JPS59231879A - Photoconductor and manufacture thereof - Google Patents

Photoconductor and manufacture thereof

Info

Publication number
JPS59231879A
JPS59231879A JP58105515A JP10551583A JPS59231879A JP S59231879 A JPS59231879 A JP S59231879A JP 58105515 A JP58105515 A JP 58105515A JP 10551583 A JP10551583 A JP 10551583A JP S59231879 A JPS59231879 A JP S59231879A
Authority
JP
Japan
Prior art keywords
layer
silicon
photoconductor
hydrogen
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58105515A
Other languages
Japanese (ja)
Other versions
JPH0481349B2 (en
Inventor
Etsuya Takeda
悦矢 武田
Shinji Fujiwara
慎司 藤原
Eiichiro Tanaka
栄一郎 田中
Kazumi Sadamatsu
和美 貞松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58105515A priority Critical patent/JPS59231879A/en
Publication of JPS59231879A publication Critical patent/JPS59231879A/en
Publication of JPH0481349B2 publication Critical patent/JPH0481349B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a photoconductor, resolution and sensitivity thereof are high and dark currents therefrom are small, by laminating an amorphous hydrogenated Si layer containing a large amount of hydrogen and an amorphous hydrogenated Si layer containing a small amount of hydrogen on an Si substrate through an Mo film and growing them and coating the surface with an SiO2 film by anodic oxidation. CONSTITUTION:An Mo film 12 is formed on a single crystal Si substrate 11 through a sputtering method and the substrate is entered into a magnetron sputtering device, and the inside of the device is evacuated up to 2X10<-6>Torr, the substrate 11 is kept at approximately 250 deg.C, polycrystalline Si is used as a target and an amorphous hydrogenated Si layer 13 containing a large amount of hydrogen is deposited first while bringing the pressure of Ar to 4.5X10<-3>Torr and the pressure of H2 to 5X10<-4>Torr. An amorphous hydrogenated Si layer 14 containing a small amount of hydrogen is laminated through the same method, and an SiO2 film 15 is formed on the surface of the layer 14 through anodic oxidation in oxygen plasma. A transparent electrode 16 consisting of In2O3 is formed on the film 15, and the electrode 16 is brought to negative polarity and the Mo film 12 to positive polarity and voltage is applied.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光導電体とくに撮像管ターゲット固体撮像装
置、電子写真用感光板等のイメージデバイス用の光導電
体薄膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a photoconductor, particularly a photoconductor thin film for image devices such as image pickup tube targets, solid-state imaging devices, electrophotographic photosensitive plates, and the like.

従来例の構成と問題点 本発明者らは低暗電流で光感度をするイメージデバイス
に適した非晶質水素化シリコンの光導電膜を実現する方
法として特願昭58−16508号に水素含有量の多い
広い禁止帯の非晶質水素化した光導電膜をブロッキング
層とする構成を示し、反応性スパッタ法によって実現で
きることを示した。水素量の多い層は正孔のブロッキン
グ層として特に有効であり、電子の注入の低減にはアク
セプター性の不純物を導入する必要があった。ところが
不純物を導入した水素量の多い層でも電子の注入阻止は
不十分であった。したがって蓄積型のイメージデバイス
ではさらに低暗電流化をはかる必要があった。
Structure and Problems of the Conventional Example The present inventors proposed a hydrogen-containing method in Japanese Patent Application No. 16508-1983 as a method for realizing a photoconductive film of amorphous hydrogenated silicon suitable for image devices with low dark current and photosensitivity. We demonstrated a structure in which a blocking layer is an amorphous hydrogenated photoconductive film with a large amount and a wide bandgap, and showed that it can be realized by reactive sputtering. A layer with a large amount of hydrogen is particularly effective as a hole blocking layer, and it is necessary to introduce acceptor impurities to reduce electron injection. However, even a layer with a large amount of hydrogen into which impurities were introduced was insufficient to prevent electron injection. Therefore, it was necessary to further reduce the dark current in storage type image devices.

発明の目的 本発明は、高解像度で高感度である非晶質水素化シリコ
ンを用いて低暗電流化をはかった光導電膜を設けた光導
電体とその製造方法を得ることを目的とする。
Purpose of the Invention The object of the present invention is to provide a photoconductor provided with a photoconductive film that uses amorphous silicon hydride that has high resolution and high sensitivity and has a low dark current, and a method for manufacturing the same. .

発明の構成 本発明は、光導電体において、非晶質水素化シリコンを
主成分とする比抵抗10 9層以」二の第1、第2の層
からなり、前記第2の層を前記第1の層より水素含有量
の多くした正孔の注入阻止層の第1の層を前記第2の層
と電子の注入阻止層で挾むよう順次基板上に形成したこ
とを特徴とし、その製造方法はターゲットをシリコンを
主成分とし、水素を反応ガスとして含む雰囲気中で反応
性スパッタ法により10 0口以上の水素含有量の第1
の層と前記第1の層より水素含有量の多い第2の層を形
成する工程A1工程Bおよび宝前または酸素を反応性ガ
スとして含む雰囲気中で反応性スパッタ法により窒化シ
リコン層または酸化シリコン層(以下酸化層という。)
を形成する工程Cからなり、前記第1の層を前記第2の
層と酸化層で挾持すると共に、前記構成された積層順に
基板上に形成することを特徴とし、また前記第1の層の
一方の面の一部を窒化シリコン層または酸化シリコン層
に変化させるにある。
Structure of the Invention The present invention provides a photoconductor comprising a first layer and a second layer having a resistivity of 109 or more layers mainly composed of amorphous silicon hydride, and wherein the second layer is A method for producing the same, characterized in that a first layer of a hole injection blocking layer having a higher hydrogen content than the first layer is sandwiched between the second layer and an electron injection blocking layer on a substrate. The target is made of silicon as the main component, and the first target with a hydrogen content of 100 or more is formed by reactive sputtering in an atmosphere containing hydrogen as a reactive gas.
Steps A and B of forming a layer and a second layer having a higher hydrogen content than the first layer and forming a silicon nitride layer or silicon oxide layer by reactive sputtering in an atmosphere containing Takarazen or oxygen as a reactive gas. layer (hereinafter referred to as oxide layer)
The first layer is sandwiched between the second layer and the oxide layer, and the first layer is formed on the substrate in the configured lamination order; The purpose is to convert a portion of one surface into a silicon nitride layer or a silicon oxide layer.

実施例の説明 本発明の光導電体は第1図に示すように基板1上に水素
含有量の異なる比抵抗jOΩ釧以上の2層の非晶質水素
化シリコン層2,3及び窒化シリコンまたは酸化シリコ
ン層4とからなる。前記2層中水素含有量の多い非晶質
水素化シリコンは正孔の注入阻止層として働き、窒化シ
リコンまたは酸化シリコン層4は電子の注入阻止層とし
て働く。
DESCRIPTION OF THE EMBODIMENTS As shown in FIG. 1, the photoconductor of the present invention has two layers of amorphous hydrogenated silicon 2, 3 and silicon nitride or It consists of a silicon oxide layer 4. The amorphous hydrogenated silicon having a high hydrogen content in the two layers acts as a hole injection blocking layer, and the silicon nitride or silicon oxide layer 4 acts as an electron injection blocking layer.

以下具体的な光導電体の製造方法の1実施例を説明する
One example of a specific method for manufacturing a photoconductor will be described below.

第2図(aj図に示すようスパッタ法によりMo膜12
を基板である単結晶81ウエート−11上に形成する。
As shown in Fig. 2 (a-j), the Mo film 12 is
is formed on a single crystal 81 weight-11 which is a substrate.

こうして形成した基板体(A)をマグネトロンスパック
装置中に設置し、2 X 10  Torrに排気した
後、基板体(A)を250℃に保ち、多結晶シリコンを
ターゲットとしアルゴン圧力4.5 X 10  To
rr 。
The substrate body (A) thus formed was placed in a magnetron spacing device and evacuated to 2 X 10 Torr, and then the substrate body (A) was kept at 250°C and polycrystalline silicon was targeted at an argon pressure of 4.5 X 10 Torr. To
rr.

水素圧力5 X 10  Torrの雰囲気で100W
の放電電力により、60分で水素量の多い厚さ02〜0
3μmの非晶質水素化シリコン層13を形成し、連続し
て放電電力200Wに変化させて90分で1.5〜1.
8μmの水素量の少ない非晶質水素化シリコン】4を形
成する。次に表面を酸素プラズマ中で陽極酸化をし、表
面に酸化シリコン15を形成する。次にIn2O,16
をスパッタ法で約100OA形成する。この非晶質水素
化シリコン層13.14はいずれも10  Ωm以上の
比抵抗を有する。透明電極16を負極性、Mo膜12を
正極性にして電圧を印加したときの暗電流を第3図21
に示し、これに波長435 nmの光(0,5pvj 
/ cnj )を照射したときの光電流を22に示す。
100W in an atmosphere of hydrogen pressure 5 x 10 Torr
With the discharge power of , the thickness of 02~0
A 3 μm thick amorphous hydrogenated silicon layer 13 is formed, and the discharge power is continuously changed to 200 W to 1.5 to 1.5 μm in 90 minutes.
8 μm of amorphous hydrogenated silicon with a small amount of hydrogen] 4 is formed. Next, the surface is anodized in oxygen plasma to form silicon oxide 15 on the surface. Next, In2O,16
A thickness of about 100 OA is formed using a sputtering method. Both of these amorphous hydrogenated silicon layers 13 and 14 have a specific resistance of 10 Ωm or more. FIG. 321 shows the dark current when a voltage is applied with the transparent electrode 16 of negative polarity and the Mo film 12 of positive polarity.
The light with a wavelength of 435 nm (0.5 pvj
/cnj) is shown in 22.

比較のため、第2図(b)の断面図のように酸化シリコ
ン15の代りに実施例における層14の形成の後、アル
ゴン圧力4 X 10  Torr %水素圧力lXl
0”’Torr 、ジボラン(E2 Hfi ) +圧
力I X 10  Torrとし1.200 Wの放電
電力のまま水素量を増加しかつホウ素をドープした非晶
質シリコン17を01μmの厚さで形成し、その後透明
電極16を形成したものの暗電流を23、光電流を24
で各々示す。表面酸化シリコン層を加えることにより暗
電流が低下したことがわかる。
For comparison, after the formation of the layer 14 in the example instead of the silicon oxide 15 as shown in the cross-sectional view of FIG.
0"' Torr, diborane (E2 Hfi) + pressure I X 10 Torr, the amount of hydrogen was increased while the discharge power was 1.200 W, and amorphous silicon 17 doped with boron was formed to a thickness of 0.1 μm. After that, the transparent electrode 16 was formed, but the dark current was 23, and the photocurrent was 24.
are shown respectively. It can be seen that the dark current was reduced by adding the surface silicon oxide layer.

次に本発明の第2の実施例の電子写真感光体の断面図、
(a)図は初期状態、(b)図は表面層の変化状態図、
を示す。
Next, a cross-sectional view of an electrophotographic photoreceptor according to a second embodiment of the present invention,
(a) The figure shows the initial state, (b) shows the change state of the surface layer,
shows.

Ap基板3]上に第1の実施例の層13と同一条件で水
素量の多い非晶質水素化シリコン層32を形成し、続い
て第1の実施例層14と同一条件で水素量の少ない非晶
質水素化シリコン層33を5〜6μmに形成する。これ
にコロナ帯電器で負の帯電をくり返し印加すると第5図
に示すように徐々に初期帯電電位が上昇する。これをA
uger分析を行なった結果、表面に酸素が多く存在し
、酸化シリコンが存在していた。この酸化は、負帯電に
ともなうオゾンによって表面の非晶質水素化シリコンが
酸化されたものと思われる。この酸化シリコン層によっ
て電子の注入が減少し、初期帯電電位が上昇した。
An amorphous hydrogenated silicon layer 32 containing a large amount of hydrogen is formed on the Ap substrate 3] under the same conditions as the layer 13 of the first embodiment, and then an amorphous hydrogenated silicon layer 32 containing a large amount of hydrogen is formed under the same conditions as the layer 14 of the first embodiment. A thin amorphous hydrogenated silicon layer 33 is formed to a thickness of 5 to 6 μm. When negative charges are repeatedly applied to this using a corona charger, the initial charging potential gradually increases as shown in FIG. This is A
As a result of uger analysis, it was found that a large amount of oxygen and silicon oxide were present on the surface. This oxidation is thought to be due to the amorphous hydrogenated silicon on the surface being oxidized by ozone accompanying negative charging. This silicon oxide layer reduced electron injection and increased the initial charging potential.

以」二の実施例は非晶質水素化シリコンの表面層を酸化
シリコン層に変化させた例である。
The second embodiment is an example in which the surface layer of amorphous hydrogenated silicon is changed to a silicon oxide layer.

第6図に本発明の第3の実施例の断面図を示す。FIG. 6 shows a sectional view of a third embodiment of the present invention.

表面を鏡面処理したステンレス基板41上に第1の実施
例における非晶質水素化シリコン層13をアルゴン圧力
4 X 10 ” Torr 、水素圧力1×10〜3
Torrの雰囲気中で形成する以外は同一の条件で水素
含有量の多い層42を形成する。つづいてアルゴン圧3 力4.5 X 10  Torr 、水素圧力5 X 
10  Torrの雰囲気にするとともに放電電力を3
00Wとし4時間で5〜6μmの水素含有量の少ない非
晶質水素化シリコン層43を形成する。さらにArrr
:、力I X 10 ” Torr 、窒化圧力2 X
 10 ” Torrとし、放電電力400Wにし窒化
シリコン膜44を100八〇以上形成する。この感光板
を帯電試験器を用いて−6KVのコロナチャージャーで
帯電させた結果の初期帯電電位、暗減衰時間を表1に示
す。
The amorphous silicon hydride layer 13 in the first embodiment is placed on a stainless steel substrate 41 whose surface has been mirror-treated under an argon pressure of 4×10” Torr and a hydrogen pressure of 1×10” Torr.
The layer 42 with a high hydrogen content is formed under the same conditions except that it is formed in a Torr atmosphere. Next, argon pressure 3, force 4.5 x 10 Torr, hydrogen pressure 5 x
Create an atmosphere of 10 Torr and increase the discharge power to 3
00W and forms an amorphous hydrogenated silicon layer 43 with a low hydrogen content of 5 to 6 μm in 4 hours. Further Arrr
:, force I x 10” Torr, nitriding pressure 2 x
10" Torr, and a discharge power of 400 W to form a silicon nitride film 44 of 10,080 or more. This photosensitive plate was charged with a -6 KV corona charger using a charge tester, and the initial charging potential and dark decay time were determined. It is shown in Table 1.

比較のため、窒化シリコン膜がないときの特性も示す。For comparison, the characteristics when there is no silicon nitride film are also shown.

初期帯電位、暗減衰ともに特性の改善がみられる。光減
衰特性は大差がなく良好である。
Improvements are seen in both the initial charging potential and dark decay characteristics. The optical attenuation characteristics are good with no significant difference.

第7図は、第3の実施例の構造を逆転させたもので、基
板の上に窒化シリコン44、水素量の少ない非晶質水素
化シリコン43、水素量の多い非晶質水素化シリコン4
2をlll5次形成する。条件は第3の実施例と同しで
ある。この膜を感光板として使用すると正のり↑Y電を
する。
FIG. 7 shows the structure of the third embodiment reversed, with silicon nitride 44 on the substrate, amorphous hydrogenated silicon 43 with a small amount of hydrogen, and amorphous silicon hydride 4 with a large amount of hydrogen on the substrate.
Form 2 in 5 orders. The conditions are the same as in the third embodiment. When this film is used as a photosensitive plate, it produces a positive ↑Y charge.

表     1 以上の実施例で、窒化シリコン及び酸化シリコンにより
、電子の注入阻止層を形成することにより暗電流の低下
、感光体においては帯電電位の上昇、暗減衰の減少の効
果がある。この電子の注入を・1領Jjうする1層はS
j、Nx0yという中間の組成でも同様の効果がある。
Table 1 In the above embodiments, forming an electron injection blocking layer using silicon nitride and silicon oxide has the effect of reducing dark current, increasing the charging potential of the photoreceptor, and reducing dark decay. The first layer responsible for this electron injection is S
A similar effect can be obtained even with an intermediate composition of Nx0y and Nx0y.

スパッタ法による非晶質水素化シリコンばS i H4
0分解によりグロー放電により高抵抗であり、より緻密
で高抵抗の良質の窒化シリコンまたは酸化シリコンを用
いても非晶質水素化シリコン層に十分型[[の配分があ
り、光減衰特性の劣化、残留電位の上昇は大きくない。
Amorphous hydrogenated silicon Si H4 by sputtering method
0 decomposition results in high resistance due to glow discharge, and even if a denser and higher resistance high-quality silicon nitride or silicon oxide is used, the amorphous silicon hydride layer will have a sufficient distribution of type [[], resulting in deterioration of optical attenuation characteristics. , the increase in residual potential is not large.

また、同様の効果によりグロー放電法による非晶質水素
化シリコンより窒化シリコンまたは酸化シリコンを厚く
てき、表面の安定性及び耐摩耗性が優れている。
Furthermore, due to the same effect, silicon nitride or silicon oxide can be made thicker than amorphous hydrogenated silicon produced by the glow discharge method, resulting in superior surface stability and wear resistance.

このような構成にすると薄くても帯電電位が上昇し、生
産性の面からも有利である。
Such a structure increases the charging potential even if it is thin, and is advantageous in terms of productivity.

発明の効果 本発明は前記構成により、水素の、1iJ■成犬なる禁
止帯幅の広い高抵抗非晶質水素化シリコンを用いて正孔
の注入を阻止し、または窒化シリコンまたは酸化シリコ
ン層を設けて電子の注入をN1止する構成となるので高
解像で高感度かつ低暗電流となる作用効果を生ずる。一
方、電子写真感光体としては安定性、耐摩耗性にすぐれ
る。
Effects of the Invention With the above configuration, the present invention prevents the injection of holes by using high resistance amorphous silicon hydride with a wide forbidden band of 1iJ≈adult, or by using a silicon nitride or silicon oxide layer. Since the structure is such that the injection of electrons is stopped at N1, the effects of high resolution, high sensitivity, and low dark current are produced. On the other hand, it has excellent stability and abrasion resistance as an electrophotographic photoreceptor.

本発明の製造方法はドーピングなしでも10ΩI7n以
上の非晶質水素化シリコンが得られ水素計の制御が容易
で、しかも反応性スパッタ法によると窒化シリコン、酸
化シリコンは反応ガスを変えるだけで容易に形成される
、窒化シリコン、酸化シリコンは非晶質水素化シリコン
をプラズマなどで活性化された窒素または酸素中で反応
させることで容易に実現できろ、などの効果を生ずる。
The manufacturing method of the present invention allows amorphous silicon hydride with a resistance of 10ΩI7n or more to be obtained without doping, making it easy to control the hydrogen meter, and using the reactive sputtering method, silicon nitride and silicon oxide can be easily produced by simply changing the reaction gas. The silicon nitride and silicon oxide that are formed can be easily realized by reacting amorphous hydrogenated silicon in nitrogen or oxygen activated by plasma or the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光導電体の構成の説明図、第2図(a
)図は本発明の光導電体の第1の実施例の断面図、(b
)図は第1の実施例との特性を比較するための光導電体
(以下比較例という。)の断面図、第3図は本発明の第
1の実施例と比較例のV ]特性図、第4図は本発明の
第2の実施例の電子写真感光体の断面図、(a)図は初
期状態、(b)図は表面層の変化状態図、第5図は本発
明の第2の実施例の電子写真感光板の初期帯電電位の上
昇の経時変化図、第6図は本発明の第3の実施例の電子
写真感光板の断面図、第7図は本発明の第3の実施例の
構造の逆転断面図、を示す。 l 、 11.31.41 :基板  2 、3 、1
3.14.32゜33、42.44 :非晶質水素シリ
コン層  4:窒化シリコンまたは酸化シリコン層 第1図 第7図 (^ン A (b) 第2図 り 重 うh t77願ヤ瓜(−V) 第3図 (レフ 第4図 妊五吟閏 (d枦) 第5図 IJ 第6図
FIG. 1 is an explanatory diagram of the structure of the photoconductor of the present invention, and FIG.
) is a sectional view of the first embodiment of the photoconductor of the present invention, (b)
) is a sectional view of a photoconductor (hereinafter referred to as a comparative example) for comparing the characteristics with the first example, and FIG. 3 is a characteristic diagram of the first example of the present invention and the comparative example. , FIG. 4 is a sectional view of an electrophotographic photoreceptor according to a second embodiment of the present invention, (a) is an initial state, (b) is a diagram of changes in the surface layer, and FIG. 5 is a diagram of a state of change in the surface layer. FIG. 6 is a sectional view of the electrophotographic photosensitive plate according to the third embodiment of the present invention, and FIG. FIG. 2 shows an inverted cross-sectional view of the structure of the embodiment. l, 11.31.41: Substrate 2, 3, 1
3.14.32゜33,42.44: Amorphous hydrogen silicon layer 4: Silicon nitride or silicon oxide layer -V) Fig. 3 (Ref Fig. 4 Pregnancy Goginbin (d) Fig. 5 IJ Fig. 6

Claims (1)

【特許請求の範囲】 1、 非晶質水素化シリコンを主成分とする比抵抗0 10  Ωm以上の第1、第2の層からなり、前記第2
の層を前記第1の層より水素含有量の多くした正孔の注
入阻止層の第1の層を前記第2の層と電子の注入阻止層
で挾むよう順次基板上に形成してなる光導電体。 2、 前記電子の注入阻止層を窒化シリコン層とし請求
の範囲第1項記載の光導電体。 4、 ターゲットをシリコンを主成分とし、水素を反応
ガスとして含む雰囲気中で反応性スパッタ法により工0
  Ωm以上の水素含有量の第Iの層と前記第1の層よ
り水素含有量の多い第2の層を形成する工程A1工程B
および窒素または酸素を反応性ガスとして含む雰囲気中
で反応性スパッタ法により窒化シリコン層または酸化シ
リコン層(以下酸化層という。)を形成する工程Cから
なり、前記第1の層を前記第2の層と酸化層で挾持する
と共に、前記構成された積層順に基板上に形成すること
を特徴とする光導電体の製造方法。 5 ターゲットをシリコンを主成分とし、水素を反応ガ
スとして含む雰囲気中で反応性スノザツタ法により10
  Ωm以上の水素含有量の第1の層と前記第1の層よ
り水素含有量の多い第2の層を形成する工程A1工程B
および窒素または酸素を反応性ガスとして含む雰囲気中
で反応性スパッタ法により窒化シリコン層または酸化層
(以下酸化層という。)を形成する工程Cからなり、前
記第1の層の一方の面に前記第2の層を形成すると共に
他面に前記C工程において活性な窒素または酸素を含む
雰囲気中で前記第1の層の一部を窒化シリコン層または
酸化シリコン層に変化させると共に前記構成された積層
順に基板上に形成することを特徴とする光導電体の製造
方法。
[Claims] 1. Consisting of first and second layers containing amorphous hydrogenated silicon as a main component and having a specific resistance of 0 10 Ωm or more, the second layer
A first layer of a hole injection blocking layer having a hydrogen content higher than that of the first layer is sandwiched between the second layer and an electron injection blocking layer on a substrate. conductor. 2. The photoconductor according to claim 1, wherein the electron injection blocking layer is a silicon nitride layer. 4. Processing using reactive sputtering in an atmosphere containing silicon as the main component and hydrogen as a reactive gas.
Step A1 Step B of forming a first layer with a hydrogen content of Ωm or more and a second layer with a higher hydrogen content than the first layer
and Step C of forming a silicon nitride layer or a silicon oxide layer (hereinafter referred to as an oxide layer) by a reactive sputtering method in an atmosphere containing nitrogen or oxygen as a reactive gas, A method for manufacturing a photoconductor, comprising sandwiching the photoconductor with a layer and an oxide layer, and forming the photoconductor on a substrate in the above-described laminated order. 5 The target is made of silicon as the main component, and 10
Step A1 Step B of forming a first layer with a hydrogen content of Ωm or more and a second layer with a hydrogen content higher than the first layer
and Step C of forming a silicon nitride layer or an oxide layer (hereinafter referred to as an oxide layer) by a reactive sputtering method in an atmosphere containing nitrogen or oxygen as a reactive gas, forming a second layer, and changing a part of the first layer into a silicon nitride layer or a silicon oxide layer in an atmosphere containing active nitrogen or oxygen in the C step; 1. A method of manufacturing a photoconductor, comprising forming the photoconductor on a substrate in this order.
JP58105515A 1983-06-13 1983-06-13 Photoconductor and manufacture thereof Granted JPS59231879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58105515A JPS59231879A (en) 1983-06-13 1983-06-13 Photoconductor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58105515A JPS59231879A (en) 1983-06-13 1983-06-13 Photoconductor and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS59231879A true JPS59231879A (en) 1984-12-26
JPH0481349B2 JPH0481349B2 (en) 1992-12-22

Family

ID=14409733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58105515A Granted JPS59231879A (en) 1983-06-13 1983-06-13 Photoconductor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59231879A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56146142A (en) * 1980-04-16 1981-11-13 Hitachi Ltd Electrophotographic sensitive film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56146142A (en) * 1980-04-16 1981-11-13 Hitachi Ltd Electrophotographic sensitive film

Also Published As

Publication number Publication date
JPH0481349B2 (en) 1992-12-22

Similar Documents

Publication Publication Date Title
JPS59231879A (en) Photoconductor and manufacture thereof
US5278015A (en) Amorphous silicon film, its production and photo semiconductor device utilizing such a film
JPS61201481A (en) Photoconductor
US5152833A (en) Amorphous silicon film, its production and photo semiconductor device utilizing such a film
US4913995A (en) Amorphous silicon electrophotographic photoreceptor with an intermediate gradient layer and its method of preparation
JPH0652428B2 (en) Photoconductor
JPS62151857A (en) Photoconductive member
JPS6258675B2 (en)
JPS59143379A (en) Photoconductor and manufacture thereof
JPH03165068A (en) Amorphous photoconductive cell
JPH01204057A (en) Manufacture of electrophotographic sensitive body
JPS628782B2 (en)
JPS616654A (en) Electrophotographic sensitive body and its manufacture
JPS5934675A (en) Photo detector
JPS6410066B2 (en)
JPS6273275A (en) Photoconductive body
JPH0458192B2 (en)
JPS61104679A (en) Photoconductor
JPS61181174A (en) Photoconductor
JPS6346409B2 (en)
JPS60105280A (en) Amorphous semiconductor device
JPH087448B2 (en) Method for manufacturing electrophotographic photoreceptor
JPS6298361A (en) Photoconductive body
JPH07117764B2 (en) Method for manufacturing electrophotographic photoreceptor
JPS60178459A (en) Electrophotographic sensitive body