JPH03259961A - Silica filler and its preparation - Google Patents

Silica filler and its preparation

Info

Publication number
JPH03259961A
JPH03259961A JP5868090A JP5868090A JPH03259961A JP H03259961 A JPH03259961 A JP H03259961A JP 5868090 A JP5868090 A JP 5868090A JP 5868090 A JP5868090 A JP 5868090A JP H03259961 A JPH03259961 A JP H03259961A
Authority
JP
Japan
Prior art keywords
silica
filler
spherical silica
fine
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5868090A
Other languages
Japanese (ja)
Other versions
JP2955672B2 (en
Inventor
Takeo Shimada
島田 武夫
Sadahiko Shimada
島田 貞彦
Takeo Miyabe
宮辺 武夫
Nobuyuki Yamazaki
信幸 山崎
Yutaka Konose
豊 木ノ瀬
Kyuzo Yoshikawa
吉川 久三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP5868090A priority Critical patent/JP2955672B2/en
Publication of JPH03259961A publication Critical patent/JPH03259961A/en
Application granted granted Critical
Publication of JP2955672B2 publication Critical patent/JP2955672B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prepare a silica filler giving a semiconductor-sealing resin compsn. excellent in flowability, prevention of flash formation, and high-temp. strengths by fusion bonding, to the surface of a fused spherical silica having a specified particle size, a fine-particle silica having a particle size smaller than that of the spherical silica. CONSTITUTION:A mixture of a coarse-particle fused spherical silica having a mean particle size of 10-40mum with a fine-particle silica having a mean particle size of 1-5mum is subjected to a thermal tratment at 1100-1300 deg.C to fusion-bond the fine-particle silica to the surface of the coarse particle silica, giving a silica filler. The obtd. filler has excellent properties, esp. improved high-temp. strengths which are the defects of the conventional spherical silica filler, and gives a semiconductor-sealing resin compsn. showing an excellent balance among flowability, prevention of flash formation, and high-temp. strenghs.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、シリカフィラーおよびその製造方法に関する
。更に詳細には、半導体の樹脂封止用シリカフィラーと
して好適な特定の粒子特性をもつシリカフィラーおよび
その工業的に有利な製造方法に係るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a silica filler and a method for producing the same. More specifically, the present invention relates to a silica filler having specific particle characteristics suitable as a silica filler for resin encapsulation of semiconductors, and an industrially advantageous manufacturing method thereof.

〔従来の技術] 半導体の樹脂封止は、エポキシ樹脂を代表とする樹脂に
、特にシリカを主体とする多量のフィラーを充填した樹
脂組成物の封止材料によってなされるが、この関係につ
いては既に数多くの特許が公開されている。
[Prior Art] Semiconductors are encapsulated with a resin composition using a resin composition, typically an epoxy resin, filled with a large amount of filler mainly composed of silica, but this relationship has already been studied. Many patents have been published.

従来、半導体の樹脂封止材のフィラーとして溶融シリカ
の粉砕品が利用されているが、近時、半導体の集積度が
上がるにつれて高充填性の樹脂封止が要求され、樹脂の
流動性を改善するために従来の粉砕品に代わって溶融球
状シリカがフィラーとして不可欠となってきている。
Conventionally, pulverized fused silica has been used as a filler in resin encapsulants for semiconductors, but as the degree of integration of semiconductors has increased, highly filling resin encapsulants have been required, and resin fluidity has been improved. Therefore, fused spherical silica has become indispensable as a filler in place of conventional pulverized products.

特公昭54−43201号公報、特公昭61−5734
7号公報などに記載のある発明はこの種の樹脂m戒物を
対象としたものであり、微細な球状粒子や平均粒径1〜
60μmの溶融球状シリカを用いることが示されている
Special Publication No. 54-43201, Special Publication No. 61-5734
The invention described in Publication No. 7, etc. is aimed at this type of resin m-kaimono, and includes fine spherical particles and average particle diameters of 1 to 1.
The use of 60 μm fused spherical silica is indicated.

このように、樹脂封止材用のシリカフィラーには、ボー
ルミル等で粉砕した破砕状の結晶性又は非晶質シリカや
、高温火炎中で溶融した球状シリカ等があって、それら
の1種又は2種以上を粒度調整したものを用いることも
知られている(特開昭54−141569号公報、特開
昭55−29532号公報、特開昭56−10947号
公報、特開昭57−212225号公報、特開昭62−
261161号公報)。
In this way, silica fillers for resin encapsulants include crushed crystalline or amorphous silica crushed with a ball mill, etc., spherical silica melted in a high-temperature flame, etc., and one of these types or It is also known to use two or more types with particle sizes adjusted (JP-A-54-141569, JP-A-55-29532, JP-A-56-10947, JP-A-57-212225). Publication No., JP-A-62-
261161).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

近年、高集積度ICメモリーの分野では、パッケージは
ピン挿入型から表面実装型で薄型かつ小型化、多ピン化
の傾向を強めている。また、ICメモリーの集積度の向
上につれてICチップの面積は大きくなっており、パッ
ケージに占めるチップの占有率がますます大きくなって
きている。これにともないパッケージには、チップとパ
ッケージ組成物の熱膨張率の差に起因する熱応力に基づ
くクラック発生が重要な問題点となっている。
In recent years, in the field of highly integrated IC memories, there has been a growing trend for packages to shift from pin-insertion type to surface-mount type, thinner and smaller, and to have more pins. Furthermore, as the degree of integration of IC memories improves, the area of IC chips increases, and the chip occupies a larger proportion of the package. Along with this, the occurrence of cracks in packages due to thermal stress caused by the difference in coefficient of thermal expansion between the chip and the package composition has become an important problem.

パッケージ組成物の熱膨張率は、該組成物中のシリカフ
ィラーの含有量の増大に応して小さくなる。そこで該組
成物中のシリカ含有量を上げるためには、組成物の流動
性の向上なしには達成できず、そのため従来用いられて
いた破砕シリカに代わって、球状シリカを用いることが
検討された。
The coefficient of thermal expansion of the packaging composition decreases as the content of silica filler in the composition increases. Therefore, increasing the silica content in the composition cannot be achieved without improving the fluidity of the composition, and therefore, the use of spherical silica in place of the conventionally used crushed silica has been considered. .

球状シリカを使用した場合は確かに流動性が向上するた
め、m酸物中のシリカ含有量を増大することができるけ
れども、当該樹脂組成物の成型時にパリが発生しやすい
という問題点がでてきた。また表面実装方法が主流にな
るにつれて、従来あまり問題にされていなかったパッケ
ージクランク(吸湿後のハンダ温度における熱時強度の
低下に起因するりフロー炉に入れた場合に生しるクラッ
ク)が新たな問題として指摘され、特に球状シリカを多
量配合した場合、熱時強度の不足によるパッケージクラ
ンクが生し易いことが判明した。
When spherical silica is used, the fluidity is certainly improved, so the silica content in the m-acid can be increased, but there is a problem that flakes are likely to occur during molding of the resin composition. Ta. In addition, as surface mounting methods become mainstream, package cracks (cracks that occur when placed in a flow furnace due to a decrease in heat strength at the solder temperature after absorbing moisture), which had not been a problem in the past, have become a new problem. It has been pointed out that this is a serious problem, and it has been found that especially when a large amount of spherical silica is blended, package cranking is likely to occur due to insufficient strength when heated.

一般に破砕シリカは樹脂組成物の流動性に劣る反面、パ
リ特性、高温強度特性が優れており、方、球状シリカは
その逆の傾向にある。従って多くの場合は両者のシリカ
を適宜配合し、流動性を犠牲にした配合系で樹脂封止し
ている。
In general, crushed silica has poor fluidity of resin compositions, but has excellent Paris properties and high-temperature strength properties, while spherical silica tends to have the opposite tendency. Therefore, in many cases, both types of silica are appropriately blended, and resin sealing is performed using a blending system that sacrifices fluidity.

例えば、前記特開昭56−10947号公報や特開昭5
7−212225号公報には、結晶性シリカ粉末と溶融
シリカ粉末との混合物を、特開昭62−261161号
公報には、破砕シリカと球状シリカとの混合物をフィラ
ーとするものが開示されているが、本発明者らの実験に
よれば、封止用樹脂組成物の流動性とパリ特性を同時に
満たすような高充填可能なフィラーとして使用すること
ができない。
For example, the above-mentioned Japanese Patent Application Laid-open No. 56-10947 and Japanese Patent Application Laid-open No. 5
7-212225 discloses a filler containing a mixture of crystalline silica powder and fused silica powder, and JP-A-62-261161 discloses a filler containing a mixture of crushed silica and spherical silica. However, according to experiments conducted by the present inventors, it cannot be used as a highly filling filler that simultaneously satisfies the fluidity and Paris characteristics of the sealing resin composition.

また、球状シリカと破砕状シリカとの単なる混合では多
くの場合、その混合物は両者の利点を弓き出すことが出
来ないのみならず、フィラーとしての信頼性に欠けるこ
とも判った。
It has also been found that in many cases, simply mixing spherical silica and crushed silica not only fails to bring out the advantages of both, but also lacks reliability as a filler.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、畝上の事実に鑑み数多くの実験と研究を
重ねた結果、樹脂封止用フィラーとして高充填可能なフ
ィラーとして形状や粒度は勿論のこと、それらが異なる
シリカ粒子との相互の物理的結合関係が極めて重要であ
ることを知見して、本発明を完成するに至った。
The inventors of the present invention have conducted numerous experiments and researches in view of the fact of ridges, and have found that the filler can be highly filled as a filler for resin sealing. The present invention was completed based on the discovery that the physical bonding relationship between the two is extremely important.

すなわち、本発明により提供されるシリカフィラーは、
平均粒子径10〜40μmの溶融球状シリカの粒子表面
に該シリカ粒子よりも微細なシリカ粒子を融着させてな
ることを特徴とするものである。
That is, the silica filler provided by the present invention is
It is characterized in that silica particles finer than the silica particles are fused to the surface of fused spherical silica particles having an average particle diameter of 10 to 40 μm.

更に、本発明は上記シリカを工業的に有利な製造方法を
提供することにより、その特徴とするのは、平均粒子径
10〜40μmの粗粒溶融球状シリカと平均粒子径が1
〜5μmの微細なシリカとの混合物を1100〜130
0℃の温度で加熱処理することにある。
Furthermore, the present invention provides an industrially advantageous manufacturing method for the above-mentioned silica.
1100-130 mixture with ~5μm fine silica
The purpose is to perform heat treatment at a temperature of 0°C.

本発明につき詳説する。The present invention will be explained in detail.

本発明に係るシリカフィラーは、前記したごとく比較的
粒径の大きな溶融球状シリカの表面に微粒球状シリカを
融着してなることを特徴とする。
The silica filler according to the present invention is characterized in that, as described above, fine particles of spherical silica are fused onto the surface of fused spherical silica having a relatively large particle size.

すなわち本発明に係るシリカフィラーは、これを充填し
た樹脂組成物に対して球状シリカのもつ高い流動性を保
持しつつ、微粒融着による形状効果により球状シリカ単
独では得られないパリ特性と高温強度特性を同時に満足
することができ、本発明に係るシリカを適用して樹脂組
成物を調製する場合の自由度の幅を拡大させるものであ
る。
In other words, the silica filler according to the present invention maintains the high fluidity of spherical silica in the resin composition filled with it, and also has the crisp properties and high-temperature strength that cannot be obtained with spherical silica alone due to the shape effect due to fine particle fusion. These characteristics can be satisfied at the same time, and the degree of freedom when preparing a resin composition by applying the silica according to the present invention is expanded.

本発明に係る粗粒溶融球状シリカは溶融前の出発原料に
関して特に規制はなく、天然の珪石粉砕品、合成石英粉
砕品、アルコキシシラン等の加水分解により得られたも
の、珪酸ソーダと酸との反応により得られるもの等が利
用できる。通常は、これらの粉末シリカを酸素−可燃性
ガス炎に分散させて溶融球状化している。
The coarse fused spherical silica according to the present invention has no particular restrictions on the starting materials before melting, and includes crushed natural silica, crushed synthetic quartz, those obtained by hydrolysis of alkoxysilane, etc., and those obtained by hydrolysis of sodium silicate and acid. Those obtained by reaction can be used. Usually, these powdered silicas are dispersed in an oxygen-combustible gas flame to melt and spheroidize them.

本発明に係るシリカフィラーにおいて粗粒溶融球状シリ
カは、その平均粒径が10〜40nであることが重要で
ある。この理由は40−以上の場合、その中に含まれる
粗大粒子が金型のゲート部分に詰まる虞れがあると共に
微粒部分の不足によるスリットバリが発生するため好ま
しくない、一方、逆に10n以下の場合、粗粒部分の不
足による流動性の低下及びエアベントバリが発生するた
め好ましくない傾向があることによる。またかかる溶融
球状シリカは、多くの場合0.3〜51/gのBET比
表面積を有している。比表面積は、球状シリカの溶融化
度の指標の一つとして捉えられ0.3m”7g未満のも
のは経済的に有利な工業生産が不可能であり、逆に51
7g以上の場合は溶融球状化が不十分であり、満足すべ
き流動性が得られない。
In the silica filler according to the present invention, it is important that the coarse fused spherical silica has an average particle size of 10 to 40 nm. The reason for this is that if the particle size is 40 or more, the coarse particles contained therein may clog the gate part of the mold, and slit burrs may occur due to the lack of fine particles, which is undesirable. In this case, there is an undesirable tendency to reduce fluidity due to lack of coarse particles and to generate air vent burrs. Further, such fused spherical silica often has a BET specific surface area of 0.3 to 51/g. The specific surface area is regarded as one of the indicators of the degree of melting of spherical silica, and if it is less than 0.3m"7g, economically advantageous industrial production is impossible;
If it is 7 g or more, melting and spheroidization will be insufficient and satisfactory fluidity will not be obtained.

本発明に係るシリカフィラーは、前記の如き球状シリカ
に微細なシリカ粒子が融着されたものであるが、この微
細シリカは結晶質若しくは非晶質のいずれであってもよ
く、又天然若しくは台底のいずれであってもよい。
The silica filler according to the present invention has fine silica particles fused to the spherical silica as described above, but the fine silica may be either crystalline or amorphous, and may be natural or non-crystalline. It can be either the bottom.

また、形状は特に限定はないけれども、好ましくは球状
がよい。
Further, although the shape is not particularly limited, it is preferably spherical.

さらに微細化の程度は、溶融球状シリカの平均粒子径や
微細粒子の形状その他の物性等によって一様ではないけ
れども、平均粒子径として粗粒球状シリカの1/2以下
であることが少なくとも必要である。この理由は、微細
化度合が不充分であるとシリカフィラーとしての流動性
が低下してくるからである。従って、多くの場合、平均
粒径が1〜5μmのものが好ましい。
Furthermore, although the degree of refinement varies depending on the average particle size of the fused spherical silica, the shape of the fine particles, and other physical properties, it is necessary that the average particle size is at least 1/2 or less of that of the coarse spherical silica. be. The reason for this is that if the degree of refinement is insufficient, the fluidity of the silica filler will decrease. Therefore, in most cases, particles having an average particle size of 1 to 5 μm are preferred.

粗粒球状シリカに対する微粒球状シリカの融着量は全重
量当り10〜50ii t%の範囲が良く、10wt%
未満では融着による高温強度の改善効果が無く、また5
0wt%以上融着させた場合は流動性が低下する。
The amount of fused spherical silica to coarse spherical silica is preferably in the range of 10 to 50 t% based on the total weight, and 10 wt%.
If it is less than 5, there is no effect of improving high temperature strength by fusion, and
If 0 wt % or more is fused, the fluidity will decrease.

このように本発明に係るシリカフィラーは、粒度の異な
る2種のシリカ粒子が相互に融着した状態で結合してい
ることが特徴となっている。ここに融着とは、後述する
1100〜1300℃の焼成条件で粗粒シリカ粒子表面
に微細シリカが焼結乃至溶着して物理的に密に結合した
状態をいう、従って、この融着状態は必ずしも完全な融
着を意味するものではない。
As described above, the silica filler according to the present invention is characterized in that two types of silica particles having different particle sizes are bonded to each other in a fused state. Here, fusion refers to a state in which fine silica is sintered or welded to the surface of coarse silica particles under the firing conditions of 1100 to 1300°C, which will be described later, and is physically tightly bonded. Therefore, this fusion state is This does not necessarily mean complete fusion.

粗粒球状シリカの表面に微細なシリカを融着させたシリ
カフィラーの比表面積は1〜10m”/g程度であり、
好ましくは2〜61/gが良い@ z+w”7g未満の
場合は高温強度の改善効果が少なく、また流動性も不足
であり、逆に617gを超える場合は、これを用いて樹
脂組成物にした場合の吸水率(PCTテスト120″C
X24hrs)が多くなり、吸水後の高温強度が低下す
る問題が生してくる。
The specific surface area of the silica filler, in which fine silica is fused to the surface of coarse spherical silica, is about 1 to 10 m''/g,
Preferably 2 to 61/g @ z+w" If it is less than 7 g, the effect of improving high temperature strength is small and the fluidity is insufficient. On the other hand, if it exceeds 617 g, it is difficult to make a resin composition using it. Water absorption rate (PCT test 120″C)
x24hrs) increases, leading to the problem that the high-temperature strength after water absorption decreases.

なお、本発明に係る球状シリカの前記粒度特性はいずれ
もレーザー散乱光法による粒度分布測定法に基づく値で
あり、その測定機種としては例えば、SKレーザー(セ
イシン企業■)やシーラスレーザー(シーラス社)等が
挙げられる。
The particle size characteristics of the spherical silica according to the present invention are all values based on a particle size distribution measurement method using a laser scattering method, and the measurement models include, for example, SK Laser (Seishin Enterprise ■) and Cirrus Laser (Cirrus Co., Ltd.). ) etc.

また、シリカフィラーの粒子が球状であるか破砕状であ
るか否かは、電子顕微鏡又は普通の顕微鏡にて容易に確
認することができ、本発明で言う球状とは真球ないしは
実質的に角のない丸味のある粒子状態であるものをいう
Furthermore, whether the particles of silica filler are spherical or crushed can be easily confirmed with an electron microscope or an ordinary microscope. It refers to something that is in a rounded particle state without any blemishes.

次に本発明に係るシリカフィラーの製造方法につき詳述
する0本発明における粗粒球状シリカは次のような方法
により工業的に有利に製造することができる。
Next, the method for producing the silica filler according to the present invention will be described in detail. The coarse spherical silica according to the present invention can be industrially advantageously produced by the following method.

すなわち、所定の粒度特性と比表面積を有する原料シリ
カ粉を、火炎溶融炉に供給して溶融球状化することによ
り製造でき、この方法は公知である。
That is, it can be produced by supplying raw material silica powder having predetermined particle size characteristics and specific surface area to a flame melting furnace and melting it into a spheroid, and this method is well known.

即ち、溶融球状化は、酸素−可燃性ガスの燃焼による火
炎、多くの場合、酸素、プロパン炎にて行うが、そのシ
リカの融点以上の温度にある火炎が得られれば、ガスの
種類、溶融方法については特に限定するものではない。
That is, molten spheroidization is carried out using a flame resulting from the combustion of an oxygen-combustible gas, in most cases an oxygen or propane flame. The method is not particularly limited.

なお、この工程において使用できるシリカ原料は、特に
限定されるものではないが、可能な限り高純度の天然又
は台底シリカであることが望ましい。
Note that the silica raw material that can be used in this step is not particularly limited, but it is desirable that it is natural or platform silica of as high purity as possible.

天然シリカとしては、精製された珪石、珪砂、水晶等が
挙げられ台底シリカとしては、ハロゲン化珪素の加水分
解によるもの、エチルシリケートの如きオルガノシリケ
ートの加水分解物又は珪酸アルカリ水溶液の中和に基づ
くシリカ等が挙げられる。
Examples of natural silica include purified silica, silica sand, and crystal, and examples of base silica include those obtained by hydrolysis of silicon halide, hydrolysates of organosilicate such as ethyl silicate, or neutralized aqueous alkali silicate solutions. Based on silica, etc.

特に、珪酸アルカリ水溶液を鉱酸との中和反応に基づい
て得られる高純度シリカの製造法についでは、本出願人
が既に開発に成功しており、工業的に有利なシリカ原料
として用いることができる/ が、その詳細は、例えば特開昭61−48421号公報
、特開昭61−48422号公報、特開昭61−178
414号公報、特開昭62−12608号公報等に記載
されている。
In particular, the applicant has already successfully developed a method for producing high-purity silica obtained by neutralizing an aqueous alkali silicate solution with a mineral acid, and it can be used as an industrially advantageous raw material for silica. It is possible/, but the details can be found in, for example, JP-A-61-48421, JP-A-61-48422, and JP-A-61-178.
It is described in Japanese Patent Application Laid-open No. 414, Japanese Unexamined Patent Publication No. 12608/1983, and the like.

本発明に係る微細なシリカは粗粒球状シリカと同様、そ
の出発原料はいずれでも良いが平均粒径が1〜5−であ
ることが重要である。1p未満の場合は工業的な取り扱
い(カサ高、融着の際の付着、表面積の制御等)に問題
があり、また流動性の低下が著しい。逆に5−以上の場
合は混合融着による流動性の向上効果が無い、また、微
粒球状シリカの比表面積は10〜Loom”/gが好ま
しく、10園”/g以下では混合、融着による流動性の
向上効果が無く、Loom”/g組以上場合は融着時の
比表面積の制御に問題がある。
As with the coarse spherical silica, the fine silica according to the present invention may be made of any starting material, but it is important that the average particle diameter is from 1 to 5. When it is less than 1 p, there are problems in industrial handling (bulk height, adhesion during fusion, control of surface area, etc.), and fluidity is significantly reduced. On the other hand, if it is 5 or more, there is no effect of improving fluidity by mixing and fusing, and the specific surface area of the fine spherical silica is preferably 10 to 10"/g, and if it is less than 10"/g, it will not be possible to improve the fluidity by mixing or fusing. There is no effect of improving fluidity, and if it exceeds Loom''/g, there is a problem in controlling the specific surface area during fusion.

かかる粗粒球状シリカと微細なシリカを混合して、本発
明は、この混合物を1100〜1300℃で坑底すると
ころに特徴がある。
The present invention is characterized in that such coarse-grained spherical silica and fine silica are mixed and this mixture is poured into the bottom of a pit at 1100 to 1300°C.

混合物の加熱処理に関しては、バッチ式、連続式のいず
れでも良い、バッチ式の場合は電気炉、ガス炉等で所定
の温度条件が達成できるもので坑底すれば良く、連続式
の場合はロータリーキルン等の連続回転焼成装置が利用
できる。
Regarding the heat treatment of the mixture, either a batch type or a continuous type may be used. In the case of the batch type, it is sufficient to use an electric furnace, gas furnace, etc. that can achieve the specified temperature conditions at the bottom of the pit, and in the case of the continuous type, it is sufficient to use a rotary kiln. A continuous rotary firing device such as the following can be used.

なお、加熱時間は、温度や加熱炉の種類、被処理シリカ
の物性等により一様ではないが、多くの場合、0.2〜
3時間の範囲でよい。
Note that the heating time varies depending on the temperature, type of heating furnace, physical properties of the silica to be treated, etc., but in most cases it is 0.2~
A range of 3 hours is sufficient.

また、加熱処理後の粉体を必要に応してフルイ操作を施
して焼結粗粒をとり除いたり、また特定の粒度の球状フ
ィラーを添加して粒度調整を行なっても良く、多くの場
合、最終的に粒度調整を行なうことにより本発明に係る
シリカフィラーを得ることができる。これをフィラーと
した樹脂封止用組成物は流動性、パリ特性、高温強度特
性のバランスをとることができるものである。
Additionally, if necessary, the powder after heat treatment may be subjected to a sieve operation to remove coarse sintered particles, or a spherical filler with a specific particle size may be added to adjust the particle size. The silica filler according to the present invention can be obtained by finally adjusting the particle size. A resin sealing composition using this as a filler can balance fluidity, Paris properties, and high-temperature strength properties.

〔作 用〕[For production]

本発明に係るシリカフィラーは、特定な粒子特性を有す
る粗粒溶融球状シリカの表面に特定な粒子特性を有する
微細なシリカを所定量融着せしめたものをシリカフィラ
ーとするものである。かかるシリカフィラーは、上記異
なる二種のシリカ混合物を所望の加熱炉にて1100〜
1300℃の温度で多くても3時間以内で熱処理するこ
とにより、微細シリカ粒子が粗粒球状シリカの表面に融
着することにより得られる。また、該シリカフィラーは
、樹脂、組成物において単なる二種混合物のフィラーと
異なる好ましい特性を支える機能を持っている。
The silica filler according to the present invention is obtained by fusing a predetermined amount of fine silica having specific particle characteristics onto the surface of coarse fused spherical silica having specific particle characteristics. Such silica filler is prepared by heating the above-mentioned two different silica mixtures in a desired heating furnace to
By heat-treating at a temperature of 1300° C. for at most 3 hours, fine silica particles are fused to the surface of coarse spherical silica. In addition, the silica filler has a function of supporting desirable characteristics in resins and compositions, which is different from that of fillers that are simply a mixture of two types.

(実施例〕 以下、本発明につき実施例および比較例を挙げて具体的
に説明する。なお部は重量を表す。
(Examples) Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples. Parts represent weight.

(1)粗粒球状シリカの調製 R50=13.Otrmの台底シリカ粉末を酸素−プロ
パン火炎中に分散し溶融球状化した。得られたシリカは
R50=33.On、 B E 70.8m”/gで電
子顕微鏡により確認したところ球状を呈していた。
(1) Preparation of coarse spherical silica R50=13. Otrm platform silica powder was dispersed in an oxygen-propane flame and molten and spheronized. The obtained silica has R50=33. On, BE 70.8 m''/g, and when confirmed using an electron microscope, it had a spherical shape.

(2)微細シリカの調製 R50=4.5 μmの台底シリカ粉末を酸素−プロパ
ン火炎中に分散し溶融球状化した。得られたシリカバR
50=2.On、B E T65.0m”/gで、電子
顕微鏡により確認したところ実質的に球状であった。
(2) Preparation of fine silica A base silica powder with R50 = 4.5 μm was dispersed in an oxygen-propane flame and molten into spheroids. Obtained silica R
50=2. On, BET was 65.0 m''/g, and as confirmed by an electron microscope, it was substantially spherical.

(3)封止用樹脂組成物の調製 組成物の配合 シリカフィラー ・・・8Q wt% 注0′エピクロンN665、〔大日本インキ■社製〕注
(HバーカムTD2131、〔大日本インキ■社製〕注
(3) ヘキスト社製 (4)m脂組成物の評価 上記の封止用エポキシ樹脂組成物を85〜95℃の熱ロ
ールで混練した後、該組成物の流動性とパリ特性、高温
強度特性を評価した。
(3) Preparation of sealing resin composition Composition blend Silica filler...8Q wt% Note 0' Epicron N665, [manufactured by Dainippon Ink ■] Note (H Barcam TD2131, [manufactured by Dainippon Ink ■) ]Note (3) Evaluation of the (4) m fat composition manufactured by Hoechst After kneading the above epoxy resin composition for sealing with a heated roll at 85 to 95°C, the fluidity, Paris properties, and high temperature of the composition were kneaded. The strength properties were evaluated.

すなわち、流動性はトランスファー成形機でEMMII
−66に基づくスパイラルフロー値を測定し、パリ特性
は5〜50μmのスリット幅を調整した金型の間際に伸
びるパリ長さの測定をもって評価した。
In other words, the fluidity is EMMII in the transfer molding machine.
The spiral flow value based on -66 was measured, and the parry property was evaluated by measuring the paris length extending just before the mold with the slit width adjusted to 5 to 50 μm.

なお、トランスファーモールドの条件は金型温度170
’C1樹脂圧70kg/c+w”とした。
The transfer molding conditions are a mold temperature of 170°C.
'C1 resin pressure 70 kg/c+w'.

高温強度の測定は、金型により底型した試験片(4ar
m X 10mm X 100■)を後硬化(180°
(: X 4 hrs焼付)させたのち、JISK−6
911に準してオートグラフ(■島津製作所製)により
220℃での3点曲げ強度を測定した。吸水後、高温強
度については後硬化終了後の試験片をPCT(120°
(X24hrs)で吸水させたのち、220℃での3点
曲げ強度を測定した。
The high temperature strength was measured using a test piece (4ar
m x 10mm x 100cm) after curing (180°
(: X 4 hrs baking) After that, JISK-6
The three-point bending strength at 220° C. was measured using an autograph (manufactured by Shimadzu Corporation) according to 911. After water absorption, the test piece after post-curing was subjected to PCT (120°
After absorbing water at (X24hrs), the three-point bending strength at 220°C was measured.

なお1回の測定には試験片6本を用い、その平均値を測
定値とした。
Note that six test pieces were used for one measurement, and the average value was taken as the measured value.

実施例1 粗粒球状シリカ80部と微粒球状シリカ20部を混合し
たのち、電気炉にて1200℃で2hrs焼威し、微粒
球状シリカを粗粒球状シリカ表面に融着させた。冷却後
、粒度分布と比表面積を測定したところR50=22.
3n、 B E T3.1m”/gであった。
Example 1 After mixing 80 parts of coarse spherical silica and 20 parts of fine spherical silica, the mixture was burned in an electric furnace at 1200° C. for 2 hours to fuse the fine spherical silica to the surface of the coarse spherical silica. After cooling, the particle size distribution and specific surface area were measured and found that R50=22.
3n, BET3.1 m''/g.

このシリカフィラーを用いて封止用樹脂allll合物
製し、流動性、パリ特性、高温強度を測定し第1表の結
果を得た。
Using this silica filler, a compound of all sealing resins was prepared, and the fluidity, Paris properties, and high temperature strength were measured, and the results shown in Table 1 were obtained.

実施例2 粗粒球状シリカ70部と微粒球状シリカ30部を混合し
たのち、実施例1と同様の操作を行ないR50=18.
44、B E T4.2m”/gのシリカフィラーを得
た。このシリカフィラーを用いて実施例1と同様に封止
用樹脂組成物を調製し、流動性、パリ特性、高温強度を
測定し、第1表の結果を得た。
Example 2 After mixing 70 parts of coarse spherical silica and 30 parts of fine spherical silica, the same operation as in Example 1 was performed to obtain R50=18.
44, B E T 4.2 m"/g silica filler was obtained. Using this silica filler, a sealing resin composition was prepared in the same manner as in Example 1, and the fluidity, Paris properties, and high temperature strength were measured. , the results shown in Table 1 were obtained.

比較例1 粗粒球状シリカ単独で封止用樹脂組成物を調製し、流動
性、パリ特性、高温強度を測定した。結果を第1表に示
す。
Comparative Example 1 A sealing resin composition was prepared using coarse spherical silica alone, and its fluidity, Paris properties, and high temperature strength were measured. The results are shown in Table 1.

比較例2 実施例1の粗粒球状シリカと微粒球状シリカの混合物を
焼成せずにそのまま用いて封止用樹脂組成物を調製し、
流動性、パリ特性、高温強度を測定した。結果を第1表
に示す。
Comparative Example 2 A sealing resin composition was prepared by using the mixture of coarse spherical silica and fine spherical silica of Example 1 as it was without firing,
Fluidity, Paris properties, and high temperature strength were measured. The results are shown in Table 1.

実施例3 実施例1の粗粒球状シリカと微粒球状シリカの混合物を
ロータリーキルンにて1200℃で連続的に焼成した。
Example 3 The mixture of the coarse spherical silica and the fine spherical silica of Example 1 was continuously fired at 1200° C. in a rotary kiln.

キルン内の平均滞留時間は約20分であった。得られた
シリカの粒径と比表面積を測定したところR50= 2
2.6s、B E T 4.4+s”/gであった。
The average residence time in the kiln was approximately 20 minutes. When the particle size and specific surface area of the obtained silica were measured, R50 = 2
2.6s, BET 4.4+s''/g.

このシリカフィラーを用いて封止用樹脂&[l酸物を調
製し流動性、パリ特性、高温強度を測定した。
A sealing resin and acid was prepared using this silica filler, and its fluidity, Paris properties, and high temperature strength were measured.

結果を第1表に併載した。The results are also listed in Table 1.

比較例3 粗粒球状シリカ95部と微粒球状シリカ5部を混合した
のち電気炉で1200’c X l hrs焼威坑底。
Comparative Example 3 95 parts of coarse spherical silica and 5 parts of fine spherical silica were mixed and heated in an electric furnace for 1200'c x l hrs.

冷却後、粒度分布と比表面積を測定したところR50=
29.On、 B E 72.3m”/gであった。
After cooling, the particle size distribution and specific surface area were measured, and R50=
29. On, B E was 72.3 m''/g.

このシリカフィラーを用いて封止用樹脂&ll動物調製
し流動性、パリ特性、高温強度を測定した。
A sealing resin was prepared using this silica filler, and its fluidity, Paris properties, and high temperature strength were measured.

結果を第1表に併載した。The results are also listed in Table 1.

以上、第1表の測定結果より実施例1〜3については流
動性、パリ特性、高温強度のバランスがとれており、特
に吸水後高湿強度については、球状シリカでは従来得ら
れなかったような高い値になっている。これに対し、比
較例1は流動性、パリ特性、高温強度全て不十分であり
、比較例2は流動性は良いもののフィラーの比表面積が
大きいために吸水率が大きく、吸水後高湿強度が不十分
である。比較例3は微粒球状シリカの混合割合が少ない
ために吸水後高湿強度が不十分である。
As mentioned above, from the measurement results in Table 1, Examples 1 to 3 have a well-balanced fluidity, Paris properties, and high-temperature strength, and in particular, high-humidity strength after water absorption, which was previously unobtainable with spherical silica. It has a high value. On the other hand, Comparative Example 1 has insufficient fluidity, Paris properties, and high-temperature strength, while Comparative Example 2 has good fluidity but has a large water absorption rate due to the large specific surface area of the filler, and has low high-humidity strength after water absorption. Not enough. In Comparative Example 3, the high humidity strength after water absorption is insufficient because the mixing ratio of fine spherical silica is small.

比較例4 実施例1の粗粒球状シリカと微粒球状シリカの混合物を
電気炉で1400℃で30分焼坑底たところ、塊状に固
くなったシリカ焼結体になりサラサラしたシリカ粉末は
得られなかった。
Comparative Example 4 When the mixture of the coarse spherical silica and the fine spherical silica of Example 1 was boiled in an electric furnace at 1400°C for 30 minutes, a silica sintered body became hard in lumps, but no smooth silica powder was obtained. There wasn't.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば球状シリカのもつ流動性を
そのまま生かしながら、従来は球状シリカの欠点とされ
ていた高温強度を微粒球状シリカを特定の方法で特定の
量だけ融着させることにより改善し、よって優れた特性
を有するシリカフィラーの提供が可能となる。
As described above, according to the present invention, while making full use of the fluidity of spherical silica, the high temperature strength, which has conventionally been considered a drawback of spherical silica, is achieved by fusing fine spherical silica in a specific amount by a specific method. It is therefore possible to provide a silica filler with improved properties.

かかるシリカフィラーを用いて封止用樹脂組成物を調製
した場合、その組成物は流動性、パリ特性、高温強度特
性のバランスの優れたものが得られ、特に球状シリカフ
ィラーの欠点であった高温強度特性を大幅に改善できる
When a sealing resin composition is prepared using such a silica filler, the composition has an excellent balance of fluidity, Paris properties, and high-temperature strength properties. Strength properties can be significantly improved.

Claims (1)

【特許請求の範囲】 1、平均粒径10〜40μmの溶融球状シリカの粒子表
面に該シリカ粒子よりも微細なシリカ粒子を融着させて
なることを特徴とするシリカフィラー。 2、シリカフィラーは、平均粒径1〜5μmの微細球状
シリカを全重量当り10〜50wt%融着してなる請求
項1記載のシリカフィラー。 3、シリカフィラーは、BET比表面積が2〜6m^2
/gである請求項1又は2記載のシリカフィラー。 4、平均粒径10〜40μmの粗粒溶融球状シリカと平
均粒径が1〜5μmの微粒シリカとの混合物を1100
〜1300℃の温度で加熱処理することを特徴とするシ
リカフィラーの製造方法。
[Scope of Claims] 1. A silica filler characterized in that silica particles finer than the silica particles are fused to the surface of fused spherical silica particles having an average particle diameter of 10 to 40 μm. 2. The silica filler according to claim 1, wherein the silica filler is formed by fusing 10 to 50 wt% of fine spherical silica having an average particle size of 1 to 5 μm based on the total weight. 3. Silica filler has a BET specific surface area of 2 to 6 m^2
3. The silica filler according to claim 1 or 2, wherein the silica filler is: 4. A mixture of coarse fused spherical silica with an average particle size of 10 to 40 μm and fine silica with an average particle size of 1 to 5 μm
A method for producing a silica filler, comprising heat treatment at a temperature of ~1300°C.
JP5868090A 1990-03-09 1990-03-09 Silica filler for semiconductor resin encapsulation and method for producing the same Expired - Fee Related JP2955672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5868090A JP2955672B2 (en) 1990-03-09 1990-03-09 Silica filler for semiconductor resin encapsulation and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5868090A JP2955672B2 (en) 1990-03-09 1990-03-09 Silica filler for semiconductor resin encapsulation and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03259961A true JPH03259961A (en) 1991-11-20
JP2955672B2 JP2955672B2 (en) 1999-10-04

Family

ID=13091282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5868090A Expired - Fee Related JP2955672B2 (en) 1990-03-09 1990-03-09 Silica filler for semiconductor resin encapsulation and method for producing the same

Country Status (1)

Country Link
JP (1) JP2955672B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711105A (en) * 1993-06-22 1995-01-13 Sumitomo Durez Co Ltd Epoxy resin composition with excellent thermal impact property
US7425287B2 (en) 2003-01-24 2008-09-16 Showa Denko K.K. Surface modification method for inorganic oxide powder, powder produced by the method and use of the powder
US20100204383A1 (en) * 2007-08-01 2010-08-12 Denki Kagaku Kogyo Kabushiki Kaisha Silica powder, process for its production, and composition employing it

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711105A (en) * 1993-06-22 1995-01-13 Sumitomo Durez Co Ltd Epoxy resin composition with excellent thermal impact property
US7425287B2 (en) 2003-01-24 2008-09-16 Showa Denko K.K. Surface modification method for inorganic oxide powder, powder produced by the method and use of the powder
US20100204383A1 (en) * 2007-08-01 2010-08-12 Denki Kagaku Kogyo Kabushiki Kaisha Silica powder, process for its production, and composition employing it
US8480990B2 (en) * 2007-08-01 2013-07-09 Denki Kagaki Kogyo Kabushiki Kaisha Silica powder, process for its production, and composition employing it

Also Published As

Publication number Publication date
JP2955672B2 (en) 1999-10-04

Similar Documents

Publication Publication Date Title
CN101743198B (en) Silica powder, method for production of the same, and composition using the same
JPS6157347B2 (en)
TW201736304A (en) Spherical eucryptite particles and method for producing same
JP7254493B2 (en) A composite material comprising at least one first material and particles, said particles having a negative coefficient of thermal expansion α, and an adhesive material comprising said composite material
JPH03259961A (en) Silica filler and its preparation
JP2684396B2 (en) Fused spherical silica and sealing resin composition using the same
JPS6296568A (en) Semiconductor sealing resin composition
JPH02158637A (en) Silica filler and sealing resin composition using the same
JP2665539B2 (en) Silica filler and sealing resin composition using the same
JPH1095607A (en) Siliceous filler and its production
JP2958402B2 (en) Silica filler for semiconductor resin encapsulation and method for producing the same
JP2004203664A (en) Spherical siliceous powder and manufacturing method and utilization of the same
JPS6296538A (en) Inorganic filler and resin composition
JPH03211A (en) Manufacture of epoxy resin forming material
JPS6296313A (en) Production of high-purity spherical silica filler
JPH0463846A (en) Silica filler and its production
JPS59189140A (en) Inorganic sphere, production thereof and resin composition containing the same
JPH02145415A (en) Fused spherical silica and sealing resin composition using the same as filler
JPS6065041A (en) Inorganic sphere and composition thereof
JPS59204633A (en) Resin composition with low radioactivity
JP2009274336A (en) Manufacturing method of resin composition for encapsulating semiconductor element
JPH01185373A (en) Silica and its production
JPS60131868A (en) Manufacture of silicic acid powder sphere
JPH01161065A (en) Silica and its production
JPH0196008A (en) Molten spherical silica and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees