JPH01185373A - Silica and its production - Google Patents

Silica and its production

Info

Publication number
JPH01185373A
JPH01185373A JP948188A JP948188A JPH01185373A JP H01185373 A JPH01185373 A JP H01185373A JP 948188 A JP948188 A JP 948188A JP 948188 A JP948188 A JP 948188A JP H01185373 A JPH01185373 A JP H01185373A
Authority
JP
Japan
Prior art keywords
silica
particle size
particle diameter
metal oxide
primary particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP948188A
Other languages
Japanese (ja)
Inventor
Yoshio Mitani
美谷 芳雄
Naoki Mikami
直樹 三上
Yasuo Yoshida
康夫 吉田
Masatoshi Ishikawa
政利 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP948188A priority Critical patent/JPH01185373A/en
Publication of JPH01185373A publication Critical patent/JPH01185373A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain silica effective in improving moldability when used as a filler for a semiconductor sealing resin, by mixing particulate silica with a microparticulate metal oxide having a specified primary particle diameter in a wet state and drying the mixture. CONSTITUTION:1-5wt.% microparticulate metal oxide of a primary particle diameter <=0.1mu is mixed with 1-5wt.% particulate silica of a particle diameter of 1-150mu in a wet state, and the mixture is dried to obtain the purpose silica. As said particulate silica, well-known semiconductor sealing silica, for example, a product prepared by grinding low-uranium rock crystal or fused quartz obtained by a melting process or a gas-phase synthetic process to a specified particle size can be used as such. Said metal oxide is exemplified by silica, alumina or titania, and amorphous silica is usually desirable.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、特に半導体封止材用に適したシリカに関し、
詳しくは半導体封止材である樹脂の九項拐として有用で
あり、該封止材樹脂における成形性の向上を目的とする
シリカに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to silica particularly suitable for semiconductor encapsulant,
Specifically, the present invention relates to silica which is useful as a filler material for resins that are semiconductor encapsulating materials, and whose purpose is to improve the moldability of the encapsulating resins.

〔従来技術〕[Prior art]

従来、ダイオード、トランジスター、工C9LSIなど
の半導体素子を封止するために、例えばエポキシ樹脂、
シリコーン樹脂などが用いられ、また該樹脂に対する充
填材として例えば粒子径が一般に1〜150μmである
粒状シリカが用いられている。このような半導体封止利
用の充填材シリカ(以下、単に半導体封止材用シリカと
もいう)は、一般に高熱伝導性、低熱膨張性の特長を有
する結晶質石英、溶融シリカなどが原料として用いられ
特に珪砂を高温溶融したシリカを粉砕した粒状物が多く
用いられている。
Conventionally, in order to seal semiconductor elements such as diodes, transistors, and C9LSIs, epoxy resins,
A silicone resin or the like is used, and as a filler for the resin, for example, granular silica having a particle size of generally 1 to 150 μm is used. Such filler silica used for semiconductor encapsulation (hereinafter also simply referred to as silica for semiconductor encapsulation materials) is generally made of crystalline quartz, fused silica, etc., which have the features of high thermal conductivity and low thermal expansion. In particular, granular materials obtained by crushing silica obtained by melting silica sand at high temperatures are often used.

さらに近年、半導体の高度集積化にともないX線による
ソフトエラーの問題が生じるため、特にウラン含有層の
少ない高純度の半導体封止材用シリカが望まれている。
Furthermore, in recent years, as semiconductors have become more highly integrated, the problem of soft errors caused by X-rays has arisen, so there is a particular desire for high-purity silica for semiconductor encapsulants with a small uranium-containing layer.

したがって、このような高純度の半導体封止材用シリカ
を得るために、例えば低ウラン含有水晶。
Therefore, in order to obtain such high-purity silica for semiconductor encapsulant, for example, low uranium-containing quartz is used.

高純度のSiO/4 、 S工(OR) 4  などを
原料として湿式法または乾式法により合成した低ウラン
含有の溶融シリカを粉砕する方法、あるいは上記の乾式
法により得た微粉状のシリカを火炎中で高温溶融(焼結
)して球状化する方法などが提案されている。
A method of pulverizing low-uranium-containing fused silica synthesized by a wet or dry method using high-purity SiO/4, S-technique (OR) 4, etc. as a raw material, or a method of pulverizing fine powder silica obtained by the above-mentioned dry method using a flame. A method has been proposed in which the material is melted (sintered) at a high temperature to form a spheroid.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記したような従来の方法により得られ
た半導体封止材用シリカは、樹脂に添加して成形に供し
た場合に、該樹脂が金型より流出し易く、いわゆるパリ
の発生を招く問題があった。また、かかる樹脂の成形に
おけるパリの発生を改善する通常の仕様を施す場合には
、該樹脂の流動性が悪化するという息循環をと本なう。
However, when the silica for semiconductor encapsulant obtained by the conventional method as described above is added to a resin and used for molding, the resin tends to flow out of the mold, causing the problem of causing so-called paris. was there. Further, when the usual specifications are applied to improve the occurrence of flakes during molding of such a resin, the flowability of the resin deteriorates, resulting in a circulation.

したがって、このような従来の半導体封止材用シリカに
ついて成形性の向上を図るために、彩シリカの粒度分布
を種々に調整する対策も施されてきたが、未だ十分に満
足されない面かあった。
Therefore, in order to improve the moldability of conventional silica for semiconductor encapsulant materials, various measures have been taken to adjust the particle size distribution of colored silica, but there are still aspects that are not fully satisfied. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、上記した如き゛特に半導体封止材用シリ
カとしての問題点を解決するために鋭意研究を重ねた。
The inventors of the present invention have conducted extensive research in order to solve the above-mentioned problems, especially as silica for semiconductor sealing materials.

その結果、従来の半導体封止材用シリカに1次粒子径が
0.1μm以下である微粉状シリカを湿潤状態において
混練し、得られるシリカを充填した樹脂の成形性が著し
く改善される知見により、本発明を提案するに至ったも
のである。即ち、本発明によれば、1次粒子径が0.1
μm以下である微粉状の金属酸化物を粒子表面に固着し
た比表面積が1〜1.om”7yであるシリカが提供さ
れる。なお、本発明における固着とは、少なくとも超音
波振動(洗浄)によりシリカの粒子表面から1次粒子径
が0.1μm以下であ本発明の主体(ベース)となるシ
リカは、一般に粒子径が1〜150μm、特に5〜10
0μmである粒状シリカが好ましく、例えば従来公知の
半導体封止材用シリカがそのまま用いられる。このよう
な従来公知の半導体封止材用シリカは、前記したように
、例えば低ウラン含有水晶、電気炉溶融法、火炎溶融法
あるいは気相合成法により得た溶融石英を所定の粒度に
粉砕する方法、また石英シリカやハロゲン化珪素、珪酸
ソーダを原料として得られる無定形シリカ、沈Vシリカ
を火炎中で高温溶融して所定の粒度に球゛状化する方法
(溶射法)などによって得ることが出来る。
As a result, we found that by kneading fine powder silica with a primary particle size of 0.1 μm or less into conventional silica for semiconductor encapsulant in a wet state, the moldability of the resulting silica-filled resin was significantly improved. , which led to the proposal of the present invention. That is, according to the present invention, the primary particle diameter is 0.1
The specific surface area of finely divided metal oxide particles with a particle size of 1 to 1. om''7y is provided.Furthermore, fixation in the present invention means that the primary particle diameter is 0.1 μm or less from the particle surface of the silica by at least ultrasonic vibration (cleaning). ) generally has a particle size of 1 to 150 μm, particularly 5 to 10 μm.
Particulate silica having a diameter of 0 μm is preferable, and for example, conventionally known silica for semiconductor sealing materials can be used as is. As described above, such conventionally known silica for semiconductor encapsulant is produced by pulverizing fused quartz obtained from low uranium-containing crystal, electric furnace melting, flame melting, or vapor phase synthesis to a predetermined particle size. It can also be obtained by a method such as a method of melting amorphous silica or precipitated V silica obtained from quartz silica, silicon halide, or sodium silicate as raw materials in a flame to form spherules to a predetermined particle size (thermal spraying method). I can do it.

特に後者の溶射法により得られる一般に粒子径が1〜1
50μmである球状シリカは、均一な粒度を有し、球状
であるための形状的および表面的特性により、前記した
如き半導体封止材用シリカとして樹脂に充填し念場合に
パリの発生が多い。したがって、このような従来の半導
体封止材用球状シリカに対しては、該シリカの粒子表面
に1次粒子径が01μm以下である微粉粒状シリカを固
着させる本発明の方法が極めて有効である。
In particular, the particle size obtained by the latter thermal spraying method is generally 1 to 1.
Spherical silica having a particle diameter of 50 μm has a uniform particle size, and due to its shape and surface characteristics due to its spherical shape, when it is filled into a resin as silica for semiconductor encapsulant as described above, it often generates particles. Therefore, for such conventional spherical silica for semiconductor encapsulant, the method of the present invention in which finely divided silica having a primary particle diameter of 01 μm or less is fixed to the particle surface of the silica is extremely effective.

他方、本発明においてシリカの粒子表面に固着させる微
粉状の金属酸化物としては、て)大粒子径が01μ濯以
下であれば特に制限されず、例えばシリカ、アルミナ、
チタニアなどが挙けられるが、一般に非結質シリカが好
ましい。このような1次粒子径が01μ濯以下、一般に
0.05〜0005μmである微粉状シリカは、例えば
気化させた四塩化珪素を水素と高温度下で気相加水分解
する乾式法。
On the other hand, in the present invention, the fine powder metal oxide to be fixed to the surface of silica particles is not particularly limited as long as the large particle size is 01 μm or less, and examples include silica, alumina,
Examples include titania, but non-crystalline silica is generally preferred. Such fine powder silica having a primary particle diameter of 0.01 μm or less, generally 0.05 to 0005 μm, can be produced by, for example, a dry process in which vaporized silicon tetrachloride is hydrolyzed with hydrogen in the gas phase at high temperatures.

珪砂をコークスとアーク炉中で加熱、還元して発生する
sio蒸気を空気中で酸化させる方法、前記した如き溶
射法によるシソ力の製法において例えば石英、ガラスを
加熱して表面から蒸発するSin、5i02ガスを凝縮
させ副生ずる方法、あるいは珪酸ソーダな鉱酸と水溶液
中で反応させる湿式法などにより得ることが出来る。
A method of heating and reducing silica sand with coke in an arc furnace to oxidize the SIO vapor generated in the air, a method of producing perilla by the thermal spraying method described above, for example, a method of heating quartz or glass and evaporating it from the surface; It can be obtained by a method in which 5i02 gas is condensed to produce a by-product, or by a wet method in which it is reacted with a mineral acid such as sodium silicate in an aqueous solution.

本発明のシリカは、上記したような粒子径が一般に1〜
150μ讃で、特にy〜100μ羞である微粒状シリカ
の粒子表面に、1次粒子径が0.1μ以下である微粉状
のシリカなC どの金属酸化物を固着して、1td7y以下の比表面積
を有することか、該シリカを樹脂に充填して良好な成形
性を発揮させるために極めて重要である。即ち、本発明
のシリカは、粒状のシリカに特定された微粉状のシソ力
が単に混合されて、粒子表面に付着しているのでなく、
少なくとも超音波振動により該シリカの粒子表面から微
粉状シリカの大部分が脱離しない程度に固着しているこ
とが必要である。′!!た、本発明のシリカは、所望す
る良好な成形性を発揮させるために、微粉状のシリカを
固着させて、比表面積を1tn’/f以上。
The silica of the present invention generally has a particle size of 1 to 1 as described above.
A metal oxide such as finely powdered silica with a primary particle size of 0.1μ or less is fixed to the particle surface of fine silica particles with a diameter of 150μ, especially y~100μ, to obtain a specific surface area of 1td7y or less. It is extremely important to have good moldability by filling the resin with the silica. That is, the silica of the present invention is not simply mixed with the fine powder specific to granular silica and attached to the particle surface;
It is necessary that most of the fine powdered silica be fixed to the surface of the silica particles at least to the extent that it will not be detached from the particle surface by ultrasonic vibration. ′! ! In addition, the silica of the present invention has a specific surface area of 1 tn'/f or more by fixing fine powder silica to exhibit the desired good moldability.

一般に1〜10+1”7gに維持することが必要である
。IHJち、微粉状シリカの固着量が少なくて比表面積
が1m’7yより小さいシリカの場合には、樹脂の成形
においてパリの発生を充分に抑制することが出来ず、ま
た比表面積が1am’7yより大きいシリカの場合には
パリの発生は抑制できるが、流動性の悪化を招くため好
ましくたい。なお、本発明におけるシリカ粒子の比表面
積は、N2吸着法により求めた。
In general, it is necessary to maintain the amount of 1 to 10 + 1"7g. In the case of IHJ, if the amount of finely powdered silica is small and the specific surface area is less than 1m'7y, it is necessary to sufficiently prevent the occurrence of paris during resin molding. In addition, in the case of silica with a specific surface area larger than 1 am'7y, the generation of paris can be suppressed, but this is preferable because it causes deterioration of fluidity. was determined by the N2 adsorption method.

このような本発明のシリカは、粒子径が一般に1〜15
0μ購である粒状のシリカに、1次粒子径が01μm以
下である微粉状のシリカを1〜5重量%を湿潤状態で混
合した後、乾燥する方法によって簡便に製造することが
出来る。本発明の代表的な製法を具体的に示すと、例え
ば(1)上記した粒子径が1〜150μmである粒状シ
リカを水により一般に20〜80重蓋%の割合に湿潤し
、1次粒子が0.1μm以下である微粉状シリカの所定
量を均一に混合した後、一般に110℃以上の温度で乾
燥し、必要に応じて解砕し、篩分して状シリカに予め1
次粒子径が0.1μ票以下である微粉状シリカの所定量
を均一に混合、含有させた後、水により20〜80重j
i%、好ましくは40〜60重量%の割合に¥i瀉させ
次いで110℃以上の温度で乾燥し、必要に応じて解砕
し、篩分けして得る方法、(3)粒子径が1〜150μ
mの微粉状シリカを例えば加熱式ミルを用いて110℃
に加熱しながら、1次粒子径が01μ准以下である微粉
状シリカのスラリーをスプレーノズルなどを用いて吹込
み、所定の割合に添加して得る方法、(4)1次粒子径
が01μm以下である微粉状シリカの所定量を予め均一
に混合、含有させた粒子径が1〜150μmである粒状
シリカを攪拌機刊きの加熱式ミキサーにおいて100〜
200℃の温度に加熱しながら、水をスプレーノズルか
ら吹込み、一般に1〜5重量%。
Such silica of the present invention generally has a particle size of 1 to 15
It can be easily produced by mixing 1 to 5% by weight of finely powdered silica having a primary particle diameter of 01 μm or less with 0 μm granular silica in a wet state, and then drying the mixture. To specifically illustrate a typical manufacturing method of the present invention, for example, (1) granular silica having a particle size of 1 to 150 μm as described above is moistened with water to a ratio of 20 to 80%, and the primary particles are After uniformly mixing a predetermined amount of finely powdered silica with a particle diameter of 0.1 μm or less, it is generally dried at a temperature of 110°C or higher, crushed if necessary, and sieved to give a 1.
After uniformly mixing and containing a predetermined amount of fine powder silica with a particle size of 0.1μ or less, 20 to 80 g
i%, preferably 40 to 60% by weight, followed by drying at a temperature of 110°C or higher, crushing if necessary, and sieving; (3) particle size of 1 to 60% by weight; 150μ
m fine powder silica is heated to 110°C using a heating mill, for example.
(4) A method in which a slurry of finely powdered silica with a primary particle size of 0.01 μm or less is blown into the slurry using a spray nozzle while heating to a predetermined ratio, and (4) the primary particle size is 0.1 μm or less. A predetermined amount of finely powdered silica is uniformly mixed in advance, and granular silica with a particle size of 1 to 150 μm is mixed in a heated mixer with an agitator for 100 to 100 μm.
While heating to a temperature of 200° C., water is blown through a spray nozzle, generally from 1 to 5% by weight.

好ましくは1〜3m1t%の割合になるように添加して
乾燥する方法などが採用される。なお、本発明の製法に
おいて用いる湿潤媒体は、一般に水が好ましいが、これ
に限らず例えばアルコールなど加熱、乾燥によって揮発
し、残存しない液体であれは用いることが出来る。
Preferably, a method of adding and drying at a ratio of 1 to 3 ml/t% is employed. The wetting medium used in the production method of the present invention is generally preferably water, but is not limited to this, and any liquid that evaporates and does not remain after heating and drying, such as alcohol, can be used.

〔作用および効果〕[Action and effect]

本発明の製法によれば、ベースとなる粒子径か1〜15
0μmである粒状シリカの粒子表面に存在するOH基と
、1次粒子径が01μm以下である微粉状シリカが有す
るOH基とが、湿潤状態において水などの媒体を介して
、乾燥により縮合反応を生起するため、強固な付着(固
着)が達成される。したがつて、本発明のシリカは、(
1)樹脂に充填した場合に、粒子径が1〜150μmで
ある粒状シリカと1次粒子径が0.1μm以下の微粉状
シリカとが離れ難いために、該シリカと樹脂との接着力
が増大し、金型より樹脂の流出が防止されパリの発生を
伴わない、(2)樹脂組成において、1次粒子径が0.
1μ荒以下である微粉状シリカが改質材として均一に溶
は込むため、該樹脂組成物それ自体のレオロジー特性が
改質される、(3)1次粒子径が0.1μ以下である微
粉状シリカが実質的に1〜5重量%と少量であるため、
樹脂組成物として粘度の上昇が小さく、流動性の悪化ま
で至らない。上記した本発明の作用から、本発明におけ
る1次粒子径が0.1μm以下である微粉状の金#l酸
化物はシリカに限らずアルミナ、チタニアなども同等の
作用を発揮することが容易に期待される。
According to the manufacturing method of the present invention, the base particle size is 1 to 15
The OH groups present on the particle surface of granular silica having a diameter of 0 μm and the OH groups possessed by fine powder silica having a primary particle diameter of 01 μm or less undergo a condensation reaction by drying in a wet state through a medium such as water. As a result, a strong adhesion is achieved. Therefore, the silica of the present invention has (
1) When filled in resin, granular silica with a particle size of 1 to 150 μm and fine powder silica with a primary particle size of 0.1 μm or less are difficult to separate, increasing the adhesive strength between the silica and the resin. (2) In the resin composition, the primary particle size is 0.
(3) Fine powder with a primary particle diameter of 0.1 μ or less, since the fine powder silica having a roughness of 1 μ or less is uniformly infused as a modifier, thereby improving the rheological properties of the resin composition itself. Since the amount of silica is as small as 1 to 5% by weight,
As a resin composition, the increase in viscosity is small, and fluidity does not deteriorate. From the effects of the present invention described above, the fine powdered gold #l oxide with a primary particle size of 0.1 μm or less in the present invention is not limited to silica, but alumina, titania, etc. can easily exhibit the same effect. Be expected.

〔効果〕〔effect〕

本発明は、特に半導体封止材用シリカとして有用であり
、従来の半導体封止材用シリカに比べて、半導体封止材
用樹脂であるエポキシ樹脂材などに充填して成形に供し
た場合に、パリの発生が殆んど解消され、流動性の悪化
を伴うことなく、成形性の向上が図られる。
The present invention is particularly useful as silica for semiconductor encapsulant materials, and compared to conventional silica for semiconductor encapsulant materials, it is more effective when filled into an epoxy resin material, which is a resin for semiconductor encapsulant materials, and subjected to molding. The occurrence of flakes is almost eliminated, and moldability is improved without deterioration of fluidity.

また、本発明の製法では、従来公知の半導体封止材シリ
カを用いて簡便に改良できるため、工業的に極めて有利
である。
Further, the manufacturing method of the present invention is extremely advantageous industrially because it can be easily improved using the conventionally known semiconductor sealing material silica.

〔実施例〕〔Example〕

以下、本発明の実施例を示すが、本発明はこれらの実施
例に限定されるものではない。
Examples of the present invention will be shown below, but the present invention is not limited to these Examples.

実施例1 四塩化珪素(Si014)を原料として、バー力を得た
。なお、この球状シリカについて、超音波振動により洗
浄した後、比表面積を測定した結果は0.4ゼ/gであ
った。
Example 1 Bar force was obtained using silicon tetrachloride (Si014) as a raw material. The specific surface area of this spherical silica was measured after being washed by ultrasonic vibration, and the result was 0.4 g/g.

上記の球状シリカを用いて、水により50重量%の割合
にfi!fjiきせた後、1次粒子径が0.02μmで
ある微粉状シリカ(徳山曹達社製、商品名レオロシール
QS−102)を15重ffi%の割合に添加して、攪
拌機付の加熱式ミキサーによって均一に混合、次いで1
10℃の温度で乾燥、乾く解砕した後、篩分けにより1
05μm以下の粒子を除去した。得られたシリカは、比
表面積が3.5tr/fであり第1図に倍率が5000
倍(4cmが10μm)である電顕写真を示した。
Using the above spherical silica, fi! to a proportion of 50% by weight with water! After fji separation, fine powder silica (manufactured by Tokuyama Soda Co., Ltd., trade name Rheosil QS-102) having a primary particle diameter of 0.02 μm was added at a ratio of 15% by weight, and the mixture was heated using a heating mixer equipped with an agitator. Mix evenly, then 1
After drying and dry crushing at a temperature of 10℃, 1
Particles smaller than 0.05 μm were removed. The obtained silica has a specific surface area of 3.5tr/f and is shown in Figure 1 at a magnification of 5000.
An electron micrograph with a magnification of 4 cm (10 μm) is shown.

さらに、上記の得られたシリカを半導体封止材に用いる
エポキシ樹脂材に、65重置%の割合に充填して溶融混
練した後、金型に供した。その成形性について定性的な
観察の結果、流動性は従来の半導体封止材用粒状シリカ
の場合と同様に良好であり、また金型におけるパリの発
生は殆んど詔められ、強度も改善された。なお、従来の
半導体封止材用シリカに相当する上記の球状シリカを同
様に充填材として用いた場合には、金型においてパリの
発生が可成り認められた。
Furthermore, the silica obtained above was filled into an epoxy resin material used for a semiconductor sealing material at a ratio of 65% by weight, melted and kneaded, and then used in a mold. Qualitative observation of its moldability revealed that its fluidity was as good as that of conventional granular silica for semiconductor encapsulants, and the occurrence of flash in molds was almost eliminated, and its strength was improved. It was done. Note that when the above-mentioned spherical silica, which corresponds to the conventional silica for semiconductor encapsulant materials, was similarly used as a filler, a considerable amount of flash was observed in the mold.

なお、上記で得られたシリカ10I/を水50CCにお
いて超音波を用いてIOWの出力で20分間の分散を行
なった後、上澄液を分離して残ったシリカを乾燥し、N
2−BFT法により測定した比表面積は2.5m’/f
/であった。第2図は、その5000倍(4cmが10
μm)である電顕写真であった。シリカの表面に微粉状
シリカが固着している状態が認められる。
In addition, after dispersing the silica 10I obtained above in 50cc of water using ultrasonic waves at the output of IOW for 20 minutes, the supernatant liquid was separated, the remaining silica was dried, and N
The specific surface area measured by 2-BFT method is 2.5 m'/f
/Met. Figure 2 is 5000 times that amount (4 cm is 10
It was an electron micrograph with .mu.m). It is observed that fine powdered silica is adhered to the surface of the silica.

比較のために、前記した球状シリカに微粉状シリカを1
,5重量%の割合で(湿潤させることなく)単に混合し
たシリカについて、第3図に同じ(5000倍(4cT
nが10μil)である電顕写真を示す。また、この混
合シリカを上記したと同一の条件下に超音波により洗浄
したシソ力について、第4図に同じ< 5000倍(4
crnが10μm)の電顕写真を示す。これらの結果か
ら、シリカの表面から微粉状シリカが脱離していること
が認められる。
For comparison, one portion of fine powder silica was added to the spherical silica described above.
The same (5000 times (4 cT)
An electron micrograph is shown in which n is 10 μil). In addition, the perforation force of this mixed silica was cleaned by ultrasonic waves under the same conditions as described above is shown in Figure 4, which is the same < 5000 times (4
An electron micrograph of CRN of 10 μm is shown. From these results, it is recognized that fine powdered silica is detached from the surface of silica.

実施例2 実施例1に用いたと同一の球状シリカに微粉状シリカ(
レオロシール)を15重′M、%の割合に添加して、攪
拌機付の加熱式ミキサーにおいて150℃に加熱、混合
しながら、それらシリカ1J19あたり150−の水を
スプレーノズルから導入してシリカを調製した。
Example 2 Fine powder silica (
Silica was prepared by adding 15% by weight of Rheolosil) and heating it to 150°C in a heating mixer equipped with an agitator, and while mixing, 150% water per 1J19 of the silica was introduced from a spray nozzle. did.

得られたシリカの比表面積は3.3m’/fであり、超
音波洗浄した後はL9m’/fであった。また、この調
製したシリカについて実施例1と同様にエポキシ樹脂材
に充填して成形性をf#詔した結果、球状シリカ(未調
製シリカ)と比較して、流動性は同等に良好であり、パ
リの発生が殆んどなく、強度も改良された。
The specific surface area of the obtained silica was 3.3 m'/f, and after ultrasonic cleaning, it was L9 m'/f. In addition, the prepared silica was filled into an epoxy resin material in the same manner as in Example 1, and the moldability was evaluated to f#, and the fluidity was found to be equally good compared to spherical silica (unprepared silica). There was almost no occurrence of paris, and the strength was improved.

実施例3 実施例1に用いたと同一の球状シリカを加熱式ミルにお
いて110℃に加熱しながら、微粉状シリカ(レオロシ
ール)を予め水で調製した10重置部のスラリーとして
スプレーノズルより吹込み、該微粉状シリカが1.5重
量%の割合に相当するよ二!襞した。
Example 3 While heating the same spherical silica used in Example 1 to 110°C in a heating mill, finely powdered silica (Rheolo Seal) was injected into a slurry of 10 layers prepared in advance with water through a spray nozzle. The finely divided silica corresponds to a proportion of 1.5% by weight! It was folded.

得られたシリカの比表面積は3.4m’7’f/であり
、超音波洗浄した後は2.3rn’/fであった。また
、実施例1と同様の成形に供した結果、球状シリカと比
較して、流動性は同等に良好であり、パリの発生が殆ん
どなく、強度も改良された。
The specific surface area of the obtained silica was 3.4 m'7'f/, and after ultrasonic cleaning it was 2.3rn'/f. Moreover, as a result of being subjected to the same molding as in Example 1, the fluidity was equally good, there was almost no occurrence of flakes, and the strength was improved compared to spherical silica.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1において得た本発明のシμmに相当
する。第2図は、実施例にお−で得た本発明のシリカを
超音波により洗浄した後、に相当する。 第3図は、本発明の比較例として得たシリカ(球状シリ
カと微粉状シリカとの混合シリカ)4cmが10μmに
相当する。また、第4図は、上記の混合シリカについて
、超音波により洗浄10μ講に相当する。
FIG. 1 corresponds to the micrometer of the present invention obtained in Example 1. FIG. 2 corresponds to the silica of the present invention obtained in Example after being cleaned by ultrasonic waves. In FIG. 3, 4 cm of silica (mixed silica of spherical silica and fine powder silica) obtained as a comparative example of the present invention corresponds to 10 μm. Moreover, FIG. 4 corresponds to a 10μ course of ultrasonic cleaning of the above-mentioned mixed silica.

Claims (1)

【特許請求の範囲】 1)1次粒子径が0.1μm以下である微粉状の金属酸
化物を粒子表面に固着した比表面積が1〜10m^2/
gであるシリカ 2)粒子径が1〜150μmである粒状シリカに1次粒
子径が0.1μm以下である微粉状の金属酸化物を1〜
5重量%の割合に湿潤状態で混合した後、乾燥すること
を特徴とするシリカの製造方法
[Claims] 1) Fine powder metal oxide with a primary particle diameter of 0.1 μm or less fixed to the particle surface with a specific surface area of 1 to 10 m^2/
2) Add a fine powder metal oxide having a primary particle size of 0.1 μm or less to granular silica having a particle size of 1 to 150 μm.
A method for producing silica, which comprises mixing in a wet state at a ratio of 5% by weight and then drying.
JP948188A 1988-01-21 1988-01-21 Silica and its production Pending JPH01185373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP948188A JPH01185373A (en) 1988-01-21 1988-01-21 Silica and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP948188A JPH01185373A (en) 1988-01-21 1988-01-21 Silica and its production

Publications (1)

Publication Number Publication Date
JPH01185373A true JPH01185373A (en) 1989-07-24

Family

ID=11721439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP948188A Pending JPH01185373A (en) 1988-01-21 1988-01-21 Silica and its production

Country Status (1)

Country Link
JP (1) JPH01185373A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5554439A (en) * 1994-02-07 1996-09-10 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Coating composition and coating film composition
JP2005538240A (en) * 2002-09-14 2005-12-15 デグサ アクチエンゲゼルシャフト silicone rubber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5554439A (en) * 1994-02-07 1996-09-10 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Coating composition and coating film composition
EP0666292A3 (en) * 1994-02-07 1997-01-02 Dainichiseika Color Chem Coating composition and coating film composition.
JP2005538240A (en) * 2002-09-14 2005-12-15 デグサ アクチエンゲゼルシャフト silicone rubber

Similar Documents

Publication Publication Date Title
KR101406571B1 (en) Silica powder, method for production of the same, and composition using the same
JPH03257010A (en) Silica particle and its production
JPS6157347B2 (en)
JPS644540B2 (en)
JP7254493B2 (en) A composite material comprising at least one first material and particles, said particles having a negative coefficient of thermal expansion α, and an adhesive material comprising said composite material
JPS58127354A (en) Semiconductor element sealing resin composition material
JPH01185373A (en) Silica and its production
JP6329776B2 (en) Sealing material for mold underfill
JP2684396B2 (en) Fused spherical silica and sealing resin composition using the same
JPH022804B2 (en)
JPH01161065A (en) Silica and its production
JPS61186216A (en) Production of spherical silica
JP3445707B2 (en) Siliceous filler and its production method
JPH01234319A (en) Production of spherical silica
JP2004203664A (en) Spherical siliceous powder and manufacturing method and utilization of the same
JPH03259960A (en) Silica filler and its preparation
JPS59189140A (en) Inorganic sphere, production thereof and resin composition containing the same
JP2704281B2 (en) Fused spherical silica and sealing resin composition using the same as filler
JPS6296569A (en) Semiconductor sealing resin composition
JPH02158637A (en) Silica filler and sealing resin composition using the same
JPS6065041A (en) Inorganic sphere and composition thereof
JPH03259961A (en) Silica filler and its preparation
JP2665539B2 (en) Silica filler and sealing resin composition using the same
JPS6296312A (en) Production of high-purity spherical silica filler
JPS60131868A (en) Manufacture of silicic acid powder sphere