsufuru Furnace.
When firing was performed at 400° C. for 1 hτ, a dense glass-like sintered body was obtained. When the powder was pulverized in an agate mortar, a synthetic silica powder with an average particle size of 20 μm was obtained.

つぎに、上記で得た合成シリカ粉末300部に、クレゾ
ールノボラックエポキシ樹脂(商品名EccN102)
100部、フェノールノボラック樹脂(商品名TD20
93)50部、2−フェニルイミダゾール1部、カルナ
バワックス2部、カーボンブラック2部、3−グリジド
オ中シグロビルトリメトキシシラン1部を添加配合して
なる配付物を80℃に加熱した8インチロールにて5分
間混練後シート状で取ル出したのち粉砕し、電子部品封
止用樹脂組成物を得た。
Next, cresol novolak epoxy resin (trade name EccN102) was added to 300 parts of the synthetic silica powder obtained above.
100 parts, phenol novolak resin (trade name TD20
93) An 8-inch roll of a handout prepared by adding and blending 50 parts of 2-phenylimidazole, 1 part of 2-phenylimidazole, 2 parts of carnauba wax, 2 parts of carbon black, and 1 part of siglobiltrimethoxysilane in 3-glyzide was heated to 80°C. After kneading for 5 minutes, the mixture was taken out in the form of a sheet and pulverized to obtain a resin composition for encapsulating electronic parts.

実施例 2 エチルシリケートを触媒量のアンモニアの存在下で脱イ
オン水に攪拌しながら滴下した。生成するゲル状の加水
分解物を脱イオン水で十分に水洗したのち乾燥し、ゲル
粉末を得た。そのゲル粉末1000部に水1850部を
加え直径約10簡の棒状に押し出してそのままマツプル
炉に入れ1400℃で1hτ焼成を行なったところ、多
孔質ガラス状の焼結体が得らtた。こnfメノウ乳鉢で
粉砕したところ、平均粒子径が8μmの合成シリカ粉末
が得らnた。この合成りリカ粉末中のハロゲン含有量を
定量したところ、27部%以下であった。この合成シリ
カ粉末を充填剤として使用したほかは実施例1と同様な
配合組成からなる電子部品封止用樹脂組成物を得た。
Example 2 Ethyl silicate was added dropwise to deionized water in the presence of a catalytic amount of ammonia with stirring. The resulting gel-like hydrolyzate was thoroughly washed with deionized water and then dried to obtain a gel powder. 1,850 parts of water was added to 1,000 parts of the gel powder, extruded into a rod shape with a diameter of about 10 pieces, and the product was placed in a Matsupuru furnace and fired for 1 h at 1,400°C to obtain a porous glass-like sintered body. When ground in an agate mortar, synthetic silica powder with an average particle size of 8 μm was obtained. The halogen content in this synthetic silica powder was determined to be 27 parts % or less. A resin composition for encapsulating electronic components was obtained having the same composition as in Example 1 except that this synthetic silica powder was used as a filler.

実施例 3 実施例1の合成シリカ微粉末の代pに市販のヒユームド
7リカ(商品名、1urosi1380)?:、使用し
た。このヒユームドシリカ(見かけ比重QO586f/
cc )100部に水450部を加え良く混練して、−
個の直径が34mの塊状に成形したのち風乾したところ
、体積が収縮して直径が25■の塊状物となった。この
塊状物の体積は成形体の体積の晃に収縮しておシ、見か
け密度はα574 t/yn”であった。このことは、
かさ密度(1059/cm”のヒユームドシリカと比較
して、同一容積の焼成炉での処理量が約10倍に改善さ
往生産性が向上することを示している。
Example 3 In place of the synthetic silica fine powder of Example 1, commercially available Humid 7 Lika (trade name, 1urosi1380) was used. :,used. This humid silica (apparent specific gravity QO586f/
Add 450 parts of water to 100 parts of cc), mix well, and -
When the mixture was molded into a block with a diameter of 34 m and air-dried, the volume shrunk to form a block with a diameter of 25 cm. The volume of this lump shrank to the volume of the compact, and the apparent density was α574 t/yn''. This means that
Compared to fumed silica, which has a bulk density of 1059/cm, the throughput in a firing furnace of the same volume is improved by about 10 times, indicating that productivity is improved.

上記の風乾後の7リ力塊ff11300℃で1hr焼成
を行なったところガラス状の焼結体が得ら扛た。こn、
’tメノウ乳鉢で粉砕したところ平均粒子径が13μm
の合成シリカ粉末が得らnた。
After the above-mentioned air-drying, the 7-reinforced mass was fired for 1 hour at 11,300° C., and a glass-like sintered body was obtained. This,
When crushed in an agate mortar, the average particle size was 13 μm.
A synthetic silica powder was obtained.

こ2″Lを充填剤として使用したほかは実施例1と同様
な配合組成からなる電子部品封止用樹脂組成物を得た。
A resin composition for encapsulating electronic components was obtained having the same composition as in Example 1 except that this 2"L was used as a filler.

実施例 4 ヒユームドシリカ(Aarosi200 )1173部
に水307部を加え、よく湿潤して、タブレットマシン
で20箇φX115mのタブレットとしたのち、60℃
で24 hr乾燥したのち、1300℃で1hr焼成を
行なったところ、粒状の焼結体が得らnた。これを粉砕
して合成7リカ粉末を得た。このものの平均粒子径は5
μmであった。
Example 4 307 parts of water was added to 1173 parts of humid silica (Aarosi200), moistened well, and made into 20 tablets of φ x 115 m using a tablet machine, and then heated at 60°C.
After drying for 24 hours at 1300° C. for 1 hour, a granular sintered body was obtained. This was pulverized to obtain a synthetic 7 licorice powder. The average particle size of this product is 5
It was μm.

こnt充填剤として使用したほかは実施例1と同様な配
合組成からなる電子部品封止用樹脂組成物を得た。
A resin composition for encapsulating electronic components was obtained having the same composition as in Example 1 except that it was used as a filler.

実施例 5 ヒユームドシリカ(Agros(J200)100部に
水100部を加えてよく混合した。このものは見かけの
体積は約’AKなったが未だ粉状で成形できなかった。
Example 5 100 parts of water was added to 100 parts of humid silica (Agros (J200)) and mixed well. Although this product had an apparent volume of approximately 'AK, it was still powdery and could not be molded.

こrLを1350℃で3時間焼成し冷却層、X線で結晶
形f、調べた。その結果鋭い結晶存在のピークを示した
。こnは実施例1,2゜3.4には見らnないものであ
った。この粉末は再び1600℃まで加熱してから常温
で冷却すると結晶は見ら牡なくなっていた。
This rL was calcined at 1350° C. for 3 hours, and the crystal form f was examined using a cooling layer and X-rays. The results showed a sharp peak indicating the presence of crystals. This n was not found in Examples 1 and 2°3.4. When this powder was heated again to 1,600°C and then cooled to room temperature, no crystals were observed.

上記実施例1〜4で得た樹脂組成物の特性を下記の表1
及び表2に示す。
The properties of the resin compositions obtained in Examples 1 to 4 above are shown in Table 1 below.
and shown in Table 2.

表1ウラニウム、トリウムの含有量及びα線強度 (p p b) 我2 樹脂特性 実施例       1   2  3   4(イン
プう 曲tj’強F!wF4/z”)  a5   140 
  ′1゛B、ρ   a。
Table 1 Content of uranium and thorium and α-ray intensity (p p b) 2 Resin properties example 1 2 3 4 (Imp curve tj' strong F!wF4/z") a5 140
′1゛B, ρ a.

体積抵抗率(0,6R)α5X10’i LOX10’
4α3 XIO’ Aα3X10’易(150℃) 手続補正書 1.事件の表示 昭和57年特許願第133249号 2°発明0名称 合成シリヵおよびこれを含有してなる
電子部品対土用樹脂組成物 3、補正をする者 事件との関係 特許出願人 名称  (206)  信・鴫化学工業株式会社4、代
 理 人 住 所 〒103東京都中央区日本橋本町4丁目9番地
永井ビル〔電話東京(270) 085 g、 085
9]6、補正の対象 明細書 7、補正の内容 別紙の通り (1)  第10口下から4へ3行の「全体が一体化す
るまで溶融し次工程が困難となるほか」を「焼結が」と
補正する。
Volume resistivity (0,6R) α5X10'i LOX10'
4α3 XIO'Aα3X10'easy (150℃) Procedural amendment 1. Display of the case 1982 Patent Application No. 133249 2° Invention 0 Title Synthetic silica and resin composition for electronic parts containing the same 3, person making amendment Relationship with the case Patent applicant name (206) Shin-Suzuki Kagaku Kogyo Co., Ltd. 4, Agent Address: Nagai Building, 4-9 Nihonbashi Honmachi, Chuo-ku, Tokyo 103 [Telephone Tokyo (270) 085 g, 085
9] 6. Specification subject to amendment 7, contents of amendment As per attached sheet (1) 3 lines from the bottom of section 10 to 4, ``In addition to melting until the whole becomes integrated, the next process will be difficult.''``Yuiga,'' he corrected.

(21第11画5行の1退色」を「通過」と補正する。(1 fading of color in 5 lines of 11th picture of 21) is corrected to "pass".

13+  第12頁12行の「100車量部」を「50
車量部」と補正する。
13+ Change “100 vehicle volume” on page 12, line 12 to “50
Corrected as ``Vehicle volume section''.

以上that's all

Claims (1)

【特許請求の範囲】 L  蒸留精製した加水分解し得る基を有するけい素化
合物から合成される微粉末シリカを、団粒状または塊状
に成形したのち、温度1000〜1800℃で焼成して
なる合成シリカ 2  合成シリカが、ウランおよびトリウム含有量が1
oppb以下で、かつ平均粒子径1〜100μmである
特許請求の範囲第1項記載の合成シリカ a  蒸留精製した加水分解し得る基を有するけい素化
合物が実質的にハロゲン原子を含有しないものである特
許請求の範囲第1項に記載の合成りリカ 屯  微粉末シリカが、表面積の大きいものであシ、焼
成温度がL100〜L500℃である特許請求の範囲第
1項に記載の合成シリカ 丘  熱硬化性樹脂または熱可塑性樹脂100重量部釦
、上記特許請求の範囲第4〜3項のいずnか忙記載の合
成シリカf:50〜800重量部添加してなることを特
徴とする電子部品封止用樹脂組成物
[Scope of Claims] L Synthetic silica obtained by molding fine powder silica synthesized from a silicon compound having a hydrolyzable group purified by distillation into aggregates or lumps, and then firing at a temperature of 1000 to 1800°C. 2 Synthetic silica has a uranium and thorium content of 1
Synthetic silica a according to claim 1, which has an average particle diameter of 1 to 100 μm and has an average particle diameter of 1 to 100 μm. The silicon compound having a hydrolyzable group purified by distillation is substantially free of halogen atoms. The synthetic silica powder according to claim 1, wherein the fine powder silica has a large surface area, and the calcination temperature is L100 to L500°C. An electronic component comprising 100 parts by weight of a curable resin or thermoplastic resin and 50 to 800 parts by weight of the synthetic silica f described in any one of claims 4 to 3 above. Sealing resin composition
JP13324982A 1982-07-30 1982-07-30 Synthetic silica and electronic part sealing resin composition containing same Granted JPS5923403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13324982A JPS5923403A (en) 1982-07-30 1982-07-30 Synthetic silica and electronic part sealing resin composition containing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13324982A JPS5923403A (en) 1982-07-30 1982-07-30 Synthetic silica and electronic part sealing resin composition containing same

Publications (2)

Publication Number Publication Date
JPS5923403A true JPS5923403A (en) 1984-02-06
JPS6310846B2 JPS6310846B2 (en) 1988-03-09

Family

ID=15100189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13324982A Granted JPS5923403A (en) 1982-07-30 1982-07-30 Synthetic silica and electronic part sealing resin composition containing same

Country Status (1)

Country Link
JP (1) JPS5923403A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190556A (en) * 1985-02-12 1986-08-25 Rishiyou Kogyo Kk Resin composition for sealing of electronic part
JPS6230632A (en) * 1985-08-01 1987-02-09 Shinetsu Sekiei Kk Production of high-purity quartz glass

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10250032B2 (en) 2015-04-24 2019-04-02 Vertiv Corporation Intelligent power strip with management of bistable relays to reduce current in-rush

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5030652A (en) * 1973-07-23 1975-03-26
JPS5420995A (en) * 1977-07-18 1979-02-16 Stamicarbon Method of making pure porous silica
JPS5698845A (en) * 1980-01-09 1981-08-08 Hitachi Ltd Semiconductor memory device
JPS56116647A (en) * 1980-02-20 1981-09-12 Hitachi Ltd Manufacturing of silica-alumina type filler for semiconductor memory element covering resin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5030652A (en) * 1973-07-23 1975-03-26
JPS5420995A (en) * 1977-07-18 1979-02-16 Stamicarbon Method of making pure porous silica
JPS5698845A (en) * 1980-01-09 1981-08-08 Hitachi Ltd Semiconductor memory device
JPS56116647A (en) * 1980-02-20 1981-09-12 Hitachi Ltd Manufacturing of silica-alumina type filler for semiconductor memory element covering resin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190556A (en) * 1985-02-12 1986-08-25 Rishiyou Kogyo Kk Resin composition for sealing of electronic part
JPS635429B2 (en) * 1985-02-12 1988-02-03 Risho Kogyo Kk
JPS6230632A (en) * 1985-08-01 1987-02-09 Shinetsu Sekiei Kk Production of high-purity quartz glass

Also Published As

Publication number Publication date
JPS6310846B2 (en) 1988-03-09

Similar Documents

Publication Publication Date Title
JPS6157347B2 (en)
JP3800277B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
US4677026A (en) Resin composition for sealing electronic parts, and hydration-resistant magnesia powder and process for preparation thereof
JP2021161005A (en) Particulate material, production method thereof, filler material, and heat conductive material
JPS58127354A (en) Semiconductor element sealing resin composition material
US3762936A (en) Manufacture of borosilicate glass powder essentially free of alkali and alkaline earth metals
JPS5923403A (en) Synthetic silica and electronic part sealing resin composition containing same
JP3458196B2 (en) High thermal conductive resin composition
JPH11269302A (en) Filler for improving thermal conductivity of resin product and its production
JPS6296567A (en) Semiconductor sealing resin composition
US4683253A (en) Resin molding compound for sealing electronic parts
JP2684396B2 (en) Fused spherical silica and sealing resin composition using the same
JP3986154B2 (en) Silicon nitride filler and semiconductor sealing resin composition
JPH03211A (en) Manufacture of epoxy resin forming material
CN108455617B (en) Preparation method of spherical cristobalite
JPH01234319A (en) Production of spherical silica
JP2955672B2 (en) Silica filler for semiconductor resin encapsulation and method for producing the same
JPS6296313A (en) Production of high-purity spherical silica filler
JP4040715B2 (en) Filler and semiconductor sealing resin composition
JPH02158637A (en) Silica filler and sealing resin composition using the same
JP2789088B2 (en) Method for producing particulate inorganic composite
JPH01242442A (en) Grained inorganic composite material and production thereof
JPH0641347A (en) Filler for electronic part sealer
JPH01161065A (en) Silica and its production
Bozadjiev et al. Methods for diopside synthesis