JPS59232989A - Device for producing single crystal of compound semiconductor - Google Patents

Device for producing single crystal of compound semiconductor

Info

Publication number
JPS59232989A
JPS59232989A JP10547483A JP10547483A JPS59232989A JP S59232989 A JPS59232989 A JP S59232989A JP 10547483 A JP10547483 A JP 10547483A JP 10547483 A JP10547483 A JP 10547483A JP S59232989 A JPS59232989 A JP S59232989A
Authority
JP
Japan
Prior art keywords
single crystal
ray
crystal
melt surface
pulled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10547483A
Other languages
Japanese (ja)
Inventor
Harunori Sakaguchi
春典 坂口
Tomoki Inada
稲田 知己
Shoji Kuma
隈 彰二
Junkichi Nakagawa
中川 順吉
Kazuhiro Kurata
倉田 一宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP10547483A priority Critical patent/JPS59232989A/en
Publication of JPS59232989A publication Critical patent/JPS59232989A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • C30B15/26Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal using television detectors; using photo or X-ray detectors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To detect exactly the shape of a pulled up single crystal and the position of a melt surface and to obtain the crystal having high quality with high performance by irradiating an X-ray to the single crystal formed by a pull-up method and the neighborhood of the melt surface, moving the irradiating position and detecting the presence or absence of the diffracted beam. CONSTITUTION:The X-ray irradiated from a movable X-ray source 2 alongside a furnace 1 for pulling up a single crystal passes through the outside wall of the furnace body 1, a heater 7 and a crucible 6 and irradiates a pulled up single crystal 4 and the neighborhood of a melt surface 5. The single crystal of a compd. semiconductor is generally pulled up by determining the pull-up face to, for example, the direction <100> and therefore the face regulated by said direction appears on the side face of the crystal 4. If the X-ray having a wavelength lambda is irradiated to such single crystal from the side thereof, a diffracted beam is generated in the position deviated by an angle theta relative with the direction where the X-ray is irradiated. Since such generation occurs in the crystal face appearing on the side face of the single crystal, the irradiating position of the X-ray is moved and the presence or absence of the diffracted beam is detected by an X-ray detecting part 3 turnable around the furnace 1, by which the outside shape of the crystal 4 and the position of the surface 5 are known.

Description

【発明の詳細な説明】 本発明は単結晶の製造装置に係り、特に、引上げ法によ
る化合物半導体単結晶の製造装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for producing a single crystal, and more particularly to an apparatus for producing a compound semiconductor single crystal using a pulling method.

GaAs等の単結晶を引上げ法によって製造するには、
その単結晶の直径寸法が大きくなるように引上げ速度を
制御し、融液面位置を監視することが肝要で、従来は不
透明なるつぼや加熱容器の・  中で単結晶は引上げら
れるのでその形状を直接検知することは困難であった。
To produce a single crystal such as GaAs by the pulling method,
It is important to control the pulling speed so that the diameter of the single crystal increases and to monitor the position of the melt surface. Direct detection was difficult.

このような場合は単結晶の重量を測定したり、或いは斜
め上方からTV左カメラ観察しだりする等、間接的な検
知方法で行っていた。即ち、単結晶の直径の正確な検知
はできないし、融液面の状態の検知は未だ実現されてい
ないという現況である。
In such cases, indirect detection methods have been used, such as measuring the weight of the single crystal or observing the left TV camera from diagonally above. That is, the current situation is that it is not possible to accurately detect the diameter of a single crystal, and that detection of the state of the melt surface has not yet been realized.

これを改善するためにX線透過法によって結晶形状を知
ることが試みられた。しかしこの方法はGaAsとヒー
ター炉材及び溶融材の元素オーダーでのX線透過度の差
を利用したもので、単結晶の形状の検知は可能であるが
、GaAs結晶とその融液のX線透過度は同じであるの
で、融液面位置を知ることは本質的に困難であるという
欠点をもっている。
In order to improve this problem, an attempt was made to find out the crystal shape by X-ray transmission method. However, this method utilizes the difference in X-ray transmittance between GaAs, the heater furnace material, and the molten material in the elemental order, and although it is possible to detect the shape of a single crystal, the X-ray transmittance of GaAs crystal and its melt is Since the transmittance is the same, it has the disadvantage that it is essentially difficult to know the melt surface position.

本発明は上記従来技術の欠点を解消し、単結晶の直径寸
法と融液面の位置を正確に知ることができる化合物半導
体単結晶の製造装置を提供することを目的とし、その特
徴とするところは、単結晶引上げ炉の側方に移動可能に
設置シたX d 源と、このX線源とは異なる位置で単
結晶引上げ炉の周囲を回動可能に設けたX線検知部とを
有し、X線源よりのX線照射位置を走査して単結晶の形
状と融液面位置とを検知すると共にX線回折ビームの有
無を検知し、単結晶の形状と結晶学的な特性を制御する
ごとく構成したことにある。
An object of the present invention is to eliminate the drawbacks of the above-mentioned prior art and provide an apparatus for manufacturing a compound semiconductor single crystal that can accurately determine the diameter dimension of the single crystal and the position of the melt surface. has an X d source that is movably installed on the side of the single crystal pulling furnace, and an X-ray detector that is rotatably installed around the single crystal pulling furnace at a position different from the X ray source. Then, the X-ray irradiation position from the X-ray source is scanned to detect the shape of the single crystal and the position of the melt surface, and the presence or absence of the X-ray diffraction beam is detected to determine the shape and crystallographic properties of the single crystal. The reason lies in the fact that it is configured in such a way that it can be controlled.

第1図は本発明の一実施例である化合物半導体の製造装
置の平面図であシ、第2図は第1図の装置のA−B断面
図である。1は引上げ炉本体、2はX線源、3はX線検
知部、4は引上げ単結晶、5は組成物融液面、6はるつ
ぼ、7は円筒状のヒーター、8は単結晶引上げ軸、9は
るつは8の回転器である。
FIG. 1 is a plan view of a compound semiconductor manufacturing apparatus according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along line AB of the apparatus shown in FIG. 1 is a pulling furnace main body, 2 is an X-ray source, 3 is an X-ray detector, 4 is a pulled single crystal, 5 is a composition melt surface, 6 is a crucible, 7 is a cylindrical heater, 8 is a single crystal pulling shaft , 9 is the rotator of 8.

即ち、X線源2より放射されたX線は引上げ炉本体1の
外壁、ヒーター7及びるつぼ6を通り、引上げ単結晶4
、融液面5の付近を照射する。
That is, the X-rays emitted from the X-ray source 2 pass through the outer wall of the pulling furnace main body 1, the heater 7, and the crucible 6, and pass through the pulled single crystal 4.
, irradiates the vicinity of the melt surface 5.

一般に化合物半導体単結晶の引上げ而は、例えば(10
0>方向というように定めて引上げを行っているので、
引上げ単結晶4の側面にはこれによって規定される面C
立方晶系では(110)面と(100)面)が現われる
。このような単結晶に側方より波長λのX線を照射する
ときは、X線め照射方向に対してθ角度だけ偏向した位
置に回折ビームが生じる。この回折ビームは単結晶の側
面に現われる結晶面によるものである。したがって、X
線照射位置を移動させて回折ビームの有無を検知すれば
、引上げ単結晶4の外形と融液面5の位置が知れる。な
お、X線源2は上下・左右に移動可能となっているので
これを走査し乍ら検出操作する。
In general, compound semiconductor single crystals are pulled, for example (10
Since we are pulling up in a direction such as 0>,
The side surface of the pulled single crystal 4 has a plane C defined by this.
In the cubic system, (110) and (100) planes appear. When such a single crystal is irradiated with X-rays of wavelength λ from the side, a diffracted beam is generated at a position deflected by an angle θ with respect to the direction of X-ray irradiation. This diffracted beam is due to crystal planes appearing on the side surfaces of the single crystal. Therefore, X
By moving the ray irradiation position and detecting the presence or absence of the diffracted beam, the outer shape of the pulled single crystal 4 and the position of the melt surface 5 can be determined. Note that since the X-ray source 2 is movable vertically and horizontally, the detection operation is performed while scanning the X-ray source 2.

更にGaAs単結晶の引上げ実施例について次に説明す
る。
Furthermore, an example of pulling a GaAs single crystal will be described next.

(1)Xa源2を第1図のように引上げ炉本体1の側方
に置き、X線ビームの電磁気的な走査或いはX線源2の
機械的な上下左右への移動により引上げ単結晶4と融液
面5付近にX線が良く当たるように調節する。
(1) The Xa source 2 is placed on the side of the pulling furnace main body 1 as shown in Fig. 1, and the single crystal 4 is pulled by electromagnetic scanning of the X-ray beam or by mechanical movement of the X-ray source 2 vertically and horizontally. Adjust so that the X-rays can hit the vicinity of the melt surface 5 well.

(2)GaAsでは(100)方向に引上げるのが一般
的であり、まだ、引上げ単結晶は回転させ乍ら引上げ成
長させるのが普通であるので、引上げ単結晶4が1回転
する間に単結晶の側方には(100)面が4回、(11
0)面が2回現われる。したがって、引上げ単結晶4へ
側方から波長λのX線を当てると、<ioo>面の面間
隔をd、<110)面の面間隔をd、とすれば、 2  d 1s石θ 1”” fL  λ2d2s石θ
 2°n λ 但し、nは整数 という式を満足する角度2θ1,2θ2の位置に強い回
折ビームを生じ、単結晶が存在しない空間や融液部から
は回折ビームを生じない。
(2) GaAs is generally pulled in the (100) direction, and it is still common to pull and grow the pulled single crystal while rotating it. There are four (100) planes and (11) planes on the sides of the crystal.
0) The face appears twice. Therefore, when the pulled single crystal 4 is irradiated with X-rays of wavelength λ from the side, if the interplanar spacing of the <ioo> plane is d and the interplanar spacing of the <110) plane is d, then 2 d 1s stone θ 1'' ” fL λ2d2s stone θ
2°n λ However, strong diffracted beams are generated at angles 2θ1 and 2θ2 that satisfy the formula n is an integer, and no diffracted beams are generated from a space where the single crystal does not exist or from a melt portion.

(向 上記のごとく引上げ単結晶4が1回転する間に単
結晶からは、2θ1の方向に4回、2θ。
(Direction) As mentioned above, during one rotation of the pulled single crystal 4, the single crystal emits 2θ four times in the direction of 2θ1.

の方向に2回づつ周期的に回折ビームを生じているので
、その方向にX線検知部、6を配置する。
Since a diffracted beam is generated periodically twice in each direction, the X-ray detection section 6 is arranged in that direction.

そしてX線を上記単結晶及び融液面を含む空間を走査す
れば、回折ビームの有無とX線が吸収される幾何学的な
情報から単結晶の形状や融液面5の位置が知れる。
Then, by scanning the space including the single crystal and the melt surface with X-rays, the shape of the single crystal and the position of the melt surface 5 can be determined from the presence or absence of the diffracted beam and geometric information about the absorption of the X-rays.

なお、単結晶引上げのシード付は時に上記の操作を実施
すれば、結晶成長方向、ツイン(双晶)発生の有無、多
結晶化の有無に関する情報を得ることができる。
Note that when seeding a single crystal, if the above-mentioned operation is sometimes performed, information regarding the crystal growth direction, the presence or absence of twin (twin) generation, and the presence or absence of polycrystalization can be obtained.

本実施例の化合物半導体単結晶の製造装置は、単結晶の
直径や融液面位置の制御が可能となって低転位高品質の
結晶が得られると共に、大径の単結晶が得られるので生
産性は向上する。まだ、シード付は時の結晶成長の状況
を外観だけでなく結晶学的な知見も得られるのでシード
付けも最適の状態で実施できる等の効果が得られる。
The compound semiconductor single crystal manufacturing device of this example enables control of the diameter of the single crystal and the position of the melt surface, producing high-quality crystals with low dislocations, as well as producing large-diameter single crystals. Sexuality improves. However, with seeding, not only the external appearance but also crystallographic knowledge can be obtained regarding the state of crystal growth at the time, so seeding can be carried out under optimal conditions.

本発明の化合物半導体単結晶の製造装置は、融液面の位
置と引上げ単結晶の寸法と特性を正確に知ることができ
るので、高品質の結晶が高能率で得られるという効果を
もっている。
The compound semiconductor single crystal manufacturing apparatus of the present invention has the advantage that high quality crystals can be obtained with high efficiency because the position of the melt surface and the dimensions and characteristics of the pulled single crystal can be accurately determined.

【図面の簡単な説明】 第1図は本発明の一実施例である化合物半導体の製造装
置の平面図、第2図は第1図の装置のA−B断面図であ
る。 1;引上げ炉本体、2;X線源、6;X線検知部、4;
引上げ単結晶、5;融液面、6;るつぼ、7;ヒーター
、8;単結晶引上げ軸、9;るっぽ回転器。 7− 死 1 図
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a plan view of a compound semiconductor manufacturing apparatus according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along line AB of the apparatus shown in FIG. 1; Pulling furnace main body, 2; X-ray source, 6; X-ray detection section, 4;
Pulled single crystal, 5; melt surface, 6; crucible, 7; heater, 8; single crystal pulling shaft, 9; Luppo rotator. 7- Death 1 Figure

Claims (1)

【特許請求の範囲】[Claims] (1)単結晶引上げ炉の側方は移動可能に設置したX線
源と、このX線源とは異なる位置で上記単結晶引上げ炉
の周囲を回動可能に設けたX線検知部とを有し、上記X
線源よりのX線照射位置を走査して上記単結晶の形状と
融液面位置とを検知すると共にX線回折ビームの有無を
検知し上記単結晶の形状と結晶学的な特性を制御するご
とく構成したことを特徴とする化合物半導体結晶の製造
装置。
(1) An X-ray source is movably installed on the side of the single-crystal pulling furnace, and an X-ray detector is installed at a position different from the X-ray source and is rotatable around the single-crystal pulling furnace. Has the above X
The shape of the single crystal and the position of the melt surface are detected by scanning the X-ray irradiation position from the radiation source, and the presence or absence of the X-ray diffraction beam is detected to control the shape and crystallographic properties of the single crystal. 1. A compound semiconductor crystal manufacturing apparatus characterized by being configured as follows.
JP10547483A 1983-06-13 1983-06-13 Device for producing single crystal of compound semiconductor Pending JPS59232989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10547483A JPS59232989A (en) 1983-06-13 1983-06-13 Device for producing single crystal of compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10547483A JPS59232989A (en) 1983-06-13 1983-06-13 Device for producing single crystal of compound semiconductor

Publications (1)

Publication Number Publication Date
JPS59232989A true JPS59232989A (en) 1984-12-27

Family

ID=14408589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10547483A Pending JPS59232989A (en) 1983-06-13 1983-06-13 Device for producing single crystal of compound semiconductor

Country Status (1)

Country Link
JP (1) JPS59232989A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259484A (en) * 1988-08-23 1990-02-28 Nec Corp Device for growing single crystal
WO1996033301A1 (en) * 1995-04-21 1996-10-24 Shin-Etsu Handotai Co., Ltd. Method and equipment for growing single crystals

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4976777A (en) * 1972-11-28 1974-07-24

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4976777A (en) * 1972-11-28 1974-07-24

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259484A (en) * 1988-08-23 1990-02-28 Nec Corp Device for growing single crystal
WO1996033301A1 (en) * 1995-04-21 1996-10-24 Shin-Etsu Handotai Co., Ltd. Method and equipment for growing single crystals

Similar Documents

Publication Publication Date Title
JP5804107B2 (en) Method for producing silicon single crystal
JPH0479996B2 (en)
Tanner Crystal assessment by X-ray topography using synchrotron radiation
JPS59232989A (en) Device for producing single crystal of compound semiconductor
Chikaura et al. Polycrystal scattering topography
Shul’pina et al. X-ray diffraction diagnostics methods as applied to highly doped semiconductor single crystals
JP3703125B2 (en) X-ray apparatus and X-ray measurement method
JPH06122119A (en) Seed rod cutting method
Schlenker et al. Observation of subgrain boundaries and dislocations by neutron diffraction topography
US4330524A (en) Crystalline Bi2 Ge3 O9 and its preparation
JP2732311B2 (en) X-ray topography equipment
US9574285B2 (en) Apparatus and method for monitoring and controlling thickness of a crystalline layer
JP3213720B2 (en) Crystal growth apparatus and crystal growth method using the same
JPH112614A (en) X-ray measuring method of single crystal axial orientation and device
JP2723734B2 (en) Single crystal for collimator
JP3079256B2 (en) Crystal growth method
Tuomi et al. \Iultistereo Synchrotron X-ray Topography
JP7207186B2 (en) X-ray diffraction device and X-ray diffraction measurement method
Armstrong et al. X-ray interference fringes in Berg-Barrett micrographs
JP2967609B2 (en) Total reflection X-ray diffraction microscopy
Bdikin et al. Observation of anomalous transmission of x-rays in tungsten single crystals
JPS61158888A (en) Production of single crystal
JPH07140096A (en) Lang camera
JPS63277592A (en) Production unit for single crystal
JPS61186284A (en) Apparatus for molecular beam epitaxy