JPH0259484A - Device for growing single crystal - Google Patents
Device for growing single crystalInfo
- Publication number
- JPH0259484A JPH0259484A JP20729988A JP20729988A JPH0259484A JP H0259484 A JPH0259484 A JP H0259484A JP 20729988 A JP20729988 A JP 20729988A JP 20729988 A JP20729988 A JP 20729988A JP H0259484 A JPH0259484 A JP H0259484A
- Authority
- JP
- Japan
- Prior art keywords
- growth
- solid
- ray generator
- melt
- crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 49
- 239000000155 melt Substances 0.000 claims abstract description 14
- 239000007787 solid Substances 0.000 abstract 1
- 239000007788 liquid Substances 0.000 description 27
- 238000000034 method Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 1
- 239000008710 crystal-8 Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、チョクラルスキー法や、水平もしくは垂直ブ
リッジマン法において結晶の育成を行う単結晶育成装置
に関し、特に、結晶育成装置の炉の胴部に水平方向もし
くは垂直方向に移動可能なX線発生装置および受光装置
を具備し、両方の装置の光軸と固液界面の位置が一直線
上に並ぶことが可能な単結晶育成装置に関するものであ
る。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a single crystal growth apparatus for growing crystals using the Czochralski method or the horizontal or vertical Bridgman method, and particularly relates to a single crystal growth apparatus for growing crystals using the Czochralski method or the horizontal or vertical Bridgman method. Relating to a single crystal growth device that is equipped with an X-ray generator and a light receiver that are movable horizontally or vertically in the body, and that allows the optical axis of both devices to be aligned with the solid-liquid interface. It is.
[従来の技術およびその課題]
従来より、チョクラルスキー法や水平もしくは垂直ブリ
ッジマン法を用いることにより大口径の単結晶が作製さ
れている。。その場合、不純物分布が高均一な結晶であ
ることが要求される場合が多い。不純物分布の不均一性
の原因は、従来、固液界面形状の平坦な形状からのずれ
であることがわかっている。そこで、固液界面形状を結
晶成長を行いながらモニターし、その形状をコントロー
ルすることが必要となる。[Prior Art and its Problems] Conventionally, large-diameter single crystals have been produced by using the Czochralski method or the horizontal or vertical Bridgman method. . In that case, crystals with highly uniform impurity distribution are often required. It has been known that the cause of non-uniform impurity distribution is the deviation of the solid-liquid interface shape from a flat shape. Therefore, it is necessary to monitor the solid-liquid interface shape during crystal growth and control the shape.
従来は、第5図および第6図に示すように、結晶成長装
置に固定されたX線発生装置1と、同じく固定された透
視像用観測スクリーン2とを使用し、透視法により結晶
成長中にX線を照射して、育成中の結晶と融液との界面
形状を観測する方法が「ジャーナル・オブ・クリスタル
・グロウス」(”J、 Crystal Growth
” ) 、 1986年刊、第76巻、323頁でオ
ザワ(s、 Ozawa)およびフタダ(T、 Fuk
uda)により提案されているが、この方法を用いると
、X線発生装置1と透視像用観測スクリーン2との光軸
上にるつぼ7中の固液界面6が存在する場合に限り、正
確な固液界面形状を観測することができる。Conventionally, as shown in FIGS. 5 and 6, an X-ray generator 1 fixed to a crystal growth apparatus and a fluoroscopic image observation screen 2 that are also fixed are used to monitor crystal growth using a fluoroscopic method. A method of observing the interface shape between the growing crystal and the melt by irradiating the crystal with X-rays is described in the "Journal of Crystal Growth"("J, Crystal Growth").
), published in 1986, vol. 76, p. 323 by Ozawa (s, Ozawa) and Futada (T, Fuk).
However, using this method, only when the solid-liquid interface 6 in the crucible 7 exists on the optical axis of the X-ray generator 1 and the observation screen 2 for fluoroscopic images, accurate The shape of the solid-liquid interface can be observed.
ところが両図に示すように、実際の結晶成長においては
融液が固化することによって固液界面6の位置は時々刻
々と移動し、例えば、図中点線で示す位置に固液界面6
が移動すると、入射X線は固液界面6に斜め照射され、
その結果、観測スクリーン2上には固液界面6の形状が
正確に透視されず、固液界面形状を鮮明な像として得る
ことが不可能であった。However, as shown in both figures, in actual crystal growth, as the melt solidifies, the position of the solid-liquid interface 6 moves from time to time.
When moves, the incident X-rays obliquely irradiate the solid-liquid interface 6,
As a result, the shape of the solid-liquid interface 6 could not be accurately seen on the observation screen 2, making it impossible to obtain a clear image of the solid-liquid interface shape.
これを解消するためには、結晶成長に伴って移動する固
液界面6の位置にX線発生装置1と透視像用観測スクリ
ーン2とを移動さけるような工夫をすることが必要であ
る。In order to solve this problem, it is necessary to take measures to avoid moving the X-ray generator 1 and the observation screen 2 for fluoroscopic images to the position of the solid-liquid interface 6, which moves with crystal growth.
本発明の目的は、このような課題を解決して、成長装置
の側部に装着されたX線発生装置と透視像用観測スクリ
ーンが結晶成長に伴い、移動することが可能で、結晶成
長中の固液界面形状を鮮明に観測することが可能な結晶
成長装置を提供することにある。An object of the present invention is to solve such problems and to enable an X-ray generator and a fluoroscopic image observation screen attached to the side of the growth apparatus to move as the crystal grows. An object of the present invention is to provide a crystal growth apparatus that allows the shape of a solid-liquid interface to be clearly observed.
[課題を解決するための手段]
本発明は、X線を透過させる窓が設けられた成長炉と、
該成長炉で育成、された結晶と融液との界面にX線を照
射するX線発生装置と、融液を透過したX線を投影する
観測スクリーンとを備えてなる単結晶育成装置において
、X線発生装置および観測スクリーンの双方が、それぞ
れ成長炉内の結晶の育成方向と平行な方向に移動可能に
配設されていることを特徴とする単結晶育成装置である
。[Means for Solving the Problems] The present invention provides a growth furnace provided with a window that transmits X-rays;
A single crystal growth device comprising an X-ray generator that irradiates the interface between the crystal grown in the growth furnace and the melt, and an observation screen that projects the X-rays that have passed through the melt, This single crystal growth apparatus is characterized in that both the X-ray generator and the observation screen are movable in a direction parallel to the crystal growth direction within the growth furnace.
[作用]
本発明では、成長炉内の結晶の育成方向と平行な方向に
移動することが可能なX線発生装置と透視像用観測スク
リー・ンを具備することにより、結晶育成に伴う固液界
面の位置の移動に対応した固液界面形状を観測する。[Function] In the present invention, by providing an X-ray generator that can move in a direction parallel to the crystal growth direction in the growth furnace and an observation screen for fluoroscopic images, the solid-liquid Observe the shape of the solid-liquid interface as the position of the interface changes.
[実施例]
以下、図面を参照して、本発明の実施例を詳細に説明す
る。[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.
第1図は、本発明の一実施例を示す構成図で、X線発生
装置および観測スクリーンの双方を水平方向に移動させ
る水平ブリッジマン法による単結晶育成装置の一実施例
を示している。図中1はX線発生装置、2は透視像用観
測スクリーン、3は成長炉、4はX線発生装置の移動用
レール、5は観測スクリーンの移動用レールである。FIG. 1 is a block diagram showing an embodiment of the present invention, and shows an embodiment of a single crystal growth apparatus using the horizontal Bridgman method in which both an X-ray generator and an observation screen are moved in the horizontal direction. In the figure, 1 is an X-ray generator, 2 is an observation screen for fluoroscopic images, 3 is a growth furnace, 4 is a rail for moving the X-ray generator, and 5 is a rail for moving an observation screen.
成長炉3には、X線を通過させる窓が設けられている。The growth furnace 3 is provided with a window that allows X-rays to pass through.
X線発生装置1は、その成長炉3で育成される結晶と融
液との界面にX線を照射するように対向させられていて
、その対向方向と直角に水平移動できるように、移動用
レール4が敷設されている。透視像用観測スクリーン2
は、前記融液を透過したX線を投影されるように、X線
発生装置1と反対側でやはり成長炉3と対向させられて
いて、その対向方向と直角に水平移動できるように、移
動用レール5が敷設されている。The X-ray generator 1 is arranged so as to face each other so as to irradiate the interface between the crystal grown in the growth furnace 3 and the melt, and the X-ray generator 1 is arranged to face each other so as to irradiate the interface between the crystal grown in the growth furnace 3 and the melt. Rail 4 has been laid. Observation screen 2 for perspective images
is also opposed to the growth reactor 3 on the side opposite to the X-ray generator 1 so that the X-rays transmitted through the melt are projected thereon, and is moved so as to be horizontally movable perpendicular to the opposing direction. A rail 5 has been installed.
このようなシステムを使用して、シリコンの結晶育成を
行い、固液界面形状の結晶育成に伴う変化を観測した。Using such a system, we grew silicon crystals and observed changes in the solid-liquid interface shape as the crystals grew.
育成用材料はシリコンであり、直径4インチの石英るつ
ぼ7から直径2インチの単結晶を水平ブリッジマン法に
て単結晶8を育成した。この時のX線発生装置の印加電
圧と電流はそれぞれ160KV、 3mAであった。第
2図は、育成に伴う固液界面形状の変化を示すもので、
これより明らかなように、結晶を育成するにしたがって
固液界面6の位置が変化しても、固液界面形状の鮮明な
画像を得ることが可能であることを確認しlこ 。The growth material was silicon, and a single crystal 8 with a diameter of 2 inches was grown from a quartz crucible 7 with a diameter of 4 inches by the horizontal Bridgman method. The voltage and current applied to the X-ray generator at this time were 160 KV and 3 mA, respectively. Figure 2 shows the change in solid-liquid interface shape during growth.
As is clear from this, it was confirmed that even if the position of the solid-liquid interface 6 changes as the crystal grows, it is possible to obtain a clear image of the solid-liquid interface shape.
第3図は本発明の別な一実施例を示す構成図で、X線発
生装置および観測スクリーンの双方を上下方向に移動さ
せるチョクラルスキー法による単結晶・育成装置の一実
施例を示している。図中1はX線発生装置、2は透視像
用観測スクリーン、3は成長炉、4はX線発生装置の移
動用レール、5は観測スクリーンの移動用レールである
。FIG. 3 is a block diagram showing another embodiment of the present invention, showing an embodiment of a single crystal growth device using the Czochralski method in which both the X-ray generator and the observation screen are moved in the vertical direction. There is. In the figure, 1 is an X-ray generator, 2 is an observation screen for fluoroscopic images, 3 is a growth furnace, 4 is a rail for moving the X-ray generator, and 5 is a rail for moving an observation screen.
成長炉3には、X線を通過させる窓が設けられている。The growth furnace 3 is provided with a window that allows X-rays to pass through.
また、成長炉3の外側壁の中心部に相対的な位置に、2
つの上下方向の移動用レール4および5が敷設されてい
て、図中左方の移動用レール4がX線発生装置1の移動
用で、図中右方の移動用レール5が透視像用観測スクリ
ーン2の移動用とされている。X線発生装置1は、その
成長炉3で育成される結晶と融液との界面にX線を照射
し、上下移動できる。透視像用観測スクリーン2は、前
記融液を透過したX線を投影され、やはり上下移動でき
る。In addition, at a position relative to the center of the outer wall of the growth reactor 3, 2
Two vertical movement rails 4 and 5 are laid, the movement rail 4 on the left side of the figure is for moving the X-ray generator 1, and the movement rail 5 on the right side of the figure is for observation of perspective images. It is used for moving the screen 2. The X-ray generator 1 irradiates the interface between the crystal grown in the growth furnace 3 and the melt with X-rays, and can move up and down. The observation screen 2 for perspective images is projected with the X-rays that have passed through the melt, and can also be moved up and down.
このようなシステムで、第1図の実施例と同様の条件で
チョクラルスキー法によりシリコンの結晶育成を行い、
固液界面の変化を観測したところ、第4図に示すような
固液界面形状の変化を得ることができ、結晶を育成する
にしたがって固液界面の位置が変化しても、固液界面形
状の鮮明な画像を1qることか可能であることを確認し
た。Using such a system, silicon crystals were grown using the Czochralski method under the same conditions as in the example shown in Figure 1.
When we observed the changes in the solid-liquid interface, we found that the shape of the solid-liquid interface changed as shown in Figure 4. Even if the position of the solid-liquid interface changes as the crystal grows, the shape of the solid-liquid interface changes. It was confirmed that it is possible to obtain clear images of 1q.
このように、本発明によれば、固液界面の位置の移動に
伴い、X線発生装置と透視像用観測スクリーンを移動す
ることにより、結晶の育成途中の固液界面形状を鮮明に
観測することが可能となる。As described above, according to the present invention, the shape of the solid-liquid interface during crystal growth can be clearly observed by moving the X-ray generator and the observation screen for fluoroscopic images as the position of the solid-liquid interface moves. becomes possible.
なお、実施例においてはシリコン単結晶の場合を取り上
げて説明したが、本発明は他の半導体の単結晶育成にも
適用することが可能であり、その場合の半導体はInP
やGaAs等の化合物半導体のみならず、ゲルマニウム
等の元素半導体にも応用可能であることは明らかである
。In addition, although the case of a silicon single crystal was taken up and explained in the example, the present invention can also be applied to the single crystal growth of other semiconductors, and the semiconductor in that case may be InP.
It is clear that the present invention is applicable not only to compound semiconductors such as GaAs and GaAs, but also to elemental semiconductors such as germanium.
[発明の効果]
以上説明したとおり、本発明によれば、成長装置の側部
に装着されたX線発生装置および観測スクリーンが結晶
成長に伴い移動することが可能で、結晶成長中の固液界
面形状を鮮明に観測することが可能な単結晶育成装置を
提供することができる。[Effects of the Invention] As explained above, according to the present invention, the X-ray generator and the observation screen attached to the side of the growth apparatus can be moved as the crystal grows, and the solid-liquid during crystal growth can be moved. It is possible to provide a single crystal growth apparatus that allows the interface shape to be clearly observed.
第1図は本発明の一実施例の構成図、第2図はその実施
例による固液界面形状の変化の説明図、第3図は本発明
の別な一実施例の構成図、第4図はその実施例による固
液界面形状の変化の説明図、第5図および第6図は従来
例の説明図である。
1・・・X線発生装置 2・・・観測スクリーン3・
・・成長炉
6・・・固液界面
8・・・単結晶
4.5・・・移動用レール
7・・・るつぼFIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 is an explanatory diagram of changes in solid-liquid interface shape according to the embodiment, FIG. 3 is a block diagram of another embodiment of the present invention, and FIG. The figure is an explanatory diagram of the change in the shape of the solid-liquid interface according to the embodiment, and FIGS. 5 and 6 are explanatory diagrams of the conventional example. 1... X-ray generator 2... Observation screen 3.
...Growth furnace 6...Solid-liquid interface 8...Single crystal 4.5...Transfer rail 7...Crucible
Claims (1)
長炉で育成された結晶と融液との界面にX線を照射する
X線発生装置と、融液を透過したX線を投影する観測ス
クリーンとを備えてなる単結晶育成装置において、X線
発生装置および観測スクリーンの双方が、それぞれ成長
炉内の結晶の育成方向と平行な方向に移動可能に配設さ
れていることを特徴とする単結晶育成装置。(1) A growth furnace equipped with a window that transmits X-rays, an X-ray generator that irradiates the interface between the crystal grown in the growth furnace and the melt, and the X-rays that have passed through the melt. In a single crystal growth apparatus comprising an observation screen for projecting a A single crystal growth device featuring:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20729988A JPH0259484A (en) | 1988-08-23 | 1988-08-23 | Device for growing single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20729988A JPH0259484A (en) | 1988-08-23 | 1988-08-23 | Device for growing single crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0259484A true JPH0259484A (en) | 1990-02-28 |
Family
ID=16537482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20729988A Pending JPH0259484A (en) | 1988-08-23 | 1988-08-23 | Device for growing single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0259484A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5072380A (en) * | 1990-06-12 | 1991-12-10 | Exxon Research And Engineering Company | Automatic vehicle recognition and customer billing system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59232989A (en) * | 1983-06-13 | 1984-12-27 | Hitachi Cable Ltd | Device for producing single crystal of compound semiconductor |
JPS61158888A (en) * | 1984-12-28 | 1986-07-18 | Sumitomo Electric Ind Ltd | Production of single crystal |
JPS61158893A (en) * | 1984-12-29 | 1986-07-18 | Sumitomo Electric Ind Ltd | Apparatus for producing single crystal |
-
1988
- 1988-08-23 JP JP20729988A patent/JPH0259484A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59232989A (en) * | 1983-06-13 | 1984-12-27 | Hitachi Cable Ltd | Device for producing single crystal of compound semiconductor |
JPS61158888A (en) * | 1984-12-28 | 1986-07-18 | Sumitomo Electric Ind Ltd | Production of single crystal |
JPS61158893A (en) * | 1984-12-29 | 1986-07-18 | Sumitomo Electric Ind Ltd | Apparatus for producing single crystal |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5072380A (en) * | 1990-06-12 | 1991-12-10 | Exxon Research And Engineering Company | Automatic vehicle recognition and customer billing system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6852162B2 (en) | Laser annealing apparatus | |
DE112010002568B4 (en) | Method for producing a silicon single crystal | |
JPH0479996B2 (en) | ||
DE602004001510T2 (en) | DEVICE AND METHOD FOR PRODUCING A CRYSTAL STAIN | |
JPH0259484A (en) | Device for growing single crystal | |
JPS61289617A (en) | Manufacturing device for single-crystal thin film | |
Yao et al. | Synchrotron white beam topographic imaging in grazing Bragg-Laue geometries | |
JPH0637345B2 (en) | Single crystal growth equipment | |
KR930006955B1 (en) | Apparatus for growing single-crystal | |
US7335260B2 (en) | Laser annealing apparatus | |
JPH01179784A (en) | Crystal growth device | |
JPH0497983A (en) | Single crystal growth device | |
CHIKAWA | IN SITU X-RAY TOPOGRAPHIC STUDY ON MELT GROWTH OF SILICON (< Special Issue> Fundamentals of Vapour Growth and Epitaxy: Lecture Notes of the ICVGE-4 Specialists' School) | |
DE69829641T2 (en) | Device for monitoring the growth of a crystal | |
JPS59199597A (en) | Apparatus for producing single crystal | |
JPH02208285A (en) | Rearing device of single crystal | |
Rosner et al. | Microstructure of thin layers of MBE-grown GaAs on Si substrates | |
JPS59174598A (en) | Manufacture of semiconductor single crystal of group iii- v compound | |
Géminard et al. | Three-dimensional visualization and physical properties of dendrites in thin samples of a hexagonal columnar liquid crystal | |
JP2612897B2 (en) | Single crystal growing equipment | |
JP3274501B2 (en) | Silicon single crystal growth method | |
JPS62278186A (en) | Production of semiconductor single crystal and apparatus therefor | |
Kobayashi et al. | Real-time X-ray topographic observation of crystal growth of gallium from melt | |
JPH0534317B2 (en) | ||
JPH07237990A (en) | Method for growing single crystal according to method for solidification in vertical container and apparatus therefor |