JPH01161065A - Silica and its production - Google Patents

Silica and its production

Info

Publication number
JPH01161065A
JPH01161065A JP31861087A JP31861087A JPH01161065A JP H01161065 A JPH01161065 A JP H01161065A JP 31861087 A JP31861087 A JP 31861087A JP 31861087 A JP31861087 A JP 31861087A JP H01161065 A JPH01161065 A JP H01161065A
Authority
JP
Japan
Prior art keywords
silica
particle size
primary particle
metal oxide
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31861087A
Other languages
Japanese (ja)
Inventor
Yoshio Mitani
美谷 芳雄
Naoki Mikami
直樹 三上
Yasuo Yoshida
康夫 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP31861087A priority Critical patent/JPH01161065A/en
Publication of JPH01161065A publication Critical patent/JPH01161065A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain easily silica excellent in an ability to improve the moldability of a semiconductor sealing resin material and suitable as a filler for a semiconductor sealing resin material, by mixing particulate silica of a specified particle diameter with a specified amount of a microparticulate metal oxide. CONSTITUTION:Silica for a semiconductor sealing resin material is obtained by mixing particulate silica of a particle diameter of 1-150mum with 1-5wt.% microparticulate metal oxide of a primary particle diameter <=0.1mum. As said metal oxide, amorphous silica, alumina or titania or the like is used, and silica of a primary particle diameter <=0.1mum is obtained by, for example, burning gasified SiCl4 and hydrogen at a high temperature of about 1000 deg.C or above and hydrolyzing the product. By molding a resin filled with said silica for a semiconductor sealing material, the formation of flashes can be suppressed, and the flow is not worsened.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、特に半導体封止材用に適したシリカに力し、
詳しくは樹脂を用いる半導体封止材の充填拐として、該
樹脂系封止材における成形性の向上を目的とするシリカ
およびその製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention focuses on silica particularly suitable for semiconductor encapsulant,
Specifically, the present invention relates to silica and a method for producing the same, which is used to improve the moldability of a resin-based encapsulating material as a filler for a semiconductor encapsulating material using a resin.

〔従来技術〕[Prior art]

従来、ダイオード、トランジスター、工C1LSIなど
の半導体素子を封止するために、例えばエポキシ樹脂、
シリコーン樹脂などが用いられ、また該樹脂の充埃材と
して粒子径が一般に1〜150μmである粒状のシリカ
が用いられている。このような半導体封止材用の充填材
シリカ(以下、単に半導体封止材用シリカともいう)は
、一般に高熱伝導性、低熱rk張性の特長を有する結晶
質石英、溶融シリカなどが用いられ、特に礫石を高湿溶
融したシリカを粉砕した粒状物が多く用いられている。
Conventionally, in order to seal semiconductor elements such as diodes, transistors, and C1LSIs, epoxy resins,
A silicone resin or the like is used, and granular silica having a particle size of generally 1 to 150 μm is used as a dust filling material for the resin. As filler silica for semiconductor encapsulants (hereinafter also simply referred to as silica for semiconductor encapsulants), crystalline quartz, fused silica, etc., which have the features of high thermal conductivity and low thermal rk tension, are generally used. In particular, granules made of pulverized silica obtained by high-humidity melting of gravel are often used.

さらに近年、半導体の高度集積化にともないX線による
ソフトエラーの問題が生じるため、特にウラン含有料の
少ない高純度の半導体封止材用シリカが望まれている。
Furthermore, in recent years, as semiconductors have become more highly integrated, the problem of soft errors caused by X-rays has arisen, so there is a particular desire for high-purity silica for semiconductor encapsulants containing less uranium.

したがって、このような高純度の半導体封止材用シリカ
を得るために、例えば低ウラン含有水晶、高純度の51
014ss1(OR)4などを原料として合成した低ウ
ラン含有の溶融シリ、力を粉砕する方法、および珪砂。
Therefore, in order to obtain such high purity silica for semiconductor encapsulant, for example, low uranium-containing quartz crystal, high purity 51
Low uranium-containing fused silica synthesized from 014ss1(OR)4 etc., a method of crushing force, and silica sand.

水晶、溶融シリカの粉砕粒子あるいは1lli074 
Quartz crystal, fused silica crushed particles or 1lli074
.

5i(on)4から合成した微粉状シリカをバーナーに
より溶射して球状化する方法が提案されている。
A method has been proposed in which finely powdered silica synthesized from 5i(on)4 is thermally sprayed using a burner to make it spheroidal.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記したような従来の方法により得られ
た半導体封止材用シリカは、樹脂に添加して成形する場
合に、金型より該樹脂が流出して、−わゆるパリの発生
を招く問題があった。また、かかる樹脂の成形における
パリの発生を改善する場合には、流動性が悪化するとい
う患循環を伴う。したがって、従来の半導体封止材用シ
ソ力における成形性の向上を図るために、粒子径1〜1
50μmの粒度分布を種々に調整する対策も施されてき
たが、なお十分に満足されない面があった。
However, when the silica for semiconductor encapsulant obtained by the conventional method as described above is added to a resin and molded, the resin flows out from the mold, resulting in the problem of causing so-called paris. was there. Furthermore, in order to improve the occurrence of flakes during molding of such resins, fluidity deteriorates, which is a problem. Therefore, in order to improve the moldability under the conventional perforation force for semiconductor encapsulants, the particle size of 1 to 1
Although various measures have been taken to adjust the particle size distribution of 50 μm, there are still aspects that are not fully satisfied.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、上記した特に半導体封止材用シリカの問
題点を解消すべく鋭意研究を重ねた。
The present inventors have conducted extensive research in order to solve the above-mentioned problems, especially with silica for semiconductor sealing materials.

その結果、従来の半導体封止材用シリカに1次粒子の粒
子径(以下、単に1次粒子径ともいう)が0.1μm以
下である微粉状のシリカを少量混合させて充填した樹脂
組成物は、その成形性が意外にも著しく改善されること
を見出し、本発明を提案するに至ったものである。即ち
、本発明は1次粒子径が0.1μm以下である微粉状の
金属酸化物を1〜5重量%の割合で含有するシリカであ
る。
As a result, we created a resin composition filled with conventional silica for semiconductor encapsulant mixed with a small amount of finely powdered silica whose primary particle diameter (hereinafter also simply referred to as primary particle diameter) is 0.1 μm or less. discovered that its moldability was surprisingly significantly improved, and came to propose the present invention. That is, the present invention is a silica containing 1 to 5% by weight of a finely divided metal oxide having a primary particle size of 0.1 μm or less.

本発明のシリカは1次粒子径が0,1μm以下。The silica of the present invention has a primary particle diameter of 0.1 μm or less.

一般に0.05〜0.005μmである微粉状の金属酸
化物を一般に1〜5重it%、好ましくは1〜3重量%
の割合で含有することが極めて重要であり1該シリカを
エポキシ樹脂など半導体素材の封止材に充填した場合に
、従来の半導体封止材用シリカに比べてパリの発生を伴
わない成形性の良好な向上が達成され、流動性の悪化も
殆んど紹められない。
Generally 1 to 5 weight %, preferably 1 to 3 weight % of fine powder metal oxide, which is generally 0.05 to 0.005 μm.
It is extremely important to contain the silica in a proportion of A good improvement is achieved and hardly any deterioration in flowability is introduced.

このような本発明のシリカは、従来の半導体封止材用シ
リカの製造において、粉砕手段により特定された粒子径
のシリカを所定の割合に微M整することによりて得るこ
とも可能である。
Such silica of the present invention can also be obtained by finely grinding silica having a specified particle size to a predetermined ratio using a crushing means in the production of conventional silica for semiconductor encapsulant.

しかしながら、従来の半導体封止材用シリカの製造にお
りて、通常の粉砕手段により01μm以下の微粉状シリ
カを1〜5重針%の範囲に微調整することは煩雑で困難
である。したがって、本発明のシリカは、一般に従来の
粒子径が通常の1〜150μm、特に1〜100μmで
ある半導体封止材用粒状シリカに、上記した1次粒子径
が0.1μm以下である微粉状の金M酸化物を混合する
方法によって簡便に得ることが出来る。
However, in the conventional production of silica for semiconductor encapsulant materials, it is complicated and difficult to finely adjust finely powdered silica with a diameter of 01 μm or less to a range of 1 to 5 needle % using normal pulverization means. Therefore, the silica of the present invention is generally a fine powder having a primary particle size of 0.1 μm or less, in addition to the conventional granular silica for semiconductor encapsulant having a particle size of 1 to 150 μm, particularly 1 to 100 μm. It can be easily obtained by mixing gold M oxide.

本発明の上記し之1次粒子径が0.1μm以下である微
粉状の金FA酸化物としては、例えば、シリカ、アルミ
ナ、チタニアなど公知のものが特に制限なく用いられる
が、一般に微粉状の非晶質シリカが好ましく用いられる
。このような1次粒径が0.1μm以下である微粉状シ
リカは、温下に燃焼し加水分解させる乾式法、珪砂をコ
ークスとアーク炉中で加熱、還元して発生するSiO蒸
気を空気中で酸化させる方法、前記した如き溶射法によ
るシリカの製法において、例えば石英、ガラスを加熱し
て表面から蒸発するSiO、5i02ガスを凝縮して副
生ずる方法、あるいは珪戯ソーダを鉱版と水溶液中で反
応させる湿式法などにより得ることが出来る。
As the above-mentioned fine powder gold FA oxide of the present invention having a primary particle size of 0.1 μm or less, known ones such as silica, alumina, titania, etc. can be used without particular restriction, but generally fine powder Amorphous silica is preferably used. Such fine powder silica with a primary particle size of 0.1 μm or less can be produced using a dry process in which it is burned and hydrolyzed at a high temperature, or by heating and reducing silica sand with coke in an arc furnace, and releasing SiO vapor in the air. In the method of manufacturing silica using the thermal spraying method described above, for example, a method of heating quartz or glass and condensing SiO gas that evaporates from the surface and producing a by-product, or a method of oxidizing silica soda in a mineral plate and an aqueous solution. It can be obtained by a wet method such as reacting with

本発明において、1次粒子径が0.1μm以下である微
粉状の金属酸化物1〜5重量%を含有する主たるシリカ
95〜991Rffi%は、粒子径が1〜125μm、
特に3〜100μmである例えば従来公知の半導体封止
材用粒状シリカである。
In the present invention, the main silica 95-991Rffi% containing 1-5% by weight of a fine powder metal oxide with a primary particle size of 0.1 μm or less has a particle size of 1-125 μm,
In particular, it is 3 to 100 μm, such as conventionally known granular silica for semiconductor encapsulant.

このような従来公知の半導体封止材用粒状シリカは、前
記した如く、例えば電気炉溶融法、火炎溶融法あるいは
気相合成法で得意溶融石英を所定の粒度に粉砕する方法
、またはバーナーを用いる溶射法により球状のシリカを
製造する方法などにより、得ることが出来る。特に後者
の溶射法により得られる粒子径が1〜150μmである
球状シリカは、球状であるための形状的および表面的特
性により半導体封止材用シリカとして用いた場合にパリ
の発生が多い。したがって、このような従来の半導体封
止材粒状シリカに対しては、特に本発明の1次粒子径が
0.1μm以下である微粉状シワ力を1〜5重量%の割
合で混合させる方法が極めて有効である。
Such conventionally known granular silica for semiconductor encapsulant materials can be produced by, for example, pulverizing fused silica to a predetermined particle size by electric furnace melting, flame melting, or vapor phase synthesis, or by using a burner. It can be obtained by a method such as producing spherical silica using a thermal spraying method. Particularly, spherical silica having a particle size of 1 to 150 μm obtained by the latter thermal spraying method is likely to generate a lot of flakes when used as silica for semiconductor encapsulant due to its spherical shape and surface characteristics. Therefore, for such conventional semiconductor encapsulant granular silica, there is a method in which 1 to 5% by weight of the present invention's fine powder wrinkling force having a primary particle size of 0.1 μm or less is mixed. Extremely effective.

本発明において、上記した如き従来の半導体封止材用粒
状シリカに1次粒子径が1μm以下である微粉状の金属
酸化物を混合させる方法は特に制限されず、従来公知で
ある粉粒状体の混合手段および装置をそのまま採用する
ことが出来る。しかして、本発明のシリカにおいては、
前記したように1次粒径が01μm以下である微粉状の
金包酸化物を1〜5重量%の割合で混合、含有させるこ
とが極めて重要である。即ち1次粒子径が0.1μm以
下である微粉状の金用酸化物が1重h1%より少ないシ
リカでは、該シリカを充填した樹脂組成物の成形におい
てパリの発生を伴ない成形性の向上が殆んど達成されな
い。また、1次粒子径が0.1μm以下である微粉状の
金属酸化物か5重量%より多−シリカでは、該シリカに
増粘作用が発現するため、樹脂に充填した場合に流動性
の悪化を招く。
In the present invention, there is no particular restriction on the method of mixing a finely powdered metal oxide having a primary particle size of 1 μm or less with the conventional granular silica for semiconductor encapsulant as described above, and the method of mixing a finely powdered metal oxide having a primary particle size of 1 μm or less is not particularly limited. The mixing means and equipment can be employed as they are. However, in the silica of the present invention,
As mentioned above, it is extremely important to mix and contain 1 to 5% by weight of finely powdered gold oxide having a primary particle size of 01 μm or less. In other words, silica containing less than 1% by weight of fine gold oxide with a primary particle size of 0.1 μm or less improves moldability without causing flakes when molding a resin composition filled with the silica. is almost never achieved. In addition, if a fine powder metal oxide with a primary particle size of 0.1 μm or less or a silica containing more than 5% by weight is used, the silica exhibits a thickening effect, resulting in poor fluidity when filled in a resin. invite.

〔作用〕[Effect]

本発明の特定したシリカが樹脂に充填された場合に良好
な成形性を発揮する作用機構については次の如く推測す
る。即ち、(1)樹脂組成物において、1次粒子径が0
.1μm以下である微粉状の金属酸化物が改質材として
均一に溶は込み該樹脂組成物自体のレオロジー特性が改
質される。 (2)1次粒子径0.1μ攬以下である微
粉状の金に4酸化物が、粒子径が1μm以上である粒状
シリカの表面との相互作用により従来の半導体封圧材用
粒状シリカに比べて、該0.1μm以上の粒状シリカと
樹脂との接着力が増大し、金型より樹脂の流出が防止さ
れ、パリの発生を伴わない。 (3)1次粒子径が01
μm以下である微粉状の金hS酸化物が少量であるため
、樹脂組成物において粘度上昇が小さく、流動性の悪化
にまで至らない。
The mechanism by which the silica specified by the present invention exhibits good moldability when filled in a resin is presumed as follows. That is, (1) in the resin composition, the primary particle size is 0.
.. A finely divided metal oxide having a diameter of 1 μm or less is uniformly injected as a modifier to modify the rheological properties of the resin composition itself. (2) Tetraoxide in fine powder gold with a primary particle size of 0.1 μm or less interacts with the surface of granular silica with a particle size of 1 μm or more to form conventional granular silica for semiconductor sealing materials. In comparison, the adhesive force between the 0.1 μm or more granular silica and the resin is increased, and the resin is prevented from flowing out from the mold, and no flaking occurs. (3) Primary particle diameter is 01
Since the amount of gold hS oxide in the form of fine powder of μm or less is small, the increase in viscosity in the resin composition is small and does not lead to deterioration of fluidity.

上記した本発明の作用機構から明らかなように、本発明
における微粉状の金属酸化物としては、1次粒子径が0
1μm以下であればシリカに限らず、アルミナ、チタニ
アなども同等の効果を発揮されることが容易に期待され
る。
As is clear from the mechanism of action of the present invention described above, the fine powder metal oxide in the present invention has a primary particle size of 0.
If the thickness is 1 μm or less, it is easily expected that not only silica but also alumina, titania, etc. will exhibit the same effect.

〔効果〕〔effect〕

本発明は、特に半導体封止材用シリカとして有用であり
、従来の半導体封止材用粒状シリカに比べて、樹脂に充
填して成形に供した場合にパリの発生が殆んど解消され
、流動性の悪化を伴うこともなく、成形性の向上が達成
される。
The present invention is particularly useful as silica for semiconductor encapsulants, and compared to conventional granular silica for semiconductor encapsulants, when it is filled into a resin and subjected to molding, the generation of paris is almost eliminated, Improved moldability is achieved without deterioration of fluidity.

また、本発明のシリカは、従来の半導体封止材用粒状シ
リカに単に特定した微粉状の金y4酸化物を少量混合す
るだけで、良好な半導体封止材用シリカとして簡便に得
られるため、実用的に極めて有利である。
In addition, the silica of the present invention can be easily obtained as a good silica for semiconductor encapsulants by simply mixing a small amount of the specified finely powdered gold y4 oxide with conventional granular silica for semiconductor encapsulants. This is extremely advantageous in practical terms.

〔実施例〕〔Example〕

以下、本発明の実施例を示すが、本発明はこれらの実施
例に限定されるものではない。
Examples of the present invention will be shown below, but the present invention is not limited to these Examples.

実施例1 四塩化珪素(5i(A!4)を原料として、バーナーを
用いて溶射法により、粒径が1〜105μm(平均粒子
径25μm)である粒状シリカを得た。なお、この粒状
シリカは、1次粒子径が01μm以下である微粉状物の
含有量は約0.4ffif1%であった。次に、上記の
粒状シリカに1次粒子径が0.02μmである微粉状の
シリカ(徳山責達社製、商品名しオロシール)を第1表
に示す所定の含有割合によるように混合して調製した。
Example 1 Using silicon tetrachloride (5i (A!4)) as a raw material, granular silica having a particle size of 1 to 105 μm (average particle size 25 μm) was obtained by thermal spraying using a burner. The content of fine powder with a primary particle size of 0.1 μm or less was about 0.4ffif1%.Next, fine powder silica (with a primary particle size of 0.02 μm) was added to the above granular silica ( The product was prepared by mixing the products (trade name: Oroshil, manufactured by Tokuyama Sadatsu Co., Ltd.) according to the predetermined content ratios shown in Table 1.

なお、上記した微粉状シリカの含有量は、苛性溶液を用
いて溶出分析することにより求めることが出来る。
Note that the content of the above-mentioned fine powder silica can be determined by elution analysis using a caustic solution.

上記で調製したシリカを半導体封止材用樹脂であるエポ
キシ樹脂材に、それぞれ65重量%の割合で充填し、溶
融fJ1練して金型による成形に供した。その成形性に
ついて、評価結果を第1表に示した。第1表の成形性は
、従来の半導体封止材用粒状シリカに相当する比較例(
屋1)を基準として、パリの発生および流動性について
優(O)、良(△)および可(×)として3段階で定性
的評価を行った。
The silica prepared above was filled into an epoxy resin material, which is a resin for a semiconductor sealing material, at a ratio of 65% by weight, melted and kneaded with fJ1, and then molded using a mold. Regarding the moldability, the evaluation results are shown in Table 1. The moldability in Table 1 is based on the comparative example (
Based on the standard 1), the generation of paris and fluidity were qualitatively evaluated in three stages: excellent (O), good (△), and fair (x).

第1表Table 1

Claims (1)

【特許請求の範囲】 1)1次粒子径が0.1μm以下である微粉状の金属酸
化物を1〜5重量%割合で含有するシリカ 2)金属酸化物がシリカである特許請求の範囲第1項記
載のシリカ 3)粒子径が1〜150μmである粒状シリカを主体と
する特許請求の範囲第1項記載のシリカ 4)粒子径が1〜100μmである粒状シリカを主体と
する特許請求の範囲第1項記載のシリカ 5)半導体封止材用シリカである特許請求の範囲第1項
記載のシリカ 6)粒子径が1〜150μmである粒状シリカに1次粒
子径が0.1μm以下である微粉状の金属酸化物を1〜
5重量%の割合に混合することを特徴とするシリカの製
造方法
[Claims] 1) Silica containing 1 to 5% by weight of a finely divided metal oxide having a primary particle size of 0.1 μm or less; 2) The metal oxide is silica. The silica according to claim 1 3) The silica according to claim 1 which is mainly composed of granular silica having a particle size of 1 to 150 μm 4) The patent claim which mainly consists of granular silica having a particle size of 1 to 100 μm 5) The silica according to claim 1, which is silica for semiconductor encapsulant material. 6) The granular silica having a particle size of 1 to 150 μm has a primary particle size of 0.1 μm or less. A certain fine powder metal oxide is
A method for producing silica characterized by mixing at a ratio of 5% by weight.
JP31861087A 1987-12-18 1987-12-18 Silica and its production Pending JPH01161065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31861087A JPH01161065A (en) 1987-12-18 1987-12-18 Silica and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31861087A JPH01161065A (en) 1987-12-18 1987-12-18 Silica and its production

Publications (1)

Publication Number Publication Date
JPH01161065A true JPH01161065A (en) 1989-06-23

Family

ID=18101060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31861087A Pending JPH01161065A (en) 1987-12-18 1987-12-18 Silica and its production

Country Status (1)

Country Link
JP (1) JPH01161065A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01204456A (en) * 1988-02-09 1989-08-17 Nitto Denko Corp Semiconductor device
WO2007142047A1 (en) 2006-06-09 2007-12-13 Tokuyama Corporation Dry-process fine silica particle
JP2019516653A (en) * 2016-05-04 2019-06-20 サウジ アラビアン オイル カンパニーSaudi Arabian Oil Company Method of treating fumed metal oxides

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56106951A (en) * 1980-01-14 1981-08-25 Plaskon Prod Burrrproofing epoxy capsule covered composition and its manufacture
JPS57123249A (en) * 1981-01-26 1982-07-31 Toshiba Corp Epoxy resin molding compound
JPS57195117A (en) * 1981-05-27 1982-11-30 Sumitomo Bakelite Co Ltd Epoxy resin composition and its preparation
JPS5922955A (en) * 1982-07-29 1984-02-06 Toshiba Chem Corp Resin composition for sealing semiconductor
JPS59108026A (en) * 1982-12-10 1984-06-22 Toshiba Chem Corp Epoxy resin composition for sealing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56106951A (en) * 1980-01-14 1981-08-25 Plaskon Prod Burrrproofing epoxy capsule covered composition and its manufacture
JPS57123249A (en) * 1981-01-26 1982-07-31 Toshiba Corp Epoxy resin molding compound
JPS57195117A (en) * 1981-05-27 1982-11-30 Sumitomo Bakelite Co Ltd Epoxy resin composition and its preparation
JPS5922955A (en) * 1982-07-29 1984-02-06 Toshiba Chem Corp Resin composition for sealing semiconductor
JPS59108026A (en) * 1982-12-10 1984-06-22 Toshiba Chem Corp Epoxy resin composition for sealing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01204456A (en) * 1988-02-09 1989-08-17 Nitto Denko Corp Semiconductor device
WO2007142047A1 (en) 2006-06-09 2007-12-13 Tokuyama Corporation Dry-process fine silica particle
US7803341B2 (en) 2006-06-09 2010-09-28 Tokuyama Corporation Fine dry silica particles
JP2019516653A (en) * 2016-05-04 2019-06-20 サウジ アラビアン オイル カンパニーSaudi Arabian Oil Company Method of treating fumed metal oxides

Similar Documents

Publication Publication Date Title
JPS60210643A (en) Filler and its composition
JPS6157347B2 (en)
JPS6026505B2 (en) Method for producing inorganic filled resin composition
JPS644540B2 (en)
JPS58127354A (en) Semiconductor element sealing resin composition material
JPH01161065A (en) Silica and its production
JPS6296568A (en) Semiconductor sealing resin composition
JP2684396B2 (en) Fused spherical silica and sealing resin composition using the same
JP6329776B2 (en) Sealing material for mold underfill
JP2000319633A (en) Silica filter for epoxy resin sealing material
JPS6296567A (en) Semiconductor sealing resin composition
JP3445707B2 (en) Siliceous filler and its production method
JPH01185373A (en) Silica and its production
JPH01182331A (en) Filler
JPS61186216A (en) Production of spherical silica
JPS6296569A (en) Semiconductor sealing resin composition
JP2958402B2 (en) Silica filler for semiconductor resin encapsulation and method for producing the same
JP4313924B2 (en) Spherical silica powder and method for producing the same
JP2704281B2 (en) Fused spherical silica and sealing resin composition using the same as filler
JPH02158637A (en) Silica filler and sealing resin composition using the same
JPS59189140A (en) Inorganic sphere, production thereof and resin composition containing the same
JPH03211A (en) Manufacture of epoxy resin forming material
JP2955672B2 (en) Silica filler for semiconductor resin encapsulation and method for producing the same
JP2665539B2 (en) Silica filler and sealing resin composition using the same
JPS6065041A (en) Inorganic sphere and composition thereof