JPS59232460A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59232460A
JPS59232460A JP10674783A JP10674783A JPS59232460A JP S59232460 A JPS59232460 A JP S59232460A JP 10674783 A JP10674783 A JP 10674783A JP 10674783 A JP10674783 A JP 10674783A JP S59232460 A JPS59232460 A JP S59232460A
Authority
JP
Japan
Prior art keywords
oxide film
film
ion implantation
impurity
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10674783A
Other languages
Japanese (ja)
Inventor
Mitsunao Chiba
千葉 光直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10674783A priority Critical patent/JPS59232460A/en
Publication of JPS59232460A publication Critical patent/JPS59232460A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Abstract

PURPOSE:To perform diffusion of high-concentration impurities with high accuracy by using the film part in which an oxide film is formed on a diffusion window for low-concentration impurities, after which an oxide film different in the etching speed is formed in a part of said oxide film by ion implantation. CONSTITUTION:After forming a gate electrode 4, a low-concentration impurity 7 is firstly diffused through an impurity diffusion window A. Next, the films 8 and 10 having a masking effect against ion implantation are formed over the whole surface followed by ion implantation of impurities such as P<+> and As<+> over the whole surface which is then etched. By this ion implantation, etching speed of the surface portion 8 whose film thickness is thin becomes faster than that of the inside wall portion whose film thickness is thick, so that only the oxide film 10 on the inside wall remains. After that, high-concentration impurities 11 are diffused through the windows B shaped by said remaining oxide film 10.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、半η7体装荷の製造方法に係わり特に優れた
特性のMO8型半導体装置の)弧造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field to which the Invention Pertains] The present invention relates to a method for manufacturing a semi-η7 semiconductor device, and in particular to a method for manufacturing an MO8 type semiconductor device having excellent characteristics.

〔従来技術とその問題点〕[Prior art and its problems]

従来、半導体素子が集積回路例えばMOS型トランジス
タは素子の特性を向上させるため所Nl’+スケ17ン
グによる素子の縮少化が行々われできている。これは素
子寸法を縮少しチャンネルの不、l+I11物濃度を増
し、駆動電圧を小さくすることにより元の素子を比例縮
少した高性能の新しいトランジスタが得られる。しかし
、例えば不純物濃度を増加し、接合の深さを小さくして
行くと、ゲート電極とドレインの近傍で電界が高く々り
所謂ホットエレクトロンの発生、ブl/イクダウン′ボ
圧等の点で素子特性に悪影響を及ぼすようになる。また
接合の深さを02μ?n以下にすると電16に配線とソ
ース。
Conventionally, when a semiconductor element is an integrated circuit, such as a MOS transistor, the size of the element has been reduced by Nl'+scaling in order to improve the characteristics of the element. This reduces the device size, increases the channel concentration, and reduces the drive voltage, resulting in a new transistor with high performance that is proportionally smaller than the original device. However, for example, when the impurity concentration is increased and the junction depth is decreased, the electric field becomes high near the gate electrode and drain, causing the generation of so-called hot electrons and the drop/down pressure of the device. It will have a negative effect on the characteristics. Also, the depth of the bond is 02μ? If it is less than n, the wiring and source will be connected to the power line 16.

ドレイン間のコンタクトが取りにくくなる究′の問題も
発生する。
The ultimate problem arises that it becomes difficult to establish contact between the drains.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記間%!j1をWl決し、老子の縮
小化を実現し、集積度を高めるとともに、高速動作が可
能な信頼性の高い半導体装置の製造方法を提供すること
にある。
The purpose of the present invention is to achieve the above %! It is an object of the present invention to provide a method for manufacturing a highly reliable semiconductor device that can reduce j1 to Wl, realize a reduction in size, increase the degree of integration, and operate at high speed.

〔発明の概要〕[Summary of the invention]

本発H旧d、半導体装置の製造方法において、グー4電
イa金形1戊した後、不純物拡散用歴を通(7、先ず低
濃度不純物を拡赦し、ついで、この全面に、イオン注入
に7[シ、マスク効果のある膜全形成した後、全面にP
”、 As+、IJ+等の不純物をイオン注入する。こ
の後、全面をエツチングすると、イオン注入された膜は
、イオン注入が届かない部分(元の膜)に比べ、エツチ
ング速度が数倍速くなるので、前記不純物拡散用窓の内
周壁に膜形成時の膜形状が反映されたjII4が形成さ
れる。この移、高濃度不純物を波数する半導体装置の製
造方法にあるっ〔発明の効−毛〕 本発明によ相ば、ゲート’F+¥極を形成後、ゲート電
極隣接部分に接合の深さの比鮫的浅い低濃度の不純、物
の拡散層と、接合の深さの比較的深い高濃度の不純物の
拡散層を一度のマスク合わせ工程で、しかも楕)テよく
形成すZlことが出来、曳行なコンタクトと、ショート
チャンネル効果の抑flllならびにドレイン近傍での
高電界領域の発生を低層シ2、プレインダウン電圧を増
加させた半導体装置を得ることができる。
In the method for manufacturing a semiconductor device, the process for impurity diffusion is performed after the metal mold is removed (7. First, low-concentration impurities are removed, and then ions are implanted on the entire surface. 7. After forming the entire masking film, apply P to the entire surface.
", As+, IJ+, and other impurities are ion-implanted. After this, when the entire surface is etched, the etching rate of the ion-implanted film is several times faster than that of the part (original film) where the ion implantation does not reach. , jII4 reflecting the film shape at the time of film formation is formed on the inner circumferential wall of the impurity diffusion window.This transition lies in the method of manufacturing a semiconductor device that uses high concentration impurities at a wave number. According to the present invention, after forming the gate 'F + It is possible to form a high concentration impurity diffusion layer in a single mask alignment process and with good ellipse, resulting in a smooth contact, suppression of the short channel effect, and the generation of a high electric field region near the drain. 2. A semiconductor device with increased plane-down voltage can be obtained.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の具体的実施例について、図面を用い説明す
る。先ず第1図(atに示すように比抵抗5〜20Ω(
7)のP型シリコン基板1に通常の工程に従いフィール
ド酸化膜2を形成、その下にはフィールド反転防止のた
めのP上層3を形成する。その後、例えば900℃酸素
雰囲気中で厚さ300λのゲート酸化膜4を形成し、史
にLP CVD法により厚さ3000^の多結晶シリコ
ン膜5を形成する。
Specific embodiments of the present invention will be described below with reference to the drawings. First, as shown in Figure 1 (at), the specific resistance is 5 to 20Ω (
7) A field oxide film 2 is formed on the P-type silicon substrate 1 according to the usual process, and a P upper layer 3 for preventing field inversion is formed below it. Thereafter, a gate oxide film 4 having a thickness of 300λ is formed in an oxygen atmosphere at, for example, 900° C., and a polycrystalline silicon film 5 having a thickness of 3000° is formed by the LP CVD method.

次に第1図(b)に示すように写真蝕刻法により形成さ
れたレジスト膜6をマスクに、例えば始めC12/■−
12ガスを用い反応性イオンエツチング法により多結晶
シリコン膜5を″エツチングし、次にエツチング速度ヲ
CH4/H2に替えてゲート+’d化膜4をエツチング
する。この後、例えば 素イオン(As+)全カロ速屯
If 40Kev不縄物濃度IXI O” ”cm ”
 テ打ち込み浅いn一層7を形成する。レジスト膜6を
除去した後、第1図(C1に示すように、イオン注入に
対して適当な阻止能力を持つ膜例えば、シリコン酸化膜
8を例えばLPCVD法により04μmの厚さに形成す
る。この後、例えばホウ素イオン(B+)9 e加速電
圧1201(e v、不純物γ7c度5刈o19(7)
−3で全面にイオン注入する。この時、シリコン酸化膜
8の一部1゜(フィールド[拶化膜2及びゲート酸化膜
4と多結晶シリコン膜5の側壁部分)は、ホウ素のイオ
ン注入方向から見た場合、それぞれの膜厚分だけシリコ
ン酸化膜8が厚いのでイオン注入されたホウ素は届かな
い。この後、例えばCFs74−12f:エツチングガ
スに反応性イオンエツチング法で全面エツチングすると
、第1図(d)に示すように、フィールド酸化膜2及び
ゲート電極部分の側壁に、イオン注入されないシリコン
酸化膜1oが形成される。これはイオン注入によって作
られたダメージ層は、エツチング速度が早くなるという
現象を利用したもので、ちなみにイオン注入されたこと
により3〜4倍エッチンク速度が増加する。この場合エ
ツチング速度はシリコン酸化膜10(イオン注入された
シリコン酸化膜8となり図のように形成される。その後
、例えばリンイオン(P+)を加速電圧160Kev不
純物濃度2X 1018cm−”で打ち込みソースドレ
インイの他配線層となる1層11を形成する。この後活
性化のための熱処理を行ない不純物注入層周辺のゲート
領域と、フィールド領域に囲捷れた領域では、濃度が低
く浅い接合が得られ丑た横方向への拡散層の再分布も最
小限にできる。一方周辺から離れた領域では濃度が高く
周辺よりも深い接合層11が得られるっこの後、第1図
te+に示すように、全面にCVD法によりPSGll
i12を堆積しコンタクトホールを開けて取り出し電極
例えばアルミニウム(AI)13%配列して完成する。
Next, as shown in FIG. 1(b), using a resist film 6 formed by photolithography as a mask, for example, starting with C12/■-
The polycrystalline silicon film 5 is etched by the reactive ion etching method using 12 gases, and then the gate oxide film 4 is etched by changing the etching rate to CH4/H2.After this, for example, elemental ions (As+ ) Total Karo speed ton If 40Kev unwamono concentration IXI O” “cm”
A shallow n layer 7 is formed by implantation. After removing the resist film 6, as shown in FIG. 1 (C1), a film having a suitable blocking ability against ion implantation, such as a silicon oxide film 8, is formed to a thickness of 0.4 μm by, for example, the LPCVD method. After that, for example, boron ion (B+) 9 e acceleration voltage 1201 (e v, impurity γ7c degree 5 cut o19 (7)
Ion implantation is performed on the entire surface at -3. At this time, a portion 1° of the silicon oxide film 8 (field [side wall portion of the silicon oxide film 2, gate oxide film 4, and polycrystalline silicon film 5] has the same film thickness as viewed from the boron ion implantation direction. Since the silicon oxide film 8 is thicker, the ion-implanted boron cannot reach it. After this, when the entire surface is etched using a reactive ion etching method using, for example, CFs74-12f etching gas, as shown in FIG. 1o is formed. This takes advantage of the phenomenon that a damaged layer created by ion implantation increases the etching rate; by the way, the etching rate increases by 3 to 4 times due to ion implantation. In this case, the etching rate is as high as the silicon oxide film 10 (ion-implanted silicon oxide film 8 is formed as shown in the figure. After that, for example, phosphorus ions (P+) are implanted at an acceleration voltage of 160 Kev and an impurity concentration of 2 x 1018 cm-" to form a source/drain layer. A layer 11 that will become another wiring layer is formed.After this, a heat treatment is performed for activation, and shallow junctions with low concentration are obtained in the gate region around the impurity injection layer and the region surrounded by the field region. The redistribution of the diffusion layer in the lateral direction can also be minimized.On the other hand, in regions far from the periphery, the concentration is high and a bonding layer 11 deeper than the periphery is obtained.After this, as shown in FIG. PSGll by CVD method
I12 is deposited, contact holes are opened, and lead electrodes, such as aluminum (AI) 13%, are arranged to complete the process.

この実施例によればn+層領域をとり囲む段差部分にイ
オン注入のマスクとなる不純物ドープ制御用膜を形成し
注入の深さと濃度を変えて2回の不純物イオン注入を行
なうことによりn+1M、形成するため、周辺と中心部
で接合の深さと濃度の異なる不純物層を形成することが
できる。このためゲート酸化膜に隣接したところで(は
濃度が低く接合の深さが浅いn一層がいられるためドレ
イン側からの空乏層の広がりが小さく、これによってシ
ョートチャンネル効果を大幅に抑えることが可能となり
またドレイン近傍での冒電界領域の発生を低減すること
により、ブレイクダウン電圧を高くすることが可能とな
った。
According to this embodiment, an impurity doping control film serving as an ion implantation mask is formed in the stepped portion surrounding the n+ layer region, and the impurity ion implantation is performed twice by changing the implantation depth and concentration, thereby forming the n+1M layer. Therefore, impurity layers having different junction depths and concentrations can be formed at the periphery and the center. Therefore, since a single layer with a low concentration and a shallow junction depth is required adjacent to the gate oxide film, the spread of the depletion layer from the drain side is small, which makes it possible to significantly suppress the short channel effect. By reducing the occurrence of electric field disturbances near the drain, it has become possible to increase the breakdown voltage.

一方中心部のn4−領域では濃度が高く比較的に深い接
合がでさるためコンタクト部で取出し’it極とのオー
ミックコンタクトが良好になり電極材料のつき抜けなど
による不良も防止された。またフィールド酸化11#、
及びゲート領域部分の側壁にシリコン酸化1換を形成す
る方法としてイオン注入によって作られるダメージ層の
異常エツチング(エツチング速度が甲(−4る。、)ヲ
第11用しているのでイオン注入条件を変えることによ
りハφの加工形状のコントロールが任意にでき、しかも
イオン注入されたシリコン膜は元の膜とのエツチング選
択比が3〜4倍もあるので、エツチング時間を短縮する
ことができ素子に与えるダメージも少なくすることがで
きる。これは従来反応性イオンエツチング後に行なわれ
ている表面処理(反応性イオンエツチングによってシリ
コン基板表面に発生したダメージ層を除去する工程)f
省へ工程の短縮化を促す。
On the other hand, in the n4- region at the center, the concentration is high and a relatively deep junction is formed, so ohmic contact with the lead-out 'it electrode at the contact part is made good, and defects such as penetration of the electrode material are prevented. Also field oxidation 11#,
And as a method of forming silicon oxide on the sidewalls of the gate region, abnormal etching of the damaged layer created by ion implantation (etching rate is -4) is used, so the ion implantation conditions are changed. By changing the etching shape, the processed shape of Cφ can be controlled arbitrarily, and since the ion-implanted silicon film has an etching selectivity of 3 to 4 times that of the original film, the etching time can be shortened and the device Damage caused can also be reduced.This is due to surface treatment (a step of removing the damaged layer generated on the silicon substrate surface by reactive ion etching) that is conventionally performed after reactive ion etching.
Encourage the Ministry to shorten the process.

尚、本実旋例においてシリコン酸化膜を挙げたが、この
他に多結晶シリコン膜、シリコン窒化膜、樹脂等イオン
注入に対しマスク効果のある膜であればよく、またイオ
ン注入はこれらの膜にダメージ層を形成する目的で行な
うため実施例のB+の他に〇九N″−、Ar″−,He
”、 P雪As”等、素子全汚染する恐れのない元素で
あればよい。更に、iil壁に膜を形成するエツチング
方法として、本実施例では、従来1(jill壁観し“
の重要技術である反応性イオンエツチング法を採用した
が、従来の3側壁9A≧し“は乍に反応性イオンエツチ
ング法の異方性エツチングを利用したに過ぎずこれに対
し1本発明は、イオン注入によるダメージ層の異常エツ
チング(エツチング速度が早くなる。)を利用している
ので、異方性のエツチング方法はもちろん、等方性のエ
ツチング方法でも同形状が得られる。また湿式エツチン
グ法、乾式エツチング法でも同様である。
Although a silicon oxide film is used in this practical example, any other film that has a masking effect for ion implantation may be used, such as a polycrystalline silicon film, silicon nitride film, or resin. In addition to B+ in the example, 〇9N''-, Ar''-, He
It may be any element that does not cause the risk of contaminating the entire device, such as ", P snow, As", etc. Furthermore, as an etching method for forming a film on the Jill wall, in this embodiment, conventional 1 (Jill wall view) is used.
However, the conventional method uses only anisotropic etching of the reactive ion etching method for three side walls 9A≧". In contrast, the present invention has the following features: Since it utilizes abnormal etching (the etching speed becomes faster) of the damaged layer due to ion implantation, the same shape can be obtained not only by anisotropic etching methods but also by isotropic etching methods.Also, wet etching methods, The same applies to the dry etching method.

【図面の簡単な説明】 第1図fa)〜telは、本発明に係る半導体装置の製
造方法の一実施例を示す工程断面図である。 1 シリコン基板、 2 フィールド酸化膜、 3P+層(反転防止層)、 4・ゲート酸化膜、 5 多結晶シリコン)1・A、 6 レジスト膜、 7・n /脅(浅い拡散層)、 871Jコン酸化膜、 913+イオン、 10  シリコン酸化膜、 11−n土層(深い拡散1(4)、 12  Pso膜、 13  アルミニウム電極。 (7317)  弁理士 則 近 意 市(ほか1名)
265
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 fa) to 1 tel are process cross-sectional views showing an embodiment of a method for manufacturing a semiconductor device according to the present invention. 1 Silicon substrate, 2 Field oxide film, 3P+ layer (anti-inversion layer), 4 Gate oxide film, 5 Polycrystalline silicon) 1 A, 6 Resist film, 7 N/N (shallow diffusion layer), 871J Con oxidation Membrane, 913+ ion, 10 silicon oxide film, 11-n soil layer (deep diffusion 1 (4), 12 Pso film, 13 aluminum electrode. (7317) Patent attorney Chika Ichi (and 1 other person)
265

Claims (1)

【特許請求の範囲】[Claims] (il半導体基板のフィールド絶縁膜で囲まれた素子形
成領域にゲート絶縁膜を介してゲート電極を形成した後
不純物拡散用窓を通して不純物全拡散しソース、ドレイ
ンを形成する工程金言む半褥体装稽の製造方法において
、前記不純物の拡散の為前記ゲート電極を形成した後+
ii、T紀基板に低基板不純物’?A域を拡散形成し、
ついで、この基板の表面全面に絶縁膜全形成した後この
絶縁膜の全面にイオン注入する工・院と、この全面tエ
ツチングすることによって前記ゲート出、極の1t<+
+壁にす縁膜を加工形成する工程と、その後前記基板に
高濃度不純物領域を拡散形成する工程とを備えたことを
特徴とする半43体装16の製造方法。
(Il) A process in which a gate electrode is formed via a gate insulating film in the element formation region surrounded by a field insulating film of a semiconductor substrate, and then all impurities are diffused through an impurity diffusion window to form a source and a drain. In the manufacturing method of + after forming the gate electrode for diffusion of the impurity.
ii. Low substrate impurity in T-period substrate? Diffusion formation of area A,
Next, after an insulating film is completely formed on the entire surface of this substrate, ions are implanted into the entire surface of the insulating film, and etching is performed on the entire surface so that the gate electrode and the electrode 1t<+
+ A method for manufacturing a semi-43 body 16, comprising the steps of processing and forming a border film on the wall, and then diffusing and forming a high concentration impurity region on the substrate.
JP10674783A 1983-06-16 1983-06-16 Manufacture of semiconductor device Pending JPS59232460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10674783A JPS59232460A (en) 1983-06-16 1983-06-16 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10674783A JPS59232460A (en) 1983-06-16 1983-06-16 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS59232460A true JPS59232460A (en) 1984-12-27

Family

ID=14441505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10674783A Pending JPS59232460A (en) 1983-06-16 1983-06-16 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59232460A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210741A (en) * 1988-03-23 1990-01-16 Sgs Thomson Microelectron Inc Method of forming self-aligning source/drain contacts in mos transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210741A (en) * 1988-03-23 1990-01-16 Sgs Thomson Microelectron Inc Method of forming self-aligning source/drain contacts in mos transistor

Similar Documents

Publication Publication Date Title
JPH06350090A (en) Manufacture of semiconductor device
JP2799254B2 (en) Method for manufacturing semiconductor device
US4507846A (en) Method for making complementary MOS semiconductor devices
JPS60223165A (en) Manufacture of semiconductor device
JP2000101074A (en) Insulated gate semiconductor device and manufacture thereof
US4217599A (en) Narrow channel MOS devices and method of manufacturing
JP2002043571A (en) Semiconductor device
JPS61247051A (en) Manufacture of semiconductor device
JPH05283687A (en) Production of semiconductor element
JPS59232460A (en) Manufacture of semiconductor device
JPH09260659A (en) Semiconductor element and manufacture thereof
JPH0472770A (en) Manufacture of semiconductor device
JP3061892B2 (en) Method for manufacturing semiconductor device
JPS59231863A (en) Insulated gate semiconductor device and manufacture thereof
JPS6016469A (en) Manufacture of mis semiconductor device
JPS5923562A (en) Insulated gate field effect semiconductor device and manufacture thereof
JP3279827B2 (en) Method for manufacturing MOS type semiconductor device
JPH0766400A (en) Semiconductor and its manufacture
JP2002110813A (en) Semiconductor device and its manufacturing method
JPH05259270A (en) Semiconductor device for element separation and its manufacture
JPH0964367A (en) Semiconductor device and its manufacture
JPS58182877A (en) Manufacture of vertical field effect transistor
JPS5898965A (en) Manufacture of semiconductor device
JPS605072B2 (en) Method for manufacturing insulated gate field effect semiconductor device
JPH06151832A (en) Manufacture of mos transistor